Citace podle APA (7th ed.)

Hajihosseinlou, M., Maghsoudi, A., & Ghezelbash, R. (2023). A Novel Scheme for Mapping of MVT-Type Pb–Zn Prospectivity: LightGBM, a Highly Efficient Gradient Boosting Decision Tree Machine Learning Algorithm. Natural resources research (New York, N.Y.), 32(6), 2417-2438. https://doi.org/10.1007/s11053-023-10249-6

Citace podle Chicago (17th ed.)

Hajihosseinlou, Mahsa, Abbas Maghsoudi, a Reza Ghezelbash. "A Novel Scheme for Mapping of MVT-Type Pb–Zn Prospectivity: LightGBM, a Highly Efficient Gradient Boosting Decision Tree Machine Learning Algorithm." Natural Resources Research (New York, N.Y.) 32, no. 6 (2023): 2417-2438. https://doi.org/10.1007/s11053-023-10249-6.

Citace podle MLA (9th ed.)

Hajihosseinlou, Mahsa, et al. "A Novel Scheme for Mapping of MVT-Type Pb–Zn Prospectivity: LightGBM, a Highly Efficient Gradient Boosting Decision Tree Machine Learning Algorithm." Natural Resources Research (New York, N.Y.), vol. 32, no. 6, 2023, pp. 2417-2438, https://doi.org/10.1007/s11053-023-10249-6.

Upozornění: Tyto citace jsou generovány automaticky. Nemusí být zcela správně podle citačních pravidel..