Low-Dimensional Manifolds Support Multiplexed Integrations in Recurrent Neural Networks
We study the learning dynamics and the representations emerging in recurrent neural networks (RNNs) trained to integrate one or multiple temporal signals. Combining analytical and numerical investigations, we characterize the conditions under which an RNN with neurons learns to integrate scalar sign...
Uloženo v:
| Vydáno v: | Neural computation Ročník 33; číslo 4; s. 1 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
26.03.2021
|
| ISSN: | 1530-888X, 1530-888X |
| On-line přístup: | Zjistit podrobnosti o přístupu |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | We study the learning dynamics and the representations emerging in recurrent neural networks (RNNs) trained to integrate one or multiple temporal signals. Combining analytical and numerical investigations, we characterize the conditions under which an RNN with
neurons learns to integrate
scalar signals of arbitrary duration. We show, for linear, ReLU, and sigmoidal neurons, that the internal state lives close to a
-dimensional manifold, whose shape is related to the activation function. Each neuron therefore carries, to various degrees, information about the value of all integrals. We discuss the deep analogy between our results and the concept of mixed selectivity forged by computational neuroscientists to interpret cortical recordings. |
|---|---|
| AbstractList | We study the learning dynamics and the representations emerging in recurrent neural networks (RNNs) trained to integrate one or multiple temporal signals. Combining analytical and numerical investigations, we characterize the conditions under which an RNN with n neurons learns to integrate D(≪n) scalar signals of arbitrary duration. We show, for linear, ReLU, and sigmoidal neurons, that the internal state lives close to a D-dimensional manifold, whose shape is related to the activation function. Each neuron therefore carries, to various degrees, information about the value of all integrals. We discuss the deep analogy between our results and the concept of mixed selectivity forged by computational neuroscientists to interpret cortical recordings.We study the learning dynamics and the representations emerging in recurrent neural networks (RNNs) trained to integrate one or multiple temporal signals. Combining analytical and numerical investigations, we characterize the conditions under which an RNN with n neurons learns to integrate D(≪n) scalar signals of arbitrary duration. We show, for linear, ReLU, and sigmoidal neurons, that the internal state lives close to a D-dimensional manifold, whose shape is related to the activation function. Each neuron therefore carries, to various degrees, information about the value of all integrals. We discuss the deep analogy between our results and the concept of mixed selectivity forged by computational neuroscientists to interpret cortical recordings. We study the learning dynamics and the representations emerging in recurrent neural networks (RNNs) trained to integrate one or multiple temporal signals. Combining analytical and numerical investigations, we characterize the conditions under which an RNN with neurons learns to integrate scalar signals of arbitrary duration. We show, for linear, ReLU, and sigmoidal neurons, that the internal state lives close to a -dimensional manifold, whose shape is related to the activation function. Each neuron therefore carries, to various degrees, information about the value of all integrals. We discuss the deep analogy between our results and the concept of mixed selectivity forged by computational neuroscientists to interpret cortical recordings. |
| Author | Fanthomme, Arnaud Monasson, Rémi |
| Author_xml | – sequence: 1 givenname: Arnaud surname: Fanthomme fullname: Fanthomme, Arnaud email: arnaud.fanthomme@phys.ens.fr organization: Laboratoire de Physique de l'Ecole Normale Supérieure PSLand CNRS UMR 8023, Sorbonne Université, 75005 Paris, France arnaud.fanthomme@phys.ens.fr – sequence: 2 givenname: Rémi surname: Monasson fullname: Monasson, Rémi email: remi.monasson@phys.ens.fr organization: Laboratoire de Physique de l'Ecole Normale Supérieure PSLand CNRS UMR 8023, Sorbonne Université, 75005 Paris, France remi.monasson@phys.ens.fr |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33513327$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkDtPwzAYRS1URB-wMaOMLAE_EscZUSlQqS0SD8EWOfZnFEjsYDsq_HsqUSSme4dz7nCnaGSdBYROCb4ghNNLC8pVssKEcX6AJiRnOBVCvI7-9TGahvCOMeYE50dozFhOGKPFBL2s3Da9bjqwoXFWtsla2sa4Vofkceh752OyHtrY9C18gU6WNsKbl3HHhqSxyQOowXuwMdnA4Hf6BuLW-Y9wjA6NbAOc7HOGnm8WT_O7dHV_u5xfrVLFchrTTEkt6sIIQjJuSCEzUwLhOTacCG0wz7RWjNaCZpSVZa1rDKoWBS8KY4SSdIbOf3d77z4HCLHqmqCgbaUFN4SKZoIJUjBW7tCzPTrUHeiq900n_Xf1dwb9Ae0jZNw |
| CitedBy_id | crossref_primary_10_1155_2021_2438656 |
| ContentType | Journal Article |
| Copyright | 2021 Massachusetts Institute of Technology. |
| Copyright_xml | – notice: 2021 Massachusetts Institute of Technology. |
| DBID | NPM 7X8 |
| DOI | 10.1162/neco_a_01366 |
| DatabaseName | PubMed MEDLINE - Academic |
| DatabaseTitle | PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1530-888X |
| ExternalDocumentID | 33513327 |
| Genre | Journal Article |
| GroupedDBID | --- -~X .4S .DC 0R~ 123 36B 4.4 6IK AAJGR AALMD ABAZT ABDBF ABDNZ ABIVO ABJNI ACGFO ACUHS ADMLS AEGXH AEILP AENEX AFHIN AIAGR ALMA_UNASSIGNED_HOLDINGS ARCSS AVWKF AZFZN BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EAP EAS EBC EBD EBS ECS EDO EMB EMK EMOBN EPL EPS EST ESX F5P FEDTE FNEHJ HZ~ I-F IPLJI JAVBF MCG MINIK MKJ NPM O9- OCL P2P PK0 PQQKQ RMI SV3 TUS WG8 WH7 XJE ZWS 7X8 ABVLG AMVHM |
| ID | FETCH-LOGICAL-c352t-4cad8b7f81146f17a4f9e1650f618df064ddc32b8242399bdb0ecb87677ff8ca2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000663433900008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1530-888X |
| IngestDate | Wed Oct 01 15:05:06 EDT 2025 Wed Feb 19 02:29:17 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c352t-4cad8b7f81146f17a4f9e1650f618df064ddc32b8242399bdb0ecb87677ff8ca2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 33513327 |
| PQID | 2483817339 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2483817339 pubmed_primary_33513327 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-03-26 |
| PublicationDateYYYYMMDD | 2021-03-26 |
| PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-26 day: 26 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Neural computation |
| PublicationTitleAlternate | Neural Comput |
| PublicationYear | 2021 |
| SSID | ssj0006105 |
| Score | 2.3563745 |
| Snippet | We study the learning dynamics and the representations emerging in recurrent neural networks (RNNs) trained to integrate one or multiple temporal signals.... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 1 |
| Title | Low-Dimensional Manifolds Support Multiplexed Integrations in Recurrent Neural Networks |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/33513327 https://www.proquest.com/docview/2483817339 |
| Volume | 33 |
| WOSCitedRecordID | wos000663433900008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7qevDi-nZ9EcFrsG26aXMSUReF3bKIYm8lzQMWpF3t-vj5zvTBngTBS28pYTKZfpl8_T5CLngYK6h6HstVZFk45B6TMudMqdCXepiLUNXq-uMoSeI0ldO24Va1tMquJtaF2pQae-SXQRijmBzn8mr-xtA1Cm9XWwuNVdLjAGUwq6N0qRYuGgqjjzOAk17aEd9FcFnA4S5TGSqWid_BZf2RGfX_O70tstnCS3rd5MM2WbHFDul31g203cm75GVcfrFbVPZvVDnoRBUzV76aiqLPJ2ByOmmpht_W0IdWVAJzlM4K-ohdetR1oijuAcOThk1e7ZHn0d3TzT1rPRaYBui1YKFWJs4jF-Pfyc6PVOik9QG2OeHHxgFgMUbzII8Rd8EqmtyzOocSGkXOxVoF-2StKAt7SKj0lNC5p4yAhdZcSaECeBfgT19YK8MBOe9Cl0EO48WEKmz5UWXL4A3IQRP_bN6IbWScowNNEB39YfQx2QiQcuJxFogT0nOwg-0pWdefi1n1flYnBzyT6eQHLszGwg |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low-Dimensional+Manifolds+Support+Multiplexed+Integrations+in+Recurrent+Neural+Networks&rft.jtitle=Neural+computation&rft.au=Fanthomme%2C+Arnaud&rft.au=Monasson%2C+R%C3%A9mi&rft.date=2021-03-26&rft.eissn=1530-888X&rft.spage=1&rft_id=info:doi/10.1162%2Fneco_a_01366&rft_id=info%3Apmid%2F33513327&rft_id=info%3Apmid%2F33513327&rft.externalDocID=33513327 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-888X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-888X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-888X&client=summon |