Data-driven production optimization using particle swarm algorithm based on the ensemble-learning proxy model
Uloženo v:
| Vydáno v: | Petroleum science Ročník 20; číslo 5; s. 2951 - 2966 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
01.10.2023
|
| ISSN: | 1995-8226 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Author | Yang, Jiao-Sheng Song, Hong-Qing Du, Shu-Yi Zhao, Xiang-Guo Xie, Chi-Yu Zhu, Jing-Wei Wang, Jiu-Long |
|---|---|
| Author_xml | – sequence: 1 givenname: Shu-Yi surname: Du fullname: Du, Shu-Yi – sequence: 2 givenname: Xiang-Guo surname: Zhao fullname: Zhao, Xiang-Guo – sequence: 3 givenname: Chi-Yu orcidid: 0000-0002-2813-6925 surname: Xie fullname: Xie, Chi-Yu – sequence: 4 givenname: Jing-Wei orcidid: 0000-0003-3669-5118 surname: Zhu fullname: Zhu, Jing-Wei – sequence: 5 givenname: Jiu-Long surname: Wang fullname: Wang, Jiu-Long – sequence: 6 givenname: Jiao-Sheng surname: Yang fullname: Yang, Jiao-Sheng – sequence: 7 givenname: Hong-Qing orcidid: 0000-0002-6642-3773 surname: Song fullname: Song, Hong-Qing |
| BookMark | eNp9kMtOwzAQRb0oEm3hD1j4BxLGj7zYofKUKrGBteU4k9ZVEke2C5Svh6asWLAajTRndO9ZkNngBiTkikHKgOXXu3TEGIxNOXCRgkwB2IzMWVVlScl5fk4WIewAJCtyPif9nY46abx9x4GO3jV7E60bqBuj7e2XnpZ9sMOGjtpHazqk4UP7nupu47yN257WOmBDf-7iFikOAfu6w6RD7YeJ8-7zQHvXYHdBzlrdBbz8nUvy9nD_unpK1i-Pz6vbdWJExmMiC1k0AlnWlKjrvK2LGoSQHKD-iY1QiqbOiqKtTCXKKme6BVMYJjMugVXAxJLcnP4a70Lw2Cpj49Qlem07xUAdZamdOslSR1kKpIIJln_g0dte-8P_2DfeH3da |
| CitedBy_id | crossref_primary_10_1016_j_ast_2025_110823 crossref_primary_10_1016_j_energy_2024_133247 crossref_primary_10_1038_s41598_025_15205_3 crossref_primary_10_1080_02533839_2025_2493870 crossref_primary_10_1007_s00521_024_09834_4 crossref_primary_10_1016_j_petsci_2025_02_014 crossref_primary_10_1016_j_jclepro_2024_141377 crossref_primary_10_3390_pr12061219 crossref_primary_10_1016_j_petsci_2025_06_001 crossref_primary_10_3390_gels10060403 crossref_primary_10_3390_jmse13081535 crossref_primary_10_3390_w16121732 crossref_primary_10_1109_ACCESS_2024_3470869 crossref_primary_10_1063_5_0277974 crossref_primary_10_1016_j_engappai_2025_110205 crossref_primary_10_3390_pr12050897 crossref_primary_10_1016_j_geoen_2024_213250 crossref_primary_10_1371_journal_pone_0322111 crossref_primary_10_2118_226207_PA crossref_primary_10_1016_j_energy_2023_128877 crossref_primary_10_1016_j_jgsce_2023_205093 crossref_primary_10_3390_en16237890 crossref_primary_10_1016_j_eswa_2023_122797 crossref_primary_10_1007_s11042_024_18213_z crossref_primary_10_1016_j_coldregions_2024_104291 crossref_primary_10_3390_app14219913 |
| Cites_doi | 10.25080/Majora-8b375195-003 10.1016/j.jngse.2016.08.045 10.1016/j.petsci.2021.07.001 10.2118/163613-PA 10.1016/j.fuel.2021.121872 10.1016/j.apenergy.2020.115695 10.1007/s10957-006-9101-0 10.1016/j.petrol.2018.06.075 10.1186/1471-2105-8-25 10.46690/ager.2021.03.06 10.2118/205013-PA 10.1016/j.petsci.2022.05.002 10.1016/j.apenergy.2022.118985 10.1007/s00158-009-0460-7 10.1016/j.energy.2019.01.087 10.1016/j.apenergy.2018.09.182 10.2118/9723-PA 10.2118/109805-PA 10.1016/S0167-9473(01)00065-2 10.1016/j.petrol.2022.110360 10.1109/TEVC.2004.826067 10.1016/j.petsci.2021.08.007 10.1109/TPAMI.2009.187 10.3390/pr5030034 10.1038/nature14541 10.1016/j.petsci.2022.02.008 10.2118/118926-PA 10.2118/201229-PA 10.2118/95322-PA 10.1080/00107510500052444 10.1023/B:STCO.0000035301.49549.88 10.1002/nme.5342 10.2118/199357-PA 10.2118/83381-PA 10.1198/tast.2009.08199 10.1023/A:1010933404324 10.1109/JIOT.2020.2992811 10.1016/j.jngse.2019.103038 10.1002/ese3.1276 10.1006/jcss.1997.1504 10.1155/2013/151898 10.1007/s11749-016-0481-7 10.1038/nature14539 10.1287/moor.6.1.19 10.1016/j.petrol.2018.03.044 10.2118/191378-PA 10.1016/j.fuel.2019.116758 10.2118/29124-PA 10.1016/j.gsf.2020.03.007 10.26804/ager.2020.02.03 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.petsci.2023.04.001 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EndPage | 2966 |
| ExternalDocumentID | 10_1016_j_petsci_2023_04_001 |
| GroupedDBID | -SB -S~ -Y2 .86 .VR 06D 0R~ 0VY 123 29O 2JY 2VQ 2~H 30V 4.4 408 40D 5VR 5VS 67M 6NX 8FE 8FG 8FH 92H 92I 95. 95~ AAFWJ AAIAL AAKKN AALRI AARHV AAWCG AAXUO AAYWO AAYXX ABEEZ ABFSG ABJCF ABMNI ACACY ACBXY ACGFS ACIWK ACOMO ACREN ACSTC ACULB ACVFH ADCNI ADKPE ADRFC ADVLN AEGNC AEGXH AENEX AEUPX AEUYN AEZWR AFBBN AFFHD AFGCZ AFGXO AFHIU AFKRA AFLOW AFPKN AFPUW AFUIB AFWTZ AGJBK AGWIL AHBYD AHSBF AHWEU AHYZX AIGII AITUG AIXLP AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMKLP AMRAJ AMTXH BA0 BAPOH BENPR BGLVJ BGNMA BHPHI BKSAR C24 C6C CAG CAJEB CCEZO CCPQU CDRFL CHBEP CITATION COF CS3 CW9 DU5 EBS EJD FDB GQ7 GROUPED_DOAJ H13 HCIFZ HF~ HG6 HLICF HMJXF HRMNR HZ~ IJ- IPNFZ IXC I~X I~Z JBSCW KOV L6V LK5 M41 M4Y M7R M7S MA- M~E NU0 O9- OK1 PCBAR PF0 PHGZM PHGZT PIMPY PQGLB PTHSS Q-- QOS R9I RIG ROL RPX S1Z S27 S3B SCL SDH SEV SHX SOJ T13 TCJ TGT TSV TUC U1G U2A U5L VC2 WK8 ~A9 |
| ID | FETCH-LOGICAL-c352t-4747d3e15d8eab6fb7b0334200b417e083db577f9c938961af0c7c14524019013 |
| ISICitedReferencesCount | 33 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001107100600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1995-8226 |
| IngestDate | Wed Nov 05 20:51:14 EST 2025 Tue Nov 18 22:37:51 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c352t-4747d3e15d8eab6fb7b0334200b417e083db577f9c938961af0c7c14524019013 |
| ORCID | 0000-0002-6642-3773 0000-0002-2813-6925 0000-0003-3669-5118 |
| OpenAccessLink | https://doi.org/10.1016/j.petsci.2023.04.001 |
| PageCount | 16 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_petsci_2023_04_001 crossref_primary_10_1016_j_petsci_2023_04_001 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-10-00 |
| PublicationDateYYYYMMDD | 2023-10-01 |
| PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-00 |
| PublicationDecade | 2020 |
| PublicationTitle | Petroleum science |
| PublicationYear | 2023 |
| References | Al-Mudhafar (10.1016/j.petsci.2023.04.001_bib6) 2017 Grömping (10.1016/j.petsci.2023.04.001_bib32) 2009; 63 Yousef (10.1016/j.petsci.2023.04.001_bib69) 2006; 9 Mohanta (10.1016/j.petsci.2023.04.001_bib46) 2021; 18 Chen (10.1016/j.petsci.2023.04.001_bib16) 2016 Coello (10.1016/j.petsci.2023.04.001_bib20) 2004; 8 Zhang (10.1016/j.petsci.2023.04.001_bib72) 2021; 12 Yu (10.1016/j.petsci.2023.04.001_bib70) 2013 Polikar (10.1016/j.petsci.2023.04.001_bib50) 2012 Rodriguez (10.1016/j.petsci.2023.04.001_bib51) 2009; 32 Al-Mudhafer (10.1016/j.petsci.2023.04.001_bib9) 2012 Ghassemzadeh (10.1016/j.petsci.2023.04.001_bib30) 2016; 35 Biau (10.1016/j.petsci.2023.04.001_bib13) 2016; 25 Hecht-Nielsen (10.1016/j.petsci.2023.04.001_bib34) 1992 Chen (10.1016/j.petsci.2023.04.001_bib17) 2010; 13 Wang (10.1016/j.petsci.2023.04.001_bib61) 2002 You (10.1016/j.petsci.2023.04.001_bib66) 2020; 279 Thanh (10.1016/j.petsci.2023.04.001_bib58) 2022; 314 Kaelo (10.1016/j.petsci.2023.04.001_bib39) 2006; 130 Breiman (10.1016/j.petsci.2023.04.001_bib14) 2001; 45 Fonseca (10.1016/j.petsci.2023.04.001_bib25) 2017; 109 Horn (10.1016/j.petsci.2023.04.001_bib37) 1994 Kennedy (10.1016/j.petsci.2023.04.001_bib40) 1995; 4 Du (10.1016/j.petsci.2023.04.001_bib23) 2022; 126121 Goodwin (10.1016/j.petsci.2023.04.001_bib31) 2015 Song (10.1016/j.petsci.2023.04.001_bib56) 2022; 212 Marler (10.1016/j.petsci.2023.04.001_bib44) 2010; 41 Al-Mudhafar (10.1016/j.petsci.2023.04.001_bib5) 2019; 72 You (10.1016/j.petsci.2023.04.001_bib67) 2020; 264 Solis (10.1016/j.petsci.2023.04.001_bib55) 1981; 6 Hong (10.1016/j.petsci.2023.04.001_bib36) 2022; 19 Fang (10.1016/j.petsci.2023.04.001_bib24) 1996; 11 Mofid (10.1016/j.petsci.2023.04.001_bib45) 2019; 172 Jansen (10.1016/j.petsci.2023.04.001_bib38) 2009 Drucker (10.1016/j.petsci.2023.04.001_bib22) 1997; 97 Liu (10.1016/j.petsci.2023.04.001_bib43) 2021; 18 Smola (10.1016/j.petsci.2023.04.001_bib53) 2004; 14 Guo (10.1016/j.petsci.2023.04.001_bib33) 2018; 23 Young (10.1016/j.petsci.2023.04.001_bib68) 1983; 23 Al-Mudhafar (10.1016/j.petsci.2023.04.001_bib8) 2022 Friedman (10.1016/j.petsci.2023.04.001_bib28) 2001 Patil (10.1016/j.petsci.2023.04.001_bib49) 2014; 107 Li (10.1016/j.petsci.2023.04.001_bib42) 2018; 232 Yin (10.1016/j.petsci.2023.04.001_bib65) 2021; 26 Snoek (10.1016/j.petsci.2023.04.001_bib54) 2012; 25 Bhattacharya (10.1016/j.petsci.2023.04.001_bib12) 2018; 170 Ghahramani (10.1016/j.petsci.2023.04.001_bib29) 2015; 521 Zubarev (10.1016/j.petsci.2023.04.001_bib75) 2009 Freund (10.1016/j.petsci.2023.04.001_bib26) 1997; 55 Ahmad (10.1016/j.petsci.2023.04.001_bib2) 2016 Strobl (10.1016/j.petsci.2023.04.001_bib57) 2007; 8 Friedman (10.1016/j.petsci.2023.04.001_bib27) 2002; 38 Xue (10.1016/j.petsci.2023.04.001_bib63) 2020 Coats (10.1016/j.petsci.2023.04.001_bib19) 1995 Chen (10.1016/j.petsci.2023.04.001_bib15) 2020; 25 Deb (10.1016/j.petsci.2023.04.001_bib21) 2014 Odeh (10.1016/j.petsci.2023.04.001_bib48) 1981; 33 Zhang (10.1016/j.petsci.2023.04.001_bib71) 2022; 19 Chertenkov (10.1016/j.petsci.2023.04.001_bib18) 2012 LeCun (10.1016/j.petsci.2023.04.001_bib41) 2015; 521 Bergstra (10.1016/j.petsci.2023.04.001_bib11) 2013 Salam (10.1016/j.petsci.2023.04.001_bib52) 2015 Wang (10.1016/j.petsci.2023.04.001_bib60) 2009; 14 Zhao (10.1016/j.petsci.2023.04.001_bib73) 2020; 25 Zhu (10.1016/j.petsci.2023.04.001_bib74) 2020; 4 Wang (10.1016/j.petsci.2023.04.001_bib62) 2020; 7 Yan (10.1016/j.petsci.2023.04.001_bib64) 2014; 19 Albertoni (10.1016/j.petsci.2023.04.001_bib3) 2003; 6 Ho (10.1016/j.petsci.2023.04.001_bib35) 1995 Alwated (10.1016/j.petsci.2023.04.001_bib10) 2021; 5 Newman (10.1016/j.petsci.2023.04.001_bib47) 2005; 46 Udy (10.1016/j.petsci.2023.04.001_bib59) 2017; 5 Abad (10.1016/j.petsci.2023.04.001_bib1) 2022; 308 Al-Mudhafar (10.1016/j.petsci.2023.04.001_bib4) 2016 Al-Mudhafar (10.1016/j.petsci.2023.04.001_bib7) 2018; 166 |
| References_xml | – year: 2013 ident: 10.1016/j.petsci.2023.04.001_bib11 article-title: Hyperopt: a python library for optimizing the hyperparameters of machine learning algorithms doi: 10.25080/Majora-8b375195-003 – volume: 35 start-page: 89 year: 2016 ident: 10.1016/j.petsci.2023.04.001_bib30 article-title: Optimization of integrated production system using advanced proxy based models: a new approach publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2016.08.045 – year: 2012 ident: 10.1016/j.petsci.2023.04.001_bib9 article-title: Application of a hybrid system of genetic algorithm & fuzzy logic as optimization techniques for improving oil recovery in a sandstone reservoirs in Iraq – volume: 18 start-page: 1230 issue: 4 year: 2021 ident: 10.1016/j.petsci.2023.04.001_bib46 article-title: Support vector regression modeling in recursive just-in-time learning framework for adaptive soft sensing of naphtha boiling point in crude distillation unit publication-title: Petrol. Sci. doi: 10.1016/j.petsci.2021.07.001 – start-page: 1 year: 2012 ident: 10.1016/j.petsci.2023.04.001_bib50 article-title: Ensemble learning – volume: 19 start-page: 873 issue: 5 year: 2014 ident: 10.1016/j.petsci.2023.04.001_bib64 article-title: Optimization algorithms based on combining FD approximations and stochastic gradients compared with methods based only on a stochastic gradient publication-title: SPE J. doi: 10.2118/163613-PA – volume: 308 year: 2022 ident: 10.1016/j.petsci.2023.04.001_bib1 article-title: Robust hybrid machine learning algorithms for gas flow rates prediction through wellhead chokes in gas condensate fields publication-title: Fuel doi: 10.1016/j.fuel.2021.121872 – year: 2002 ident: 10.1016/j.petsci.2023.04.001_bib61 article-title: Optimization of production operations in petroleum fields – volume: 279 year: 2020 ident: 10.1016/j.petsci.2023.04.001_bib66 article-title: Co-optimizing water-alternating-carbon dioxide injection projects using a machine learning assisted computational framework publication-title: Appl. Energy doi: 10.1016/j.apenergy.2020.115695 – volume: 130 start-page: 253 issue: 2 year: 2006 ident: 10.1016/j.petsci.2023.04.001_bib39 article-title: Some variants of the controlled random search algorithm for global optimization publication-title: J. Optim. Theor. Appl. doi: 10.1007/s10957-006-9101-0 – year: 2012 ident: 10.1016/j.petsci.2023.04.001_bib18 article-title: Gas breakthrough detection and production monitoring from ICD screen completion on Lukoil's Korchagina Field using permanently installed distributed temperature sensors – start-page: 403 year: 2014 ident: 10.1016/j.petsci.2023.04.001_bib21 – volume: 25 year: 2012 ident: 10.1016/j.petsci.2023.04.001_bib54 article-title: Practical bayesian optimization of machine learning algorithms publication-title: Adv. Neural Inf. Process. Syst. – year: 2017 ident: 10.1016/j.petsci.2023.04.001_bib6 article-title: Proxy-based metamodeling optimization of the gas-assisted gravity drainage GAGD process in heterogeneous sandstone reservoirs – volume: 170 start-page: 1005 year: 2018 ident: 10.1016/j.petsci.2023.04.001_bib12 article-title: Applications of machine learning for facies and fracture prediction using Bayesian Network Theory and Random Forest: case studies from the Appalachian basin, USA publication-title: J. Petrol. Sci. Eng. doi: 10.1016/j.petrol.2018.06.075 – volume: 8 start-page: 1 issue: 1 year: 2007 ident: 10.1016/j.petsci.2023.04.001_bib57 article-title: Bias in random forest variable importance measures: illustrations, sources and a solution publication-title: BMC Bioinf. doi: 10.1186/1471-2105-8-25 – start-page: 1189 year: 2001 ident: 10.1016/j.petsci.2023.04.001_bib28 article-title: Greedy function approximation: a gradient boosting machine publication-title: Ann. Stat. – volume: 5 start-page: 297 issue: 3 year: 2021 ident: 10.1016/j.petsci.2023.04.001_bib10 article-title: Enhanced oil recovery by nanoparticles flooding: from numerical modeling improvement to machine learning prediction publication-title: Advances in Geo-Energy Research doi: 10.46690/ager.2021.03.06 – volume: 26 start-page: 1614 issue: 4 year: 2021 ident: 10.1016/j.petsci.2023.04.001_bib65 article-title: Multifidelity genetic transfer: an efficient framework for production optimization publication-title: SPE J. doi: 10.2118/205013-PA – volume: 19 start-page: 3004 issue: 6 year: 2022 ident: 10.1016/j.petsci.2023.04.001_bib36 article-title: A liquid loading prediction method of gas pipeline based on machine learning publication-title: Petrol. Sci. doi: 10.1016/j.petsci.2022.05.002 – year: 1994 ident: 10.1016/j.petsci.2023.04.001_bib37 article-title: A niched Pareto genetic algorithm for multiobjective optimization – volume: 314 year: 2022 ident: 10.1016/j.petsci.2023.04.001_bib58 article-title: Knowledge-based machine learning techniques for accurate prediction of CO2 storage performance in underground saline aquifers publication-title: Appl. Energy doi: 10.1016/j.apenergy.2022.118985 – year: 2016 ident: 10.1016/j.petsci.2023.04.001_bib16 article-title: Xgboost: a scalable tree boosting system – volume: 41 start-page: 853 issue: 6 year: 2010 ident: 10.1016/j.petsci.2023.04.001_bib44 article-title: The weighted sum method for multi-objective optimization: new insights publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-009-0460-7 – year: 2016 ident: 10.1016/j.petsci.2023.04.001_bib4 article-title: Incorporation of bootstrapping and cross-validation for efficient multivariate facies and Petrophysical modeling – volume: 172 start-page: 286 year: 2019 ident: 10.1016/j.petsci.2023.04.001_bib45 article-title: Enhancing the performance of a parallel nitrogen expansion liquefaction process (NELP) using the multi-objective particle swarm optimization (MOPSO) algorithm publication-title: Energy doi: 10.1016/j.energy.2019.01.087 – volume: 232 start-page: 197 year: 2018 ident: 10.1016/j.petsci.2023.04.001_bib42 article-title: Random forest regression for online capacity estimation of lithium-ion batteries publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.09.182 – volume: 33 start-page: 13 issue: 1 year: 1981 ident: 10.1016/j.petsci.2023.04.001_bib48 article-title: Comparison of solutions to a three-dimensional black-oil reservoir simulation problem (includes associated paper 9741) publication-title: J. Petrol. Technol. doi: 10.2118/9723-PA – volume: 14 start-page: 506 issue: 3 year: 2009 ident: 10.1016/j.petsci.2023.04.001_bib60 article-title: Production optimization in closed-loop reservoir management publication-title: SPE J. doi: 10.2118/109805-PA – volume: 38 start-page: 367 issue: 4 year: 2002 ident: 10.1016/j.petsci.2023.04.001_bib27 article-title: Stochastic gradient boosting publication-title: Comput. Stat. Data Anal. doi: 10.1016/S0167-9473(01)00065-2 – volume: 212 year: 2022 ident: 10.1016/j.petsci.2023.04.001_bib56 article-title: Evaluation of hydraulic fracturing effect on coalbed methane reservoir based on deep learning method considering physical constraints publication-title: J. Petrol. Sci. Eng. doi: 10.1016/j.petrol.2022.110360 – volume: 8 start-page: 256 issue: 3 year: 2004 ident: 10.1016/j.petsci.2023.04.001_bib20 article-title: Handling multiple objectives with particle swarm optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2004.826067 – volume: 18 start-page: 1450 issue: 5 year: 2021 ident: 10.1016/j.petsci.2023.04.001_bib43 article-title: A deep-learning-based prediction method of the estimated ultimate recovery (EUR) of shale gas wells publication-title: Petrol. Sci. doi: 10.1016/j.petsci.2021.08.007 – volume: 126121 year: 2022 ident: 10.1016/j.petsci.2023.04.001_bib23 article-title: A systematic data-driven approach for production forecasting of coalbed methane incorporating deep learning and ensemble learning adapted to complex production patterns publication-title: Energy – year: 1995 ident: 10.1016/j.petsci.2023.04.001_bib35 article-title: Random decision forests – volume: 32 start-page: 569 issue: 3 year: 2009 ident: 10.1016/j.petsci.2023.04.001_bib51 article-title: Sensitivity analysis of k-fold cross validation in prediction error estimation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2009.187 – volume: 5 start-page: 34 issue: 3 year: 2017 ident: 10.1016/j.petsci.2023.04.001_bib59 article-title: Review of field development optimization of waterflooding, EOR, and well placement focusing on history matching and optimization algorithms publication-title: Processes doi: 10.3390/pr5030034 – volume: 521 start-page: 452 issue: 7553 year: 2015 ident: 10.1016/j.petsci.2023.04.001_bib29 article-title: Probabilistic machine learning and artificial intelligence publication-title: Nature doi: 10.1038/nature14541 – volume: 19 start-page: 1566 issue: 4 year: 2022 ident: 10.1016/j.petsci.2023.04.001_bib71 article-title: Predicting gas-bearing distribution using DNN based on multi-component seismic data: quality evaluation using structural and fracture factors publication-title: Petrol. Sci. doi: 10.1016/j.petsci.2022.02.008 – volume: 13 start-page: 56 issue: 1 year: 2010 ident: 10.1016/j.petsci.2023.04.001_bib17 article-title: Ensemble-based closed-loop optimization applied to Brugge field publication-title: SPE Reservoir Eval. Eng. doi: 10.2118/118926-PA – volume: 25 start-page: 2450 issue: 5 year: 2020 ident: 10.1016/j.petsci.2023.04.001_bib73 article-title: A classification-based surrogate-assisted multiobjective evolutionary algorithm for production optimization under geological uncertainty publication-title: SPE J. doi: 10.2118/201229-PA – volume: 23 start-page: 727 issue: 5 year: 1983 ident: 10.1016/j.petsci.2023.04.001_bib68 article-title: A generalized compositional approach for reservoir simulation publication-title: SPE J. – volume: 9 start-page: 630 issue: 6 year: 2006 ident: 10.1016/j.petsci.2023.04.001_bib69 article-title: A capacitance model to infer interwell connectivity from production and injection rate fluctuations publication-title: SPE Reservoir Eval. Eng. doi: 10.2118/95322-PA – year: 2009 ident: 10.1016/j.petsci.2023.04.001_bib38 article-title: Closed loop reservoir management publication-title: SPE Reservoir Simulation Symposium – volume: 46 start-page: 323 issue: 5 year: 2005 ident: 10.1016/j.petsci.2023.04.001_bib47 article-title: Power laws, Pareto distributions and Zipf's law publication-title: Contemp. Phys. doi: 10.1080/00107510500052444 – year: 2015 ident: 10.1016/j.petsci.2023.04.001_bib52 article-title: Production optimization strategy using hybrid genetic algorithm – volume: 14 start-page: 199 issue: 3 year: 2004 ident: 10.1016/j.petsci.2023.04.001_bib53 article-title: A tutorial on support vector regression publication-title: Stat. Comput. doi: 10.1023/B:STCO.0000035301.49549.88 – volume: 109 start-page: 1756 issue: 13 year: 2017 ident: 10.1016/j.petsci.2023.04.001_bib25 article-title: A stochastic simplex approximate gradient (StoSAG) for optimization under uncertainty publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.5342 – year: 2016 ident: 10.1016/j.petsci.2023.04.001_bib2 article-title: Rejuvenating a high GOR, light oil reservoir using AICD completion technology for gas control – volume: 4 start-page: 1942 year: 1995 ident: 10.1016/j.petsci.2023.04.001_bib40 article-title: Particle swarm optimization – volume: 25 start-page: 105 issue: 1 year: 2020 ident: 10.1016/j.petsci.2023.04.001_bib15 article-title: Global and local surrogate-model-assisted differential evolution for waterflooding production optimization publication-title: SPE J. doi: 10.2118/199357-PA – volume: 97 start-page: 107 year: 1997 ident: 10.1016/j.petsci.2023.04.001_bib22 article-title: Improving regressors using boosting techniques publication-title: ICML – volume: 6 start-page: 6 issue: 1 year: 2003 ident: 10.1016/j.petsci.2023.04.001_bib3 article-title: Inferring interwell connectivity only from well-rate fluctuations in waterfloods publication-title: SPE Reservoir Eval. Eng. doi: 10.2118/83381-PA – volume: 63 start-page: 308 issue: 4 year: 2009 ident: 10.1016/j.petsci.2023.04.001_bib32 article-title: Variable importance assessment in regression: linear regression versus random forest publication-title: Am. Statistician doi: 10.1198/tast.2009.08199 – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 10.1016/j.petsci.2023.04.001_bib14 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – start-page: 65 year: 1992 ident: 10.1016/j.petsci.2023.04.001_bib34 article-title: Theory of the backpropagation neural network.(s) – volume: 7 start-page: 8641 issue: 9 year: 2020 ident: 10.1016/j.petsci.2023.04.001_bib62 article-title: Random forest-bayesian optimization for product quality prediction with large-scale dimensions in process industrial cyber–physical systems publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2020.2992811 – volume: 72 year: 2019 ident: 10.1016/j.petsci.2023.04.001_bib5 article-title: Polynomial and nonparametric regressions for efficient predictive proxy metamodeling: application through the CO2-EOR in shale oil reservoirs publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2019.103038 – year: 2022 ident: 10.1016/j.petsci.2023.04.001_bib8 article-title: Rapid evaluation and optimization of carbon dioxide-enhanced oil recovery using reduced-physics proxy models publication-title: Energy Science & Engineering doi: 10.1002/ese3.1276 – volume: 55 start-page: 119 issue: 1 year: 1997 ident: 10.1016/j.petsci.2023.04.001_bib26 article-title: A decision-theoretic generalization of on-line learning and an application to boosting publication-title: J. Comput. Syst. Sci. doi: 10.1006/jcss.1997.1504 – year: 2013 ident: 10.1016/j.petsci.2023.04.001_bib70 article-title: Optimization of multiple hydraulically fractured horizontal wells in unconventional gas reservoirs publication-title: J. Petroleum Eng. doi: 10.1155/2013/151898 – volume: 25 start-page: 197 issue: 2 year: 2016 ident: 10.1016/j.petsci.2023.04.001_bib13 article-title: A random forest guided tour publication-title: Test doi: 10.1007/s11749-016-0481-7 – year: 1995 ident: 10.1016/j.petsci.2023.04.001_bib19 article-title: Compositional and black oil reservoir simulation – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 10.1016/j.petsci.2023.04.001_bib41 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 107 issue: 4 year: 2014 ident: 10.1016/j.petsci.2023.04.001_bib49 article-title: Multi-objective particle swarm optimization (MOPSO) based on Pareto dominance approach publication-title: Int. J. Comput. Appl. – volume: 6 start-page: 19 issue: 1 year: 1981 ident: 10.1016/j.petsci.2023.04.001_bib55 article-title: Minimization by random search techniques publication-title: Math. Oper. Res. doi: 10.1287/moor.6.1.19 – volume: 166 start-page: 490 year: 2018 ident: 10.1016/j.petsci.2023.04.001_bib7 article-title: Robust optimization of cyclic CO2 flooding through the gas-assisted gravity drainage process under geological uncertainties publication-title: J. Petrol. Sci. Eng. doi: 10.1016/j.petrol.2018.03.044 – volume: 23 start-page: 2409 issue: 6 year: 2018 ident: 10.1016/j.petsci.2023.04.001_bib33 article-title: Robust life-cycle production optimization with a support-vector-regression proxy publication-title: SPE J. doi: 10.2118/191378-PA – volume: 264 year: 2020 ident: 10.1016/j.petsci.2023.04.001_bib67 article-title: Development and application of a machine learning based multi-objective optimization workflow for CO2-EOR projects publication-title: Fuel doi: 10.1016/j.fuel.2019.116758 – year: 2009 ident: 10.1016/j.petsci.2023.04.001_bib75 article-title: Pros and cons of applying proxy-models as a substitute for full reservoir simulations – volume: 11 start-page: 116 issue: 2 year: 1996 ident: 10.1016/j.petsci.2023.04.001_bib24 article-title: A generalized well-management scheme for reservoir simulation publication-title: SPE Reservoir Eng. doi: 10.2118/29124-PA – year: 2020 ident: 10.1016/j.petsci.2023.04.001_bib63 article-title: Affine transformation-enhanced multifactorial optimization for heterogeneous problems publication-title: IEEE Trans. Cybern. – year: 2015 ident: 10.1016/j.petsci.2023.04.001_bib31 article-title: Bridging the gap between deterministic and probabilistic uncertainty quantification using advanced proxy based methods – volume: 12 start-page: 469 issue: 1 year: 2021 ident: 10.1016/j.petsci.2023.04.001_bib72 article-title: Prediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization publication-title: Geosci. Front. doi: 10.1016/j.gsf.2020.03.007 – volume: 4 start-page: 135 issue: 2 year: 2020 ident: 10.1016/j.petsci.2023.04.001_bib74 article-title: High-precision calculation of gas saturation in organic shale pores using an intelligent fusion algorithm and a multi-mineral model publication-title: Advances in Geo-Energy Research doi: 10.26804/ager.2020.02.03 |
| SSID | ssj0041762 |
| Score | 2.4364204 |
| SourceID | crossref |
| SourceType | Enrichment Source Index Database |
| StartPage | 2951 |
| Title | Data-driven production optimization using particle swarm algorithm based on the ensemble-learning proxy model |
| Volume | 20 |
| WOSCitedRecordID | wos001107100600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources issn: 1995-8226 databaseCode: M~E dateStart: 20070101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://road.issn.org omitProxy: false ssIdentifier: ssj0041762 providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb5wwELa2aQ_toepTSV_yoTfkCBZY42OVpq0qNeohVTcnZLCdJeKxIpDm1D_SP9uxMeB2pag59IIW1tjAfMx8HsYzCL2FSQdbrkACQqmQRBGlJAMdSMDUAeHlSRAIbopN0JOTZL1mXxeLX-NamKuS1nVyfc22_1XUcAyErZfO3kLcU6dwAH6D0GELYoftPwn-Pe84Ea3WYjr6SgzpYb0GdENlF116vfEQbO3Z3uUP3lYeL8-btug2ladNm7CfETyY58oqKyUpRy-KCX0Zaui43FYX52pK2VeeNaszSTY-1k1PzgrHUW2ctGuA5zn52DfjH-vhg8nRpiBn_dzadPEZRiffZeG6KpZz0NuoXfVycGAkK1f9Ln0HZrGrS5lNRSvt7lCeZUfnD-6Hi0OYZcDtHeqBTfZaO_IfKbb_Mn1TQOIY63aRDr2kupfUj3TI3x10d0ljplXml5_Ho5mPAmqq1U73NK7LNMGDu9fi8B6HwJw-Qg_tzAO_G2T-GC1k_QQ9cPJRPkWVgx08Ywe72MEGO3jEDjbYwRN2sMEOhnaAHbyDHWywgw12nqFvH45Pjz4RW4-D5EDTOxLB1FOEMohFInm2UhnN_DCM4OXL4GlIIPMiiylVLGdAg1cBV35O8yCKgTVq3hk-R3t1U8t9hCnzleCC5ioGGpVIaC5UqPKAZZzyPDhA4fi00twmq9c1U8r0JkkdIDKdtR2StdzY_sUt279E92dYv0J7XdvL1-heftUVl-0bA4_fRZ6T1A |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-driven+production+optimization+using+particle+swarm+algorithm+based+on+the+ensemble-learning+proxy+model&rft.jtitle=Petroleum+science&rft.au=Du%2C+Shu-Yi&rft.au=Zhao%2C+Xiang-Guo&rft.au=Xie%2C+Chi-Yu&rft.au=Zhu%2C+Jing-Wei&rft.date=2023-10-01&rft.issn=1995-8226&rft.volume=20&rft.issue=5&rft.spage=2951&rft.epage=2966&rft_id=info:doi/10.1016%2Fj.petsci.2023.04.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_petsci_2023_04_001 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1995-8226&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1995-8226&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1995-8226&client=summon |