Non-deterministic approximation fixpoint theory and its application in disjunctive logic programming

Approximation fixpoint theory (AFT) is an abstract and general algebraic framework for studying the semantics of nonmonotonic logics. It provides a unifying study of the semantics of different formalisms for nonmonotonic reasoning, such as logic programming, default logic and autoepistemic logic. In...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Artificial intelligence Ročník 331; s. 104110
Hlavní autoři: Heyninck, Jesse, Arieli, Ofer, Bogaerts, Bart
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.06.2024
Témata:
ISSN:0004-3702, 1872-7921
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Approximation fixpoint theory (AFT) is an abstract and general algebraic framework for studying the semantics of nonmonotonic logics. It provides a unifying study of the semantics of different formalisms for nonmonotonic reasoning, such as logic programming, default logic and autoepistemic logic. In this paper, we extend AFT to dealing with non-deterministic constructs that allow to handle indefinite information, represented e.g. by disjunctive formulas. This is done by generalizing the main constructions and corresponding results of AFT to non-deterministic operators, whose ranges are sets of elements rather than single elements. The applicability and usefulness of this generalization is illustrated in the context of disjunctive logic programming.
ISSN:0004-3702
1872-7921
DOI:10.1016/j.artint.2024.104110