Toward Safer Flight Training: The Data-Driven Modeling of Accident Risk Network Using Text Mining Based on Deep Learning

The flight training, a critical component of the general aviation industry, exhibits a relatively high severity of risk due to its complexity and the uncertainty inherent in risk interactions. To mine the risk factors and dynamic evolution characteristics affecting flight safety, a data-driven netwo...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of computational intelligence systems Ročník 17; číslo 1; s. 1 - 21
Hlavní autoři: Zhuang, Zibo, Hou, Yongkang, Yang, Lei, Gong, Jingwei, Wang, Lei
Médium: Journal Article
Jazyk:angličtina
Vydáno: Dordrecht Springer Netherlands 26.11.2024
Springer
Témata:
ISSN:1875-6883, 1875-6883
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The flight training, a critical component of the general aviation industry, exhibits a relatively high severity of risk due to its complexity and the uncertainty inherent in risk interactions. To mine the risk factors and dynamic evolution characteristics affecting flight safety, a data-driven network modeling methodology that integrates text mining with domain knowledge in accident analysis is proposed for the analysis of accident risks specific to flight training. First, flight training accident reports are labeled using domain knowledge gained from accident causation theory to provide basic data for subsequent study. Second, the adversarial training algorithm is introduced to enhance the generalization capability of BERT model in processing imbalanced accident textual data. The fine-tuned BERT, Bidirectional Long Short-Term Memory (Bi-LSTM) Conditional Random Field (CRF) algorithm is fused to construct an ensemble algorithm for risk identification, which accomplishes the joint entity-relationship extraction of accident reports. Third, based on the risk identification results, data-driven modeling of the Flight Training Risk Network (FTRN) is performed to quantify the accident evolution characteristics. Then the aforementioned tasks are meticulously optimized and integrated, subsequently applied to a case study focusing on Loss of Control In-Flight(LOCI) accidents. The findings suggest that the identification algorithm effectively and efficiently extracts risk information and inter-relationships. In addition, the network analysis results reveal the key insights into flight training accidents, facilitating the development of holistic risk control strategies. This study provides a powerful and innovative analytical tool for safety management departments, enhancing safety and reliability in flight training operations.
AbstractList Abstract The flight training, a critical component of the general aviation industry, exhibits a relatively high severity of risk due to its complexity and the uncertainty inherent in risk interactions. To mine the risk factors and dynamic evolution characteristics affecting flight safety, a data-driven network modeling methodology that integrates text mining with domain knowledge in accident analysis is proposed for the analysis of accident risks specific to flight training. First, flight training accident reports are labeled using domain knowledge gained from accident causation theory to provide basic data for subsequent study. Second, the adversarial training algorithm is introduced to enhance the generalization capability of BERT model in processing imbalanced accident textual data. The fine-tuned BERT, Bidirectional Long Short-Term Memory (Bi-LSTM) Conditional Random Field (CRF) algorithm is fused to construct an ensemble algorithm for risk identification, which accomplishes the joint entity-relationship extraction of accident reports. Third, based on the risk identification results, data-driven modeling of the Flight Training Risk Network (FTRN) is performed to quantify the accident evolution characteristics. Then the aforementioned tasks are meticulously optimized and integrated, subsequently applied to a case study focusing on Loss of Control In-Flight(LOCI) accidents. The findings suggest that the identification algorithm effectively and efficiently extracts risk information and inter-relationships. In addition, the network analysis results reveal the key insights into flight training accidents, facilitating the development of holistic risk control strategies. This study provides a powerful and innovative analytical tool for safety management departments, enhancing safety and reliability in flight training operations.
The flight training, a critical component of the general aviation industry, exhibits a relatively high severity of risk due to its complexity and the uncertainty inherent in risk interactions. To mine the risk factors and dynamic evolution characteristics affecting flight safety, a data-driven network modeling methodology that integrates text mining with domain knowledge in accident analysis is proposed for the analysis of accident risks specific to flight training. First, flight training accident reports are labeled using domain knowledge gained from accident causation theory to provide basic data for subsequent study. Second, the adversarial training algorithm is introduced to enhance the generalization capability of BERT model in processing imbalanced accident textual data. The fine-tuned BERT, Bidirectional Long Short-Term Memory (Bi-LSTM) Conditional Random Field (CRF) algorithm is fused to construct an ensemble algorithm for risk identification, which accomplishes the joint entity-relationship extraction of accident reports. Third, based on the risk identification results, data-driven modeling of the Flight Training Risk Network (FTRN) is performed to quantify the accident evolution characteristics. Then the aforementioned tasks are meticulously optimized and integrated, subsequently applied to a case study focusing on Loss of Control In-Flight(LOCI) accidents. The findings suggest that the identification algorithm effectively and efficiently extracts risk information and inter-relationships. In addition, the network analysis results reveal the key insights into flight training accidents, facilitating the development of holistic risk control strategies. This study provides a powerful and innovative analytical tool for safety management departments, enhancing safety and reliability in flight training operations.
ArticleNumber 291
Author Wang, Lei
Zhuang, Zibo
Hou, Yongkang
Yang, Lei
Gong, Jingwei
Author_xml – sequence: 1
  givenname: Zibo
  surname: Zhuang
  fullname: Zhuang, Zibo
  organization: The College of Air Traffic Management, Civil Aviation University of China
– sequence: 2
  givenname: Yongkang
  surname: Hou
  fullname: Hou, Yongkang
  organization: The College of Safety Science and Engineering, Civil Aviation University of China
– sequence: 3
  givenname: Lei
  surname: Yang
  fullname: Yang, Lei
  organization: The Flight Academy, Civil Aviation University of China
– sequence: 4
  givenname: Jingwei
  surname: Gong
  fullname: Gong, Jingwei
  organization: The College of Safety Science and Engineering, Civil Aviation University of China
– sequence: 5
  givenname: Lei
  orcidid: 0000-0001-8147-0554
  surname: Wang
  fullname: Wang, Lei
  email: wanglei0564@hotmail.com
  organization: The College of Safety Science and Engineering, Civil Aviation University of China
BookMark eNp9kctOIzEQRS0EEgzwA6z8Aw1-ddrNDggvKYAEzdqqdpeDQ7CR3TPA3-MkoxGrWVXVrbpHKt1fZDvEgIQccXbMGWtOslK8nVRMqKqMrK7kFtnjuqmridZy-0e_Sw5zXjDGBFeMKbVHPrv4AWmgT-Aw0auln7-MtEvggw_zU9q9IJ3CCNU0-T8Y6F0ccFk2NDp6Zq0fMIz00edXeo_jR0yv9Dmv1h1-jvRuDaHnkHGgMdAp4judIaSVfEB2HCwzHv6t--T56rK7uKlmD9e3F2ezyspajJWSjmvgzirda6wl1064pgfRN6IuRYgWe2HlIFjPtWiBc4YNtNb1vKhc7pPbDXeIsDDvyb9B-jIRvFkLMc0NpNHbJRoQ7aBarHvhJkqDBOfaiWVaIBYaYmGJDcummHNC94_HmVlFYTZRmBKFWUdhZDHJjSmX4zDHZBbxdwrl5_-5vgGVVY41
Cites_doi 10.1007/s10111-023-00737-3
10.1016/j.compind.2015.12.001
10.1016/j.psep.2022.04.068
10.1016/j.physa.2019.121118
10.1016/j.ress.2014.03.009
10.1016/j.jlp.2019.05.021
10.1016/j.ssci.2023.106097
10.1016/j.ssci.2020.104899
10.1145/3237192
10.1016/j.eswa.2022.117991
10.1016/j.ins.2021.09.028
10.1016/j.jsr.2021.12.024
10.1007/s11431-020-1647-3
10.1016/j.physa.2016.07.023
10.1016/j.ssci.2020.104650
10.1016/j.engappai.2024.108901
10.1007/s10462-022-10197-2
10.1016/j.iswa.2024.200377
10.1016/j.compind.2015.09.005
10.1016/j.ress.2022.108522
10.1016/j.aap.2015.10.024
10.1016/j.aap.2020.105899
10.1016/j.jbi.2020.103422
10.1016/j.ress.2024.109940
10.3390/aerospace10050446
10.1016/j.ress.2023.109413
10.1016/j.ress.2018.05.021
10.1145/3445965
10.1016/j.eswa.2021.115694
10.1109/TCSS.2022.3183685
10.1016/j.aap.2023.107277
10.1155/2021/5540046
10.1016/j.psep.2021.07.032
10.1111/risa.14237
10.1007/s10462-019-09793-6
10.1016/j.neucom.2019.01.078
10.1016/j.aap.2023.107049
10.13578/j.cnki.issn.1671-1556.2019.06.024
10.1016/j.aap.2021.105985
10.1016/j.ssci.2021.105653
10.1016/j.aei.2024.102732
10.1016/j.psep.2024.03.066
10.1016/j.ssci.2020.10493
10.1016/j.physa.2022.128404
10.1016/j.ress.2019.02.013
10.1007/s10462-021-09958-2
10.1016/j.aap.2023.106991
10.1007/s10489-023-04930-9
10.1016/j.ssci.2022.106013
10.48550/arXiv.1909.11764
10.1145/3534678.3539243
ContentType Journal Article
Copyright The Author(s) 2024
Copyright_xml – notice: The Author(s) 2024
DBID C6C
AAYXX
CITATION
DOA
DOI 10.1007/s44196-024-00705-3
DatabaseName Springer Nature OA Free Journals
CrossRef
Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1875-6883
EndPage 21
ExternalDocumentID oai_doaj_org_article_a29d49e5b2f648a3aff96c082eefb1ee
10_1007_s44196_024_00705_3
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 32071063
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Natural Science Foundation of Tianjin Municipality
  grantid: 21JCYBJC00740
  funderid: http://dx.doi.org/10.13039/501100006606
GroupedDBID 0R~
4.4
5GY
AAFWJ
AAJSJ
AAKKN
AAYZJ
ABEEZ
ABFIM
ACACY
ACGFS
ACULB
ADBBV
ADCVX
AENEX
AFGXO
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
AVBZW
BCNDV
BENPR
BGLVJ
C24
C6C
CS3
DU5
EBLON
EBS
EJD
GROUPED_DOAJ
GTTXZ
HCIFZ
HZ~
J~4
K7-
O9-
OK1
PIMPY
RSV
SOJ
TFW
TR2
AASML
AAYXX
AFFHD
CCPQU
CITATION
PHGZM
PHGZT
PQGLB
ID FETCH-LOGICAL-c352t-43f18a1fc48b8e5318f2f7ba2b725ba2229eb2c3d20b1829a110e7a9cfb1c3d13
IEDL.DBID C24
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001364808200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1875-6883
IngestDate Fri Oct 03 12:42:55 EDT 2025
Sat Nov 29 02:36:56 EST 2025
Fri Feb 21 02:38:32 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Text mining
Risk identification
Aviation accident
Accident analysis
Complex network
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-43f18a1fc48b8e5318f2f7ba2b725ba2229eb2c3d20b1829a110e7a9cfb1c3d13
ORCID 0000-0001-8147-0554
OpenAccessLink https://link.springer.com/10.1007/s44196-024-00705-3
PageCount 21
ParticipantIDs doaj_primary_oai_doaj_org_article_a29d49e5b2f648a3aff96c082eefb1ee
crossref_primary_10_1007_s44196_024_00705_3
springer_journals_10_1007_s44196_024_00705_3
PublicationCentury 2000
PublicationDate 2024-11-26
PublicationDateYYYYMMDD 2024-11-26
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-26
  day: 26
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationTitle International journal of computational intelligence systems
PublicationTitleAbbrev Int J Comput Intell Syst
PublicationYear 2024
Publisher Springer Netherlands
Springer
Publisher_xml – name: Springer Netherlands
– name: Springer
References Das, Dey (CR49) 2016; 463
Yu, Fan (CR41) 2020; 53
Qiu, Liu, Li, Zhang, Zhang (CR29) 2021; 153
Ge, Zhang, Chen, Xu, Yao, Li, Li (CR13) 2022; 148
Chaal, Banda, Glomsrud, Basnet, Hirdaris, Kujala (CR16) 2020; 132
Li, Zhang, Zhou (CR34) 2020; 107
Xiong, Wang, Wong (CR26) 2024; 62
CR37
Goldberg (CR51) 2022; 80
CR36
Zhou, Li, Ding, Sekula, Love, Zhou (CR28) 2019; 186
Jia, Fu, Xie, Xue, Hu (CR33) 2024; 185
Lu, Shi, Ren, Zhong, Bai, Deng (CR7) 2023; 53
Yao, Zhang, Wang, Lei, Tong (CR3) 2023
Muecklich, Sikora, Paraskevas, Padhra (CR10) 2023
Salmon, Hulme, Walker, Waterson, Berber, Stanton (CR14) 2020; 126
Rose, Puranik, Mavris, Rao (CR5) 2022; 224
Qu, Wang, Zhao (CR27) 2024; 22
Nasar, Jaffry, Malik (CR42) 2021; 54
Baigang, Yi (CR23) 2023; 56
Perboli, Gajetti, Fedorov, Giudice (CR4) 2021; 186
Anderson, Aguiar, Truong, Friend, Williams, Dickson (CR8) 2020; 131
Lyu, Fu, Wang, Li, Han, Peng, Yang (CR18) 2022; 162
Hong, Clifton, Nelson (CR12) 2023; 186
Liu, Hu, Yang (CR6) 2024; 136
Ravichandiran (CR35) 2021
Wu, Zhang, Zhang (CR11) 2023; 192
Yan, Wang, Jia (CR25) 2023; 184
Grando, Granville, Lamb (CR46) 2018; 51
Liu, Yang (CR24) 2022; 207
Tanguy, Tulechki, Urieli, Hermann, Raynal (CR32) 2016; 78
Dong, Yang, Ebadi (CR22) 2021; 2021
Wu, Fu, Wu, Wang, Xie, Han, Lyu (CR17) 2023; 159
Liu, Guo (CR40) 2019; 337
Huang, Shuai, Zuo (CR20) 2019; 61
Kwayu, Kwigizile, Lee, Oh (CR30) 2021; 150
Boyd, Stolzer (CR1) 2016; 86
Yang, Yu, Wang, Zhou, Chen, Kou (CR48) 2019; 526
Sun, Zhou, Zhang, Liu, Lu, Huang, Song (CR9) 2023; 25
Ittoo, van den Bosch (CR21) 2016; 78
Feng, Zhao, Yu, Zhang, Lu (CR44) 2023; 238
Acheampong, Nunoo-Mensah, Chen (CR39) 2021; 54
Soleimani, Leitner, Codjoe (CR52) 2021; 152
Fu, Nie, Liu (CR19) 2019; 26
Qiu, Sun, Xu, Shao, Dai, Huang (CR38) 2020; 63
Erjavac, Iammartino, Fossaceca (CR2) 2018; 178
Li, Li, Yang, Xiang, Ren, Jiang, Zhang (CR31) 2021; 581
Feng, Zhao, Lu (CR47) 2024; 244
Montewka, Goerlandt, Kujala (CR15) 2014; 127
Chang, Tang, Long, Hu, Li, Li, Wang (CR43) 2022
Lu, Bin (CR50) 2023; 10
Wang, Wang, Wang, Li, Jia (CR45) 2023; 610
J Fu (705_CR19) 2019; 26
X Li (705_CR34) 2020; 107
C Chang (705_CR43) 2022
J Ge (705_CR13) 2022; 148
CL Anderson (705_CR8) 2020; 131
Z Qiu (705_CR29) 2021; 153
Y Wu (705_CR11) 2023; 192
RL Rose (705_CR5) 2022; 224
M Chaal (705_CR16) 2020; 132
F Grando (705_CR46) 2018; 51
Q Lyu (705_CR18) 2022; 162
Y Wu (705_CR17) 2023; 159
T Dong (705_CR22) 2021; 2021
Y Zhou (705_CR28) 2019; 186
705_CR37
705_CR36
G Perboli (705_CR4) 2021; 186
N Muecklich (705_CR10) 2023
DM Goldberg (705_CR51) 2022; 80
J Lu (705_CR7) 2023; 53
L Tanguy (705_CR32) 2016; 78
KM Kwayu (705_CR30) 2021; 150
Y Yang (705_CR48) 2019; 526
H Liu (705_CR6) 2024; 136
Q Jia (705_CR33) 2024; 185
Z Nasar (705_CR42) 2021; 54
N Lu (705_CR50) 2023; 10
WT Hong (705_CR12) 2023; 186
H Sun (705_CR9) 2023; 25
M Baigang (705_CR23) 2023; 56
FA Acheampong (705_CR39) 2021; 54
KP Das (705_CR49) 2016; 463
S Soleimani (705_CR52) 2021; 152
A Ittoo (705_CR21) 2016; 78
G Liu (705_CR40) 2019; 337
K Yan (705_CR25) 2023; 184
JR Feng (705_CR44) 2023; 238
AJ Erjavac (705_CR2) 2018; 178
J Yao (705_CR3) 2023
W Wang (705_CR45) 2023; 610
S Ravichandiran (705_CR35) 2021
JR Feng (705_CR47) 2024; 244
DD Boyd (705_CR1) 2016; 86
C Liu (705_CR24) 2022; 207
X Qiu (705_CR38) 2020; 63
PM Salmon (705_CR14) 2020; 126
R Li (705_CR31) 2021; 581
J Montewka (705_CR15) 2014; 127
B Yu (705_CR41) 2020; 53
M Xiong (705_CR26) 2024; 62
J Qu (705_CR27) 2024; 22
W Huang (705_CR20) 2019; 61
References_xml – volume: 25
  start-page: 345
  issue: 4
  year: 2023
  end-page: 356
  ident: CR9
  article-title: Competency-based assessment of pilots’ manual flight performance during instrument flight training
  publication-title: Cogn. Technol. Work
  doi: 10.1007/s10111-023-00737-3
– volume: 78
  start-page: 96
  year: 2016
  end-page: 107
  ident: CR21
  article-title: Text analytics in industry: challenges, desiderata and trends
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2015.12.001
– volume: 162
  start-page: 878
  year: 2022
  end-page: 890
  ident: CR18
  article-title: How accident causation theory can facilitate smart safety management: an application of the 24Model
  publication-title: Process Saf. Environ.
  doi: 10.1016/j.psep.2022.04.068
– volume: 526
  year: 2019
  ident: CR48
  article-title: A novel method to evaluate node importance in complex networks
  publication-title: Physica A
  doi: 10.1016/j.physa.2019.121118
– volume: 127
  start-page: 77
  year: 2014
  end-page: 85
  ident: CR15
  article-title: On a systematic perspective on risk for formal safety assessment (FSA)
  publication-title: Reliab. Eng. Syst. Safe.
  doi: 10.1016/j.ress.2014.03.009
– volume: 61
  start-page: 94
  year: 2019
  end-page: 103
  ident: CR20
  article-title: A systematic railway dangerous goods transportation system risk analysis approach: the 24 model
  publication-title: J. Loss Prev. Process Ind.
  doi: 10.1016/j.jlp.2019.05.021
– year: 2023
  ident: CR10
  article-title: Safety and reliability in aviation–A systematic scoping review of normal accident theory, high-reliability theory, and resilience engineering in aviation
  publication-title: Safety Sci.
  doi: 10.1016/j.ssci.2023.106097
– volume: 131
  year: 2020
  ident: CR8
  article-title: Development of a risk indicator score card for a large, flight training department
  publication-title: Safety Sci.
  doi: 10.1016/j.ssci.2020.104899
– volume: 51
  start-page: 1
  issue: 5
  year: 2018
  end-page: 32
  ident: CR46
  article-title: Machine learning in network centrality measures: tutorial and outlook
  publication-title: Acm Comput. Surv.
  doi: 10.1145/3237192
– volume: 207
  year: 2022
  ident: CR24
  article-title: Using text mining to establish knowledge graph from accident/incident reports in risk assessment
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.117991
– volume: 581
  start-page: 179
  year: 2021
  end-page: 193
  ident: CR31
  article-title: Joint extraction of entities and relations via an entity correlated attention neural model
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2021.09.028
– volume: 80
  start-page: 441
  year: 2022
  end-page: 455
  ident: CR51
  article-title: Characterizing accident narratives with word embeddings: improving accuracy, richness, and generalizability
  publication-title: J. Saf. Res.
  doi: 10.1016/j.jsr.2021.12.024
– volume: 63
  start-page: 1872
  issue: 10
  year: 2020
  end-page: 1897
  ident: CR38
  article-title: Pre-trained models for natural language processing: a survey
  publication-title: Sci. China Technol. Sc.
  doi: 10.1007/s11431-020-1647-3
– volume: 463
  start-page: 345
  year: 2016
  end-page: 355
  ident: CR49
  article-title: Quantifying the risk of extreme aviation accidents
  publication-title: Physica A
  doi: 10.1016/j.physa.2016.07.023
– volume: 126
  year: 2020
  ident: CR14
  article-title: The big picture on accident causation: a review, synthesis and meta-analysis of AcciMap studies
  publication-title: Safety Sci.
  doi: 10.1016/j.ssci.2020.104650
– volume: 136
  year: 2024
  ident: CR6
  article-title: A new risk level identification model for aviation safety
  publication-title: Eng. Appl. Artif. Intel.
  doi: 10.1016/j.engappai.2024.108901
– volume: 56
  start-page: 1515
  issue: 2
  year: 2023
  end-page: 1542
  ident: CR23
  article-title: A review: development of named entity recognition (NER) technology for aeronautical information intelligence
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-022-10197-2
– volume: 22
  year: 2024
  ident: CR27
  article-title: Remote supervised relationship extraction method of clustering for knowledge graph in aviation field
  publication-title: Intell. Syst. Appl.
  doi: 10.1016/j.iswa.2024.200377
– volume: 78
  start-page: 80
  year: 2016
  end-page: 95
  ident: CR32
  article-title: Natural language processing for aviation safety reports: from classification to interactive analysis
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2015.09.005
– volume: 224
  year: 2022
  ident: CR5
  article-title: Application of structural topic modeling to aviation safety data
  publication-title: Reliab. Eng. Syst. Safe.
  doi: 10.1016/j.ress.2022.108522
– volume: 86
  start-page: 209
  year: 2016
  end-page: 216
  ident: CR1
  article-title: Accident-precipitating factors for crashes in turbine-powered general aviation aircraft
  publication-title: Accident Anal. Prev.
  doi: 10.1016/j.aap.2015.10.024
– volume: 150
  year: 2021
  ident: CR30
  article-title: Discovering latent themes in traffic fatal crash narratives using text mining analytics and network topology
  publication-title: Accident Anal. Prev.
  doi: 10.1016/j.aap.2020.105899
– volume: 107
  year: 2020
  ident: CR34
  article-title: Chinese clinical named entity recognition with variant neural structures based on BERT methods[J]
  publication-title: J. Biomed. Inform.
  doi: 10.1016/j.jbi.2020.103422
– volume: 244
  year: 2024
  ident: CR47
  article-title: Accident spread and risk propagation mechanism in complex industrial system network
  publication-title: Reliab. Eng. Syst. Safe.
  doi: 10.1016/j.ress.2024.109940
– volume: 10
  start-page: 446
  issue: 5
  year: 2023
  ident: CR50
  article-title: Risk analysis of airplane upsets in flight: an integrated system framework and analysis methodology
  publication-title: Aerospace
  doi: 10.3390/aerospace10050446
– volume: 238
  year: 2023
  ident: CR44
  article-title: Dynamic risk analysis of accidents chain and system protection strategy based on complex network and node structure importance
  publication-title: Reliab. Eng. Syst. Safe.
  doi: 10.1016/j.ress.2023.109413
– year: 2021
  ident: CR35
  publication-title: Getting Started with Google BERT: build and train state-of-the-art natural language processing models using BERT
– ident: CR36
– volume: 178
  start-page: 156
  year: 2018
  end-page: 163
  ident: CR2
  article-title: Evaluation of preconditions affecting symptomatic human error in general aviation and air carrier aviation accidents
  publication-title: Reliab. Eng. Syst. Safe.
  doi: 10.1016/j.ress.2018.05.021
– volume: 54
  start-page: 1
  issue: 1
  year: 2021
  end-page: 39
  ident: CR42
  article-title: Named entity recognition and relation extraction: State-of-the-art
  publication-title: Acm. Comput. Surv.
  doi: 10.1145/3445965
– volume: 186
  year: 2021
  ident: CR4
  article-title: Natural Language Processing for the identification of Human factors in aviation accidents causes: An application to the SHEL methodology
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.115694
– year: 2022
  ident: CR43
  article-title: Multi-information preprocessing event extraction with BiLSTM-CRF attention for academic knowledge graph construction
  publication-title: IEEE. T. Comput. Soc. Sy.
  doi: 10.1109/TCSS.2022.3183685
– volume: 192
  year: 2023
  ident: CR11
  article-title: Analysis on coupling dynamic effect of human errors in aviation safety[J]
  publication-title: Accident Anal. Prev.
  doi: 10.1016/j.aap.2023.107277
– volume: 2021
  start-page: 5540046
  issue: 1
  year: 2021
  ident: CR22
  article-title: Identifying incident causal factors to improve aviation transportation safety: proposing a deep learning approach
  publication-title: J. Adv. Transport.
  doi: 10.1155/2021/5540046
– volume: 153
  start-page: 320
  year: 2021
  end-page: 328
  ident: CR29
  article-title: Construction and analysis of a coal mine accident causation network based on text mining
  publication-title: Process Saf. Environ.
  doi: 10.1016/j.psep.2021.07.032
– year: 2023
  ident: CR3
  article-title: Risk coupling analysis under accident scenario evolution: a methodological construct and application
  publication-title: Risk Anal.
  doi: 10.1111/risa.14237
– volume: 53
  start-page: 4289
  issue: 6
  year: 2020
  end-page: 4333
  ident: CR41
  article-title: A comprehensive review of conditional random fields: variants, hybrids and applications
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-019-09793-6
– ident: CR37
– volume: 337
  start-page: 325
  year: 2019
  end-page: 338
  ident: CR40
  article-title: Bidirectional LSTM with attention mechanism and convolutional layer for text classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.01.078
– volume: 186
  year: 2023
  ident: CR12
  article-title: Railway accident causation analysis: current approaches, challenges and potential solutions
  publication-title: Accident Anal. Prev.
  doi: 10.1016/j.aap.2023.107049
– volume: 26
  start-page: 159
  year: 2019
  end-page: 165
  ident: CR19
  article-title: Cause analysis of chemical accidents based on FTA-24 model
  publication-title: Saf. Environ. Eng
  doi: 10.13578/j.cnki.issn.1671-1556.2019.06.024
– volume: 152
  year: 2021
  ident: CR52
  article-title: Applying machine learning, text mining, and spatial analysis techniques to develop a highway-railroad grade crossing consolidation model
  publication-title: Accident Anal. Prev.
  doi: 10.1016/j.aap.2021.105985
– volume: 148
  year: 2022
  ident: CR13
  article-title: Accident causation models developed in China between 1978 and 2018: review and comparison
  publication-title: Safety Sci.
  doi: 10.1016/j.ssci.2021.105653
– volume: 62
  year: 2024
  ident: CR26
  article-title: Enhancing aviation safety and mitigating accidents: a study on aviation safety hazard identification
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2024.102732
– volume: 185
  start-page: 989
  year: 2024
  end-page: 1002
  ident: CR33
  article-title: Enhancing accident cause analysis through text classification and accident causation theory: a case study of coal mine gas explosion accidents
  publication-title: Process. Saf. Environ.
  doi: 10.1016/j.psep.2024.03.066
– volume: 132
  year: 2020
  ident: CR16
  article-title: A framework to model the STPA hierarchical control structure of an autonomous ship
  publication-title: Safety Sci.
  doi: 10.1016/j.ssci.2020.10493
– volume: 610
  year: 2023
  ident: CR45
  article-title: Identification of the critical accident causative factors in the urban rail transit system by complex network theory
  publication-title: Physica A
  doi: 10.1016/j.physa.2022.128404
– volume: 186
  start-page: 194
  year: 2019
  end-page: 208
  ident: CR28
  article-title: Combining association rules mining with complex networks to monitor coupled risks
  publication-title: Reliab. Eng. Syst. Safe.
  doi: 10.1016/j.ress.2019.02.013
– volume: 54
  start-page: 5789
  issue: 8
  year: 2021
  end-page: 5829
  ident: CR39
  article-title: Transformer models for text-based emotion detection: a review of BERT-based approaches
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-021-09958-2
– volume: 184
  year: 2023
  ident: CR25
  article-title: A content-aware corpus-based model for analysis of marine accidents
  publication-title: Accident Anal. Prev.
  doi: 10.1016/j.aap.2023.106991
– volume: 53
  start-page: 25662
  issue: 21
  year: 2023
  end-page: 25677
  ident: CR7
  article-title: Research on flight training prediction based on incremental online learning
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-023-04930-9
– volume: 159
  year: 2023
  ident: CR17
  article-title: A popular systemic accident model in China: theory and applications of 24Model
  publication-title: Safety Sci.
  doi: 10.1016/j.ssci.2022.106013
– volume: 63
  start-page: 1872
  issue: 10
  year: 2020
  ident: 705_CR38
  publication-title: Sci. China Technol. Sc.
  doi: 10.1007/s11431-020-1647-3
– volume: 132
  year: 2020
  ident: 705_CR16
  publication-title: Safety Sci.
  doi: 10.1016/j.ssci.2020.10493
– volume: 192
  year: 2023
  ident: 705_CR11
  publication-title: Accident Anal. Prev.
  doi: 10.1016/j.aap.2023.107277
– volume: 61
  start-page: 94
  year: 2019
  ident: 705_CR20
  publication-title: J. Loss Prev. Process Ind.
  doi: 10.1016/j.jlp.2019.05.021
– year: 2023
  ident: 705_CR10
  publication-title: Safety Sci.
  doi: 10.1016/j.ssci.2023.106097
– volume: 185
  start-page: 989
  year: 2024
  ident: 705_CR33
  publication-title: Process. Saf. Environ.
  doi: 10.1016/j.psep.2024.03.066
– volume: 238
  year: 2023
  ident: 705_CR44
  publication-title: Reliab. Eng. Syst. Safe.
  doi: 10.1016/j.ress.2023.109413
– volume: 610
  year: 2023
  ident: 705_CR45
  publication-title: Physica A
  doi: 10.1016/j.physa.2022.128404
– volume: 184
  year: 2023
  ident: 705_CR25
  publication-title: Accident Anal. Prev.
  doi: 10.1016/j.aap.2023.106991
– volume-title: Getting Started with Google BERT: build and train state-of-the-art natural language processing models using BERT
  year: 2021
  ident: 705_CR35
– volume: 107
  year: 2020
  ident: 705_CR34
  publication-title: J. Biomed. Inform.
  doi: 10.1016/j.jbi.2020.103422
– ident: 705_CR37
  doi: 10.48550/arXiv.1909.11764
– volume: 56
  start-page: 1515
  issue: 2
  year: 2023
  ident: 705_CR23
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-022-10197-2
– volume: 526
  year: 2019
  ident: 705_CR48
  publication-title: Physica A
  doi: 10.1016/j.physa.2019.121118
– volume: 131
  year: 2020
  ident: 705_CR8
  publication-title: Safety Sci.
  doi: 10.1016/j.ssci.2020.104899
– volume: 126
  year: 2020
  ident: 705_CR14
  publication-title: Safety Sci.
  doi: 10.1016/j.ssci.2020.104650
– volume: 186
  year: 2021
  ident: 705_CR4
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.115694
– volume: 159
  year: 2023
  ident: 705_CR17
  publication-title: Safety Sci.
  doi: 10.1016/j.ssci.2022.106013
– volume: 53
  start-page: 4289
  issue: 6
  year: 2020
  ident: 705_CR41
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-019-09793-6
– volume: 127
  start-page: 77
  year: 2014
  ident: 705_CR15
  publication-title: Reliab. Eng. Syst. Safe.
  doi: 10.1016/j.ress.2014.03.009
– volume: 178
  start-page: 156
  year: 2018
  ident: 705_CR2
  publication-title: Reliab. Eng. Syst. Safe.
  doi: 10.1016/j.ress.2018.05.021
– volume: 186
  year: 2023
  ident: 705_CR12
  publication-title: Accident Anal. Prev.
  doi: 10.1016/j.aap.2023.107049
– volume: 78
  start-page: 96
  year: 2016
  ident: 705_CR21
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2015.12.001
– year: 2023
  ident: 705_CR3
  publication-title: Risk Anal.
  doi: 10.1111/risa.14237
– volume: 337
  start-page: 325
  year: 2019
  ident: 705_CR40
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.01.078
– volume: 152
  year: 2021
  ident: 705_CR52
  publication-title: Accident Anal. Prev.
  doi: 10.1016/j.aap.2021.105985
– volume: 53
  start-page: 25662
  issue: 21
  year: 2023
  ident: 705_CR7
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-023-04930-9
– volume: 86
  start-page: 209
  year: 2016
  ident: 705_CR1
  publication-title: Accident Anal. Prev.
  doi: 10.1016/j.aap.2015.10.024
– volume: 162
  start-page: 878
  year: 2022
  ident: 705_CR18
  publication-title: Process Saf. Environ.
  doi: 10.1016/j.psep.2022.04.068
– volume: 10
  start-page: 446
  issue: 5
  year: 2023
  ident: 705_CR50
  publication-title: Aerospace
  doi: 10.3390/aerospace10050446
– volume: 224
  year: 2022
  ident: 705_CR5
  publication-title: Reliab. Eng. Syst. Safe.
  doi: 10.1016/j.ress.2022.108522
– volume: 186
  start-page: 194
  year: 2019
  ident: 705_CR28
  publication-title: Reliab. Eng. Syst. Safe.
  doi: 10.1016/j.ress.2019.02.013
– ident: 705_CR36
  doi: 10.1145/3534678.3539243
– volume: 22
  year: 2024
  ident: 705_CR27
  publication-title: Intell. Syst. Appl.
  doi: 10.1016/j.iswa.2024.200377
– volume: 2021
  start-page: 5540046
  issue: 1
  year: 2021
  ident: 705_CR22
  publication-title: J. Adv. Transport.
  doi: 10.1155/2021/5540046
– volume: 54
  start-page: 1
  issue: 1
  year: 2021
  ident: 705_CR42
  publication-title: Acm. Comput. Surv.
  doi: 10.1145/3445965
– volume: 25
  start-page: 345
  issue: 4
  year: 2023
  ident: 705_CR9
  publication-title: Cogn. Technol. Work
  doi: 10.1007/s10111-023-00737-3
– volume: 581
  start-page: 179
  year: 2021
  ident: 705_CR31
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2021.09.028
– volume: 78
  start-page: 80
  year: 2016
  ident: 705_CR32
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2015.09.005
– volume: 62
  year: 2024
  ident: 705_CR26
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2024.102732
– volume: 207
  year: 2022
  ident: 705_CR24
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.117991
– volume: 244
  year: 2024
  ident: 705_CR47
  publication-title: Reliab. Eng. Syst. Safe.
  doi: 10.1016/j.ress.2024.109940
– volume: 153
  start-page: 320
  year: 2021
  ident: 705_CR29
  publication-title: Process Saf. Environ.
  doi: 10.1016/j.psep.2021.07.032
– volume: 463
  start-page: 345
  year: 2016
  ident: 705_CR49
  publication-title: Physica A
  doi: 10.1016/j.physa.2016.07.023
– volume: 26
  start-page: 159
  year: 2019
  ident: 705_CR19
  publication-title: Saf. Environ. Eng
  doi: 10.13578/j.cnki.issn.1671-1556.2019.06.024
– volume: 51
  start-page: 1
  issue: 5
  year: 2018
  ident: 705_CR46
  publication-title: Acm Comput. Surv.
  doi: 10.1145/3237192
– volume: 80
  start-page: 441
  year: 2022
  ident: 705_CR51
  publication-title: J. Saf. Res.
  doi: 10.1016/j.jsr.2021.12.024
– year: 2022
  ident: 705_CR43
  publication-title: IEEE. T. Comput. Soc. Sy.
  doi: 10.1109/TCSS.2022.3183685
– volume: 54
  start-page: 5789
  issue: 8
  year: 2021
  ident: 705_CR39
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-021-09958-2
– volume: 136
  year: 2024
  ident: 705_CR6
  publication-title: Eng. Appl. Artif. Intel.
  doi: 10.1016/j.engappai.2024.108901
– volume: 150
  year: 2021
  ident: 705_CR30
  publication-title: Accident Anal. Prev.
  doi: 10.1016/j.aap.2020.105899
– volume: 148
  year: 2022
  ident: 705_CR13
  publication-title: Safety Sci.
  doi: 10.1016/j.ssci.2021.105653
SSID ssj0002140044
Score 2.3546886
Snippet The flight training, a critical component of the general aviation industry, exhibits a relatively high severity of risk due to its complexity and the...
Abstract The flight training, a critical component of the general aviation industry, exhibits a relatively high severity of risk due to its complexity and the...
SourceID doaj
crossref
springer
SourceType Open Website
Index Database
Publisher
StartPage 1
SubjectTerms Accident analysis
Artificial Intelligence
Aviation accident
Complex network
Computational Intelligence
Control
Engineering
Mathematical Logic and Foundations
Mechatronics
Research Article
Risk identification
Robotics
Text mining
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA5SPHjxLdYXc_CmwW6SbTbe1Fo8aBGt4G1JsomIsi3tKv58J9ltUQS9eFoIS7J8M5kHO_MNIYdZqhymPik1ncJQUTBOjeSSSoxeTSENlzryzF7LwSB7fFS3X0Z9hZqwmh64Bu5EM1UI5VLDfFdkmmvvVdei43LOm8S5YH07Un1JpoINZknQTdF0ycReOfT7sd5W0EBxk1L-zRNFwv4ff0Ojk-mvkuUmOoSz-qvWyIIr18nKbPICNBdxg3wMY7Ur3GuPy_3XkGHDsJn2cAooe-jpStPeJBgzCAPPQts5jDycWRvmiFZw9zx9gUFdBQ6xcgCGaKnhJm4C5-jeChiV0HNuDA0N69MmeehfDi-uaDNDgVoMrSoquE8ynXgrMpM5vHCZZ14azYxkKT4YU5hbW16wjsFUQ2kMB5zUyiK4uJrwLdIqR6XbJsCKlDvLhRDKC5VoowvNLJMYBITuVtYmRzM883FNlZHPSZEj-jmin0f0c94m5wHy-ZuB5jouoPDzRvj5X8Jvk-OZwPLm7k1_OXPnP87cJUssaFGSUNbdI61q8ub2yaJ9r56nk4Oohp-NNOBj
  priority: 102
  providerName: Directory of Open Access Journals
Title Toward Safer Flight Training: The Data-Driven Modeling of Accident Risk Network Using Text Mining Based on Deep Learning
URI https://link.springer.com/article/10.1007/s44196-024-00705-3
https://doaj.org/article/a29d49e5b2f648a3aff96c082eefb1ee
Volume 17
WOSCitedRecordID wos001364808200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 1875-6883
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002140044
  issn: 1875-6883
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1875-6883
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002140044
  issn: 1875-6883
  databaseCode: K7-
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1875-6883
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002140044
  issn: 1875-6883
  databaseCode: BENPR
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerOpen
  customDbUrl:
  eissn: 1875-6883
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002140044
  issn: 1875-6883
  databaseCode: C24
  dateStart: 20211201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEB9q64M-9EvFs1rmwTcNNB972fjW9jyEtofUE_q2JNmklMpduVvFP99JLnu0KIK-7EKY3Q3JfG5mfgPwtq5MoNCnYu6odUy1QjKnpWaavFfXaie1zTiz53oyqa-uzOdSFLbss937I8msqdfFbmS4c8KsYgmjpmLyEWxVvDapYcNpqXFI-lfwxJeqVMj8-dEHViiD9f92EpoNzHjn_6a2C9vFocTjFQfswUaY7cNO36wBi-zuw9N7yIPP4Oc0p8viFxuJaPwtheg4Le0iPiAxD45sZ9lokbQhpo5pqW4d5xGPvU-NSDu8vFne4mSVRo459QCnpOrxIr8ET8g-tjif4SiEOyw4rtfP4ev44_T0EytNGJgn36xjSkZeWx69ql0dSGLrKKJ2VjgtKroJYSg497IVR45iFWPJnwjaGh8dp1EuX8DmbD4LLwFFW8ngpVLKRGW4dba1wgtNXkQqjxUDeNdvSnO3wtpo1qjKeYkbWuImL3EjB3CS9m1NmXCy88B8cd0UsWusMK0yoXIiDlVtpY3RDD25PSHQ_EIYwPt-R5sivMu_fPPVv5EfwBORmIJzJoavYbNbfA9v4LH_0d0sF4eZaw_zTwC6nmn2CwAv6G4
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEB-0CtYHq1Xp-TkPvmmgm2QvG9_ankfF6yG6Qt9Ckk1KUe7K3Sr--U5y2UNRBH1aCNndMN9DZn4D8KKpdaDUp2busHNMdlwwp4RiiqJX1yknlM04szM1nzfn5_p9aQpbD9Xuw5VkttTbZjdy3LlgVrKEUVMzcR1uJOiVNLDhpPQ4JPvLqySXsnTI_PnVX7xQBuv_7SY0O5jp3v8d7S7cKQElHm0k4B5cC4t92BuGNWDR3X24_RPy4H343uZyWfxoI22afkkpOrZlXMRrJOHBie0tm6ySNcQ0MS31reMy4pH3aRBpjx8u159xvikjx1x6gC2ZejzLH8Fj8o8dLhc4CeEKC47rxQP4NH3TnpyyMoSBeYrNeiZFrBpbRS8b1wTS2CbyqJzlTvGaHpxrSs696Piho1xFW4ongrLaR1fRaiUews5iuQgHgLyrRfBCSqmj1JV1trPcc0VRRGqP5SN4OTDFXG2wNswWVTmT2BCJTSaxESM4Tnzb7kw42XlhubowRe2M5bqTOtSOx7FsrLAx6rGnsCcEOl8II3g1cNQU5V3_5Z-P_m37c7h12p7NzOzt_N1j2OVJQKqK8fET2OlXX8NTuOm_9Zfr1bMswT8AA83pjg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3daxQxEB-0iuhDq9Xi-TkPvmloN8leNr61PQ_FehQ9oW8hn6VY9o67VfzzneT2jkpFEJ8WQnY3JDOZGWZ-vwF41dQ6UuhTM3cQHJOBC-aUUEyR9-qCckLZwjN7oiaT5uxMn15B8Zdq93VKcoVpyCxNbbc_D2l_A3wjI16KZyXLfDU1EzfhVs5IZdU87vEO-S7mVZZR2aNl_vzqbxapEPdfy4oWYzPe-f9l3oft3tHEw5VkPIAbsd2FnXUTB-x1ehfuXWEkfAg_p6WMFr_YRJPGlzl0x2nfRuItklDhyHaWjRb5lsTcSS3j2XGW8ND73KC0w88Xy284WZWXYylJwCmZAPxUPoJHZDcDzlocxTjHnt_1_BF8Hb-bHr9nfXMG5sln65gUqWpslbxsXBNJk5vEk3KWO8VrenCuKWj3IvADRzGMtuRnRGW1T66i0UrswVY7a-NjQB5qEb2QUuokdWWdDZZ7rsi7yLBZPoDX6wMy8xUHh9mwLZctNrTFpmyxEQM4yme4mZn5s8vAbHFuenU0lusgdawdT0PZWGFT0kNP7lCMtL4YB_BmfbqmV-rlX_755N-mv4Q7p6OxOfkw-fgU7vIsH1XF-PAZbHWL7_E53PY_uovl4kUR5l9nqPJy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+Safer+Flight+Training%3A+The+Data-Driven+Modeling+of+Accident+Risk+Network+Using+Text+Mining+Based+on+Deep+Learning&rft.jtitle=International+journal+of+computational+intelligence+systems&rft.au=Zhuang%2C+Zibo&rft.au=Hou%2C+Yongkang&rft.au=Yang%2C+Lei&rft.au=Gong%2C+Jingwei&rft.date=2024-11-26&rft.issn=1875-6883&rft.eissn=1875-6883&rft.volume=17&rft.issue=1&rft_id=info:doi/10.1007%2Fs44196-024-00705-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s44196_024_00705_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1875-6883&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1875-6883&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1875-6883&client=summon