Iterative Algorithms for Equilibrium Problems
We consider equilibrium problems in the framework of the formulation proposed by Blum and Oettli, which includes variational inequalities, Nash equilibria in noncooperative games, and vector optimization problems, for instance, as particular cases. We show that such problems are particular instances...
Uložené v:
| Vydané v: | Optimization Ročník 52; číslo 3; s. 301 - 316 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Taylor & Francis Group
01.06.2003
|
| Predmet: | |
| ISSN: | 0233-1934, 1029-4945 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | We consider equilibrium problems in the framework of the formulation proposed by Blum and Oettli, which includes variational inequalities, Nash equilibria in noncooperative games, and vector optimization problems, for instance, as particular cases. We show that such problems are particular instances of convex feasibility problems with infinitely many convex sets, but with additional structure, so that projection algorithms for convex feasibility can be modified in order to improve their convergence properties, mainly achieving global convergence without either compactness or coercivity assumptions. We present a sequential projections algorithm with an approximately most violated constraint control strategy, and two variants where exact orthogonal projections are replaced by approximate ones, using separating hyperplanes generated by subgradients. We include full convergence analysis of these algorithms. |
|---|---|
| ISSN: | 0233-1934 1029-4945 |
| DOI: | 10.1080/0233193031000120039 |