Applying systolic multiplication–inversion architectures based on modified extended Euclidean algorithm for GF(2 k ) in elliptic curve cryptography

Elliptic curve cryptography is a very promising cryptographic method offering the same security level as traditional public key cryptosystems (RSA, El Gamal) but with considerably smaller key lengths. However, the computational complexity and hardware resources of an elliptic curve cryptosystem are...

Full description

Saved in:
Bibliographic Details
Published in:Computers & electrical engineering Vol. 33; no. 5; pp. 333 - 348
Main Authors: Fournaris, Apostolos P., Koufopavlou, O.
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.09.2007
Subjects:
ISSN:0045-7906, 1879-0755
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Elliptic curve cryptography is a very promising cryptographic method offering the same security level as traditional public key cryptosystems (RSA, El Gamal) but with considerably smaller key lengths. However, the computational complexity and hardware resources of an elliptic curve cryptosystem are very high and depend on the efficient design of EC point operations and especially point multiplication. Those operations, using the elliptic curve group law, can be analyzed in operations of the underlined GF(2 k ) Field. Three basic GF(2 k ) Field operations exist, addition–subtraction, multiplication and inversion–division. In this paper, we propose an optimized inversion algorithm that can be applied very well in hardware avoiding well known inversion problems. Additionally, we propose a modified version of this algorithm that apart from inversion can perform multiplication using the architectural structure of inversion. We design two architectures that use those algorithms, a two-dimensional multiplication/inversion systolic architecture and an one-dimensional multiplication/inversion systolic architecture. Based on either one of those proposed architectures a GF(2 k ) arithmetic unit is also designed and used in a EC arithmetic unit that can perform all EC point operations required for EC cryptography. The EC arithmetic unit’s design methodology is proposed and analyzed and the effects of utilizing the one or two-dimensional multiplication/inversion systolic architecture are considered. The performance of the system in all its design steps is analyzed and comparisons are made with other known designs. We manage to design a GF(2 k ) arithmetic unit that has the space and time complexity of an inverter but can perform all GF(2 k ) operations and we show that this architecture can apply very well to an EC arithmetic unit required in elliptic curve cryptography.
AbstractList Elliptic curve cryptography is a very promising cryptographic method offering the same security level as traditional public key cryptosystems (RSA, El Gamal) but with considerably smaller key lengths. However, the computational complexity and hardware resources of an elliptic curve cryptosystem are very high and depend on the efficient design of EC point operations and especially point multiplication. Those operations, using the elliptic curve group law, can be analyzed in operations of the underlined GF(2k) Field. Three basic GF(2k) Field operations exist, addition-subtraction, multiplication and inversion-division. In this paper, we propose an optimized inversion algorithm that can be applied very well in hardware avoiding well known inversion problems. Additionally, we propose a modified version of this algorithm that apart from inversion can perform multiplication using the architectural structure of inversion. We design two architectures that use those algorithms, a two-dimensional multiplication/inversion systolic architecture and an one-dimensional multiplication/inversion systolic architecture. Based on either one of those proposed architectures a GF(2k) arithmetic unit is also designed and used in a EC arithmetic unit that can perform all EC point operations required for EC cryptography. The EC arithmetic unit's design methodology is proposed and analyzed and the effects of utilizing the one or two-dimensional multiplication/inversion systolic architecture are considered. The performance of the system in all its design steps is analyzed and comparisons are made with other known designs. We manage to design a GF(2k) arithmetic unit that has the space and time complexity of an inverter but can perform all GF(2k) operations and we show that this architecture can apply very well to an EC arithmetic unit required in elliptic curve cryptography.
Elliptic curve cryptography is a very promising cryptographic method offering the same security level as traditional public key cryptosystems (RSA, El Gamal) but with considerably smaller key lengths. However, the computational complexity and hardware resources of an elliptic curve cryptosystem are very high and depend on the efficient design of EC point operations and especially point multiplication. Those operations, using the elliptic curve group law, can be analyzed in operations of the underlined GF(2 k ) Field. Three basic GF(2 k ) Field operations exist, addition–subtraction, multiplication and inversion–division. In this paper, we propose an optimized inversion algorithm that can be applied very well in hardware avoiding well known inversion problems. Additionally, we propose a modified version of this algorithm that apart from inversion can perform multiplication using the architectural structure of inversion. We design two architectures that use those algorithms, a two-dimensional multiplication/inversion systolic architecture and an one-dimensional multiplication/inversion systolic architecture. Based on either one of those proposed architectures a GF(2 k ) arithmetic unit is also designed and used in a EC arithmetic unit that can perform all EC point operations required for EC cryptography. The EC arithmetic unit’s design methodology is proposed and analyzed and the effects of utilizing the one or two-dimensional multiplication/inversion systolic architecture are considered. The performance of the system in all its design steps is analyzed and comparisons are made with other known designs. We manage to design a GF(2 k ) arithmetic unit that has the space and time complexity of an inverter but can perform all GF(2 k ) operations and we show that this architecture can apply very well to an EC arithmetic unit required in elliptic curve cryptography.
Author Fournaris, Apostolos P.
Koufopavlou, O.
Author_xml – sequence: 1
  givenname: Apostolos P.
  surname: Fournaris
  fullname: Fournaris, Apostolos P.
  email: apofour@ece.upatras.gr
– sequence: 2
  givenname: O.
  surname: Koufopavlou
  fullname: Koufopavlou, O.
BookMark eNqNkcFu1DAQhi1UJLaFdzAXBIeEcRLHmxOqVm1BqsQFzpY7nux6SeJgOyv2xjsgXrBPUpflgDj1NP9Y8_9jzXfOziY_EWOvBZQCRPt-X6IfZxoIadqWFYAqQZYA4hlbibXqClBSnrEVQCML1UH7gp3HuIfct2K9Yr8v53k4umnL4zEmPzjk4zIkN2dlkvPT_c9fbjpQiFlzE3DnEmFaAkV-ZyJZnp9Hb13vsqYfiSabxdWCg7NksmXY-uDSbuS9D_zm-m3Fv_F33E2chsHNKS_EJRyIYzjOyW-DmXfHl-x5b4ZIr_7WC_b1-urL5mNx-_nm0-bytsBaVqmoq5aaSlhLKCU2aERdrxE7KzqUxvYWlKptJwV0gEoagdDQ-q7qG2WUBKgv2JtT7hz894Vi0qOLmD9mJvJL1DV0rWrqNg92p0EMPsZAvZ6DG004agH6EYTe639A6EcQGqTOILL3w39edOnPbVMwbnhSwuaUQPkWB0dBR3Q0IVkXMgxtvXtCygPMN7Qi
CitedBy_id crossref_primary_10_1049_iet_cdt_2018_5077
Cites_doi 10.1109/12.238496
10.1109/TC.2005.35
10.1023/A:1008013818413
10.1090/S0025-5718-1987-0866109-5
10.1109/12.729800
10.1049/ip-cdt:19982092
ContentType Journal Article
Copyright 2007 Elsevier Ltd
Copyright_xml – notice: 2007 Elsevier Ltd
DBID AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.compeleceng.2007.05.001
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0755
EndPage 348
ExternalDocumentID 10_1016_j_compeleceng_2007_05_001
S0045790607000511
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TAE
TN5
UHS
VOH
WH7
WUQ
XPP
ZMT
~G-
~S-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c352t-326e421ddec55c4ca1338cc9d19c5adfd0773d951090c75a1c04e8b2f47a75003
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000250333400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0045-7906
IngestDate Sat Sep 27 18:00:01 EDT 2025
Sat Nov 29 03:04:29 EST 2025
Tue Nov 18 22:23:30 EST 2025
Fri Feb 23 02:32:44 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Finite field arithmetic
Elliptic curve cryptography
VLSI design
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c352t-326e421ddec55c4ca1338cc9d19c5adfd0773d951090c75a1c04e8b2f47a75003
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 30967436
PQPubID 23500
PageCount 16
ParticipantIDs proquest_miscellaneous_30967436
crossref_primary_10_1016_j_compeleceng_2007_05_001
crossref_citationtrail_10_1016_j_compeleceng_2007_05_001
elsevier_sciencedirect_doi_10_1016_j_compeleceng_2007_05_001
PublicationCentury 2000
PublicationDate 2007-09-01
PublicationDateYYYYMMDD 2007-09-01
PublicationDate_xml – month: 09
  year: 2007
  text: 2007-09-01
  day: 01
PublicationDecade 2000
PublicationTitle Computers & electrical engineering
PublicationYear 2007
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Coron (bib15) 1999; vol. 1717
Miller V. Use of elliptic curves in cryptography. In: Advances in cryptography (Crypto’85), LNCS, vol. 218; 1986. p. 47–426.
Song, Parhi (bib12) 1998; 19
Mastrovito ED. VLSI architectures for computations in Galois fields. PhD Thesis, Linkoping University, Sweden; 1991.
Olofsson M. VLSI Aspects on Inversion in finite fields. PhD Thesis, Linköping University, Sweden; 2002.
Menezes, van Oorschot, Vanstone (bib1) 1997
Wu C-H, Wu C-M, Shieh M-D, Hwang Y-T. Systolic VLSI realization of a novel iterative division algorithm over GF(2
Guo, Wang (bib11) 1998; 47
Koblitz (bib3) 1987; 48
Menezes, Blake, Gao, Mullin, Vanstone, Yaghoobian (bib6) 1993
Yan, Sarwate (bib10) 2003; 52
a high-speed, low-complexity design. In: Proceedings of international symposium on circuits and systems (ISCAS’01), May; 2001. p. 33–36.
Brunner, Curiger, Hofstetter (bib13) 1993; 42
Guo, Wang (bib8) 1998
Daneshbeh, Hasan (bib14) 2005; 54
Hankerson, Menezes, Vanstone (bib2) 2004
Kocher (bib16) 1996; vol. 1109
Yan (10.1016/j.compeleceng.2007.05.001_bib10) 2003; 52
Coron (10.1016/j.compeleceng.2007.05.001_bib15) 1999; vol. 1717
Song (10.1016/j.compeleceng.2007.05.001_bib12) 1998; 19
Koblitz (10.1016/j.compeleceng.2007.05.001_bib3) 1987; 48
Guo (10.1016/j.compeleceng.2007.05.001_bib8) 1998
10.1016/j.compeleceng.2007.05.001_bib9
Menezes (10.1016/j.compeleceng.2007.05.001_bib1) 1997
Brunner (10.1016/j.compeleceng.2007.05.001_bib13) 1993; 42
Menezes (10.1016/j.compeleceng.2007.05.001_bib6) 1993
Daneshbeh (10.1016/j.compeleceng.2007.05.001_bib14) 2005; 54
Hankerson (10.1016/j.compeleceng.2007.05.001_bib2) 2004
10.1016/j.compeleceng.2007.05.001_bib4
Kocher (10.1016/j.compeleceng.2007.05.001_bib16) 1996; vol. 1109
10.1016/j.compeleceng.2007.05.001_bib7
Guo (10.1016/j.compeleceng.2007.05.001_bib11) 1998; 47
10.1016/j.compeleceng.2007.05.001_bib5
References_xml – volume: 52
  start-page: 1514
  year: 2003
  end-page: 1519
  ident: bib10
  article-title: New systolic architectures for inversion and division in GF(2
  publication-title: IEEE Trans Comput
– volume: 54
  start-page: 370
  year: 2005
  end-page: 380
  ident: bib14
  article-title: A class of unidirectional bit serial systolic architectures for multiplicative inversion and division over GF(2
  publication-title: IEEE Trans Comput
– volume: 48
  start-page: 203
  year: 1987
  end-page: 209
  ident: bib3
  article-title: Elliptic curve cryptography
  publication-title: Math Comput
– reference: Mastrovito ED. VLSI architectures for computations in Galois fields. PhD Thesis, Linkoping University, Sweden; 1991.
– volume: 47
  start-page: 1161
  year: 1998
  end-page: 1167
  ident: bib11
  article-title: Systolic array implementation of Euclid’s algorithm for inversion and division in GF(2
  publication-title: IEEE Trans Comput
– volume: 42
  start-page: 1010
  year: 1993
  end-page: 1015
  ident: bib13
  article-title: On computing multiplicative inverses in GF(2
  publication-title: IEEE Trans Comput
– year: 2004
  ident: bib2
  article-title: Guide to elliptic curve cryptography
– reference: Wu C-H, Wu C-M, Shieh M-D, Hwang Y-T. Systolic VLSI realization of a novel iterative division algorithm over GF(2
– volume: vol. 1717
  start-page: 292
  year: 1999
  ident: bib15
  article-title: Resistance against differential power analysis for elliptic curve cryptosystems
  publication-title: Proceedings of 1999 workshop on cryptographic hardware and embedded systems (CHES 1999)
– year: 1997
  ident: bib1
  article-title: Handbook of applied cryptography
– year: 1993
  ident: bib6
  article-title: Applications of finite fields
– reference: ): a high-speed, low-complexity design. In: Proceedings of international symposium on circuits and systems (ISCAS’01), May; 2001. p. 33–36.
– volume: vol. 1109
  start-page: 104
  year: 1996
  ident: bib16
  article-title: Timing attacks on implementations of Diffe-Hellman, RSA, DSS and other systems
  publication-title: Advances in cryptology, proceedings of Crypto’96
– reference: Miller V. Use of elliptic curves in cryptography. In: Advances in cryptography (Crypto’85), LNCS, vol. 218; 1986. p. 47–426.
– volume: 19
  start-page: 149
  year: 1998
  end-page: 166
  ident: bib12
  article-title: Low-energy digit-serial/parallel finite field multipliers
  publication-title: J VLSI Sign Process
– start-page: 272
  year: 1998
  end-page: 278
  ident: bib8
  article-title: Hardware efficient systolic architecture for inversion and division in GF(2
  publication-title: IEE Proc Comput Digit Tech
– reference: Olofsson M. VLSI Aspects on Inversion in finite fields. PhD Thesis, Linköping University, Sweden; 2002.
– year: 2004
  ident: 10.1016/j.compeleceng.2007.05.001_bib2
– volume: 42
  start-page: 1010
  issue: 8
  year: 1993
  ident: 10.1016/j.compeleceng.2007.05.001_bib13
  article-title: On computing multiplicative inverses in GF(2k)
  publication-title: IEEE Trans Comput
  doi: 10.1109/12.238496
– year: 1997
  ident: 10.1016/j.compeleceng.2007.05.001_bib1
– ident: 10.1016/j.compeleceng.2007.05.001_bib9
– volume: vol. 1109
  start-page: 104
  year: 1996
  ident: 10.1016/j.compeleceng.2007.05.001_bib16
  article-title: Timing attacks on implementations of Diffe-Hellman, RSA, DSS and other systems
– ident: 10.1016/j.compeleceng.2007.05.001_bib7
– volume: 54
  start-page: 370
  issue: 3
  year: 2005
  ident: 10.1016/j.compeleceng.2007.05.001_bib14
  article-title: A class of unidirectional bit serial systolic architectures for multiplicative inversion and division over GF(2m)
  publication-title: IEEE Trans Comput
  doi: 10.1109/TC.2005.35
– volume: vol. 1717
  start-page: 292
  year: 1999
  ident: 10.1016/j.compeleceng.2007.05.001_bib15
  article-title: Resistance against differential power analysis for elliptic curve cryptosystems
– volume: 19
  start-page: 149
  issue: 2
  year: 1998
  ident: 10.1016/j.compeleceng.2007.05.001_bib12
  article-title: Low-energy digit-serial/parallel finite field multipliers
  publication-title: J VLSI Sign Process
  doi: 10.1023/A:1008013818413
– volume: 48
  start-page: 203
  year: 1987
  ident: 10.1016/j.compeleceng.2007.05.001_bib3
  article-title: Elliptic curve cryptography
  publication-title: Math Comput
  doi: 10.1090/S0025-5718-1987-0866109-5
– year: 1993
  ident: 10.1016/j.compeleceng.2007.05.001_bib6
– volume: 47
  start-page: 1161
  issue: 10
  year: 1998
  ident: 10.1016/j.compeleceng.2007.05.001_bib11
  article-title: Systolic array implementation of Euclid’s algorithm for inversion and division in GF(2m)
  publication-title: IEEE Trans Comput
  doi: 10.1109/12.729800
– ident: 10.1016/j.compeleceng.2007.05.001_bib4
– ident: 10.1016/j.compeleceng.2007.05.001_bib5
– volume: 52
  start-page: 1514
  issue: 11
  year: 2003
  ident: 10.1016/j.compeleceng.2007.05.001_bib10
  article-title: New systolic architectures for inversion and division in GF(2k)
  publication-title: IEEE Trans Comput
– start-page: 272
  year: 1998
  ident: 10.1016/j.compeleceng.2007.05.001_bib8
  article-title: Hardware efficient systolic architecture for inversion and division in GF(2k)
  publication-title: IEE Proc Comput Digit Tech
  doi: 10.1049/ip-cdt:19982092
SSID ssj0004618
Score 1.7552687
Snippet Elliptic curve cryptography is a very promising cryptographic method offering the same security level as traditional public key cryptosystems (RSA, El Gamal)...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 333
SubjectTerms Elliptic curve cryptography
Finite field arithmetic
VLSI design
Title Applying systolic multiplication–inversion architectures based on modified extended Euclidean algorithm for GF(2 k ) in elliptic curve cryptography
URI https://dx.doi.org/10.1016/j.compeleceng.2007.05.001
https://www.proquest.com/docview/30967436
Volume 33
WOSCitedRecordID wos000250333400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0755
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004618
  issn: 0045-7906
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZKh9B4QFzFxs1IPICqTM7VicTLhNoBQmMPA_UtSm0HsmVJlEs13vgP-1X8DX4JPomdpkMTBYmXqHLqKO756nPxOd9B6AWJgPMbys8444bjxcJYeB43XMK4oL6gpO3W8PkDPTz05_PgaDT6oWthlinNMv_8PCj-q6jlmBQ2lM7-hbj7h8oB-VkKXV6l2OV1I8GDXdnWLgFJM7D-6qRBFZ3T6Q12ki27YNlkeJpQTUCxcThEOMt5EoOJqiPlk2nD0oRD8D5Kv-RlUn89a_MUD2bSULVOIcQAFCRwvgBEsKwpl2LCym9FPWTG1sQIqqFE1cKv68fTQkasOBJXShJWXqreyQWwgaR5NTna6xVG3sTS_1-meQNf-bi3Fs6gfb5Wv0U7wKFJvOEW3XFlKCi6xnDHtdW9TnnbHW3nb3qhC1GcgFgLWI9ciKKvhJCauVKGOgHgko7sMxd1UtxJOHgU9PKkIXEhQfAa2rKoG_hjtLX_bjp_PyjSNTuzQK3vBnq-Sja84r2uMpYumQ2tLXR8G91STgze78B3B41EdhfdHFBb3kMXGoZYwxCvw_Dn94segHgNgLgFIJbDGoBYAxD3AMQ9ALEEID6YvbROX-Ekwxp8uAUfHoLvPvo0mx6_eWuoBiAGk35BbUjXQjiWKTUwc13msAgCKowF3AyYG_GYE0ptDj5CQBh1I5MRR_gLK3ZoJC1hYj9A4yzPxEOEY1cwbjmeE0F3HYf4C0KtODaJiAJbULGDfP1Lh0yx40OTljT8o8R3kNVPLTqKmE0mvdbiDJWt29mwoYTsJtOfaQiEUh_AIV-UibypQpsEUFfk7f7LWz1C26v_5GM0rstGPEHX2bJOqvKpQvQvY7XnEA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Applying+systolic+multiplication%E2%80%93inversion+architectures+based+on+modified+extended+Euclidean+algorithm+for+GF%282k%29+in+elliptic+curve+cryptography&rft.jtitle=Computers+%26+electrical+engineering&rft.au=Fournaris%2C+Apostolos+P.&rft.au=Koufopavlou%2C+O.&rft.date=2007-09-01&rft.issn=0045-7906&rft.volume=33&rft.issue=5-6&rft.spage=333&rft.epage=348&rft_id=info:doi/10.1016%2Fj.compeleceng.2007.05.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compeleceng_2007_05_001
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7906&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7906&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7906&client=summon