Optimization Operation of Water Resources Using Game Theory and Marine Predator Algorithm
Today, one of the most important issues in the field of common water resources management is the allocation of water resources to different stakeholders with different interests. Game theory and conflict resolution methods, taking into account the interests and strategies of the players, provide eff...
Saved in:
| Published in: | Water resources management Vol. 38; no. 2; pp. 665 - 699 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Dordrecht
Springer Netherlands
01.01.2024
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0920-4741, 1573-1650 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Today, one of the most important issues in the field of common water resources management is the allocation of water resources to different stakeholders with different interests. Game theory and conflict resolution methods, taking into account the interests and strategies of the players, provide efficient methods for allocating reservoirs water resources to stakeholders. In this research, for the first time, a wide range of different methods of game theory are used in order to allocate the water resources of Idoghmosh Dam reservoir (East Azarbaijan—Iran) to the agricultural and environmental stakeholders in the downstream. For this purpose, the NASH and four methods of bankruptcy theory, including PRO, AP, CEA, and CEL are used in this research. Also, in this research, the dam component is considered as a player. In the presented model for the optimal allocation of water to consumers, for the first time, the combination of game theory and the MPA as main innovation of this study is used, and the results obtained from it are compared with the GA. The proposed model is used in the base period (1987–2000) and the 14-year climate change period (2026–2039). In the following, for the first time, a wide range of different efficiency indexes of reliability, resiliency, vulnerability, flexibility, availability, supply to demand, volume reliability and
SSD
are used to analyze the reservoir operation policies. The results show that for each agricultural and environmental player in different base and future periods, the performance of different game theory methods on different indexes has been different. For example, the results for the agricultural player in the future period show that MPA with PRO method and then AP provided the best results for the indexes of vulnerability, resiliency, reliability,
SSD
, and supply to demand, that the similar values provided using GA and other bankruptcy methods have assigned lower values than MPA. |
|---|---|
| AbstractList | Today, one of the most important issues in the field of common water resources management is the allocation of water resources to different stakeholders with different interests. Game theory and conflict resolution methods, taking into account the interests and strategies of the players, provide efficient methods for allocating reservoirs water resources to stakeholders. In this research, for the first time, a wide range of different methods of game theory are used in order to allocate the water resources of Idoghmosh Dam reservoir (East Azarbaijan—Iran) to the agricultural and environmental stakeholders in the downstream. For this purpose, the NASH and four methods of bankruptcy theory, including PRO, AP, CEA, and CEL are used in this research. Also, in this research, the dam component is considered as a player. In the presented model for the optimal allocation of water to consumers, for the first time, the combination of game theory and the MPA as main innovation of this study is used, and the results obtained from it are compared with the GA. The proposed model is used in the base period (1987–2000) and the 14-year climate change period (2026–2039). In the following, for the first time, a wide range of different efficiency indexes of reliability, resiliency, vulnerability, flexibility, availability, supply to demand, volume reliability and
SSD
are used to analyze the reservoir operation policies. The results show that for each agricultural and environmental player in different base and future periods, the performance of different game theory methods on different indexes has been different. For example, the results for the agricultural player in the future period show that MPA with PRO method and then AP provided the best results for the indexes of vulnerability, resiliency, reliability,
SSD
, and supply to demand, that the similar values provided using GA and other bankruptcy methods have assigned lower values than MPA. Today, one of the most important issues in the field of common water resources management is the allocation of water resources to different stakeholders with different interests. Game theory and conflict resolution methods, taking into account the interests and strategies of the players, provide efficient methods for allocating reservoirs water resources to stakeholders. In this research, for the first time, a wide range of different methods of game theory are used in order to allocate the water resources of Idoghmosh Dam reservoir (East Azarbaijan—Iran) to the agricultural and environmental stakeholders in the downstream. For this purpose, the NASH and four methods of bankruptcy theory, including PRO, AP, CEA, and CEL are used in this research. Also, in this research, the dam component is considered as a player. In the presented model for the optimal allocation of water to consumers, for the first time, the combination of game theory and the MPA as main innovation of this study is used, and the results obtained from it are compared with the GA. The proposed model is used in the base period (1987–2000) and the 14-year climate change period (2026–2039). In the following, for the first time, a wide range of different efficiency indexes of reliability, resiliency, vulnerability, flexibility, availability, supply to demand, volume reliability and SSD are used to analyze the reservoir operation policies. The results show that for each agricultural and environmental player in different base and future periods, the performance of different game theory methods on different indexes has been different. For example, the results for the agricultural player in the future period show that MPA with PRO method and then AP provided the best results for the indexes of vulnerability, resiliency, reliability, SSD, and supply to demand, that the similar values provided using GA and other bankruptcy methods have assigned lower values than MPA. |
| Author | Ashofteh, Parisa-Sadat Far, Shirin Moradi |
| Author_xml | – sequence: 1 givenname: Shirin Moradi surname: Far fullname: Far, Shirin Moradi organization: Department of Civil Engineering, University of Qom – sequence: 2 givenname: Parisa-Sadat surname: Ashofteh fullname: Ashofteh, Parisa-Sadat email: ps.ashofteh@qom.ac.ir organization: Department of Civil Engineering, University of Qom |
| BookMark | eNp9kEtL9DAUQIMoOD7-gKuAm29TzaNJmqWIL1BGRBFXIdPejpE2mS_JIPrrjVYQXJhNsjgn3Ht20KYPHhA6oOSIEqKOE6VM6oowXhEuNateN9CMCsUrKgXZRDOiGalqVdNttJPSCyFF02SGnuar7Eb3brMLHs9XEKdX6PGjzRDxHaSwji0k_JCcX-ILOwK-f4YQ37D1Hb6x0XnAtxE6m0PEJ8MyRJefxz201dshwf73vYsezs_uTy-r6_nF1enJddVywXLFet61qq6lLUfXQJXQi6YB1lvZ2N5yogQTiuqF5E3XCQu8bqVotVSLetF3fBf9m_5dxfB_DSmb0aUWhsF6COtkOBVcEqlFU9DDX-hL2c2X6QzTVCnCtWSFaiaqjSGlCL1pXf6qkqN1g6HEfDY3U3NTmpuv5ua1qOyXuoputPHtb4lPUiqwX0L8meoP6wPn1Jb5 |
| CitedBy_id | crossref_primary_10_1007_s11269_024_04078_2 crossref_primary_10_1007_s11269_024_03745_8 crossref_primary_10_1007_s11269_024_03945_2 crossref_primary_10_1007_s10584_025_03886_8 crossref_primary_10_1016_j_jclepro_2024_141812 crossref_primary_10_1016_j_jclepro_2024_144164 crossref_primary_10_2166_ws_2025_048 crossref_primary_10_3390_w16192828 crossref_primary_10_1016_j_jenvman_2025_126325 crossref_primary_10_1061_JITSE4_ISENG_2619 crossref_primary_10_1016_j_agwat_2025_109499 crossref_primary_10_1007_s00477_024_02868_z crossref_primary_10_1016_j_rineng_2025_107132 |
| Cites_doi | 10.1007/s11269-023-03584-z 10.1016/S0165-4896(01)00075-0 10.1016/j.resconrec.2009.11.008 10.1038/scientificamerican0792-66 10.1016/j.jhydrol.2020.124892 10.1080/02626669709492051 10.1007/s11269-019-02286-9 10.1061/%28ASCE%29WR.1943-5452.0001436 10.1016/j.jhydrol.2022.128581 10.3390/w14071151 10.1016/j.eswa.2020.113377 10.5194/hessd-10-13855-2013 10.1029/WR018i001p00014 10.1007/s11269-006-9143-y 10.1007/s11269-015-1035-6 10.1007/s11269-012-0182-2 10.1016/j.jhydrol.2018.12.053 10.1061/(ASCE)IR.1943-4774.0000496 10.2166/wst.1996.0328 10.1007/s11356-021-15748-8 10.1061/(ASCE)WR.1943-5452.0000244 10.1016/j.jhydrol.2019.124094 10.3390/w12030619 10.2307/1907266 10.1007/s11269-019-02223-w 10.2166/wcc.2020.153 10.1016/j.ejor.2007.06.045 10.1016/j.advwatres.2006.04.004 10.1016/0022-0531(85)90102-4 10.1177/0037549719844827 10.1016/j.apm.2013.10.018 10.1038/s41598-022-07971-1 10.1016/0165-4896(82)90029-4 10.1007/s11269-012-0142-x 10.1016/j.jhydrol.2009.11.045 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION 3V. 7QH 7ST 7UA 7WY 7WZ 7XB 87Z 88I 8FD 8FE 8FG 8FH 8FK 8FL ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BEZIV BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 FRNLG F~G GNUQQ H97 HCIFZ K60 K6~ KR7 L.- L.G L6V LK8 M0C M2P M7P M7S PATMY PCBAR PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY Q9U SOI 7S9 L.6 |
| DOI | 10.1007/s11269-023-03692-w |
| DatabaseName | CrossRef ProQuest Central (Corporate) Aqualine Environment Abstracts Water Resources Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Business Premium Collection ProQuest Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality SciTech Premium Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Civil Engineering Abstracts ABI/INFORM Professional Advanced Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection ProQuest Biological Science Collection ABI/INFORM Global Science Database (ProQuest) Biological Science Database Engineering Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection ProQuest Central Basic Environment Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ProQuest Central China ABI/INFORM Complete Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection Biological Science Collection ProQuest Central (New) Engineering Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Biological Science Database ProQuest Business Collection Aqualine Environmental Science Collection ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Central Earth, Atmospheric & Aquatic Science Collection ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea Agricultural & Environmental Science Collection ABI/INFORM Complete (Alumni Edition) Civil Engineering Abstracts ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection ProQuest One Business (Alumni) Environment Abstracts ProQuest Central (Alumni) Business Premium Collection (Alumni) AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | ProQuest Business Collection (Alumni Edition) AGRICOLA |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1573-1650 |
| EndPage | 699 |
| ExternalDocumentID | 10_1007_s11269_023_03692_w |
| GroupedDBID | -5A -5G -5~ -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29R 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 4P2 5QI 5VS 67M 67Z 6NX 78A 7WY 7XC 88I 8CJ 8FE 8FG 8FH 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSNA ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBNVY BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BHPHI BKSAR BPHCQ BSONS CAG CCPQU COF CS3 CSCUP D1J DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS ECGQY EDH EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6~ KDC KOV KOW L6V L8X LAK LK5 LK8 LLZTM M0C M2P M4Y M7P M7R M7S MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P PATMY PCBAR PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS PYCSY Q2X QOK QOS R4E R89 R9I RHV RIG RNI ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SDM SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK6 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8S Z8T Z8U Z8W Z8Z Z92 ZMTXR ~02 ~A9 ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA BANNL CITATION PHGZM PHGZT PQGLB 7QH 7ST 7UA 7XB 8FD 8FK C1K F1W FR3 H97 KR7 L.- L.G PKEHL PQEST PQUKI PRINS Q9U SOI 7S9 L.6 PUEGO |
| ID | FETCH-LOGICAL-c352t-2f3dc7446aaaa94e1759b88e2fa68afa307525719b638dd5ae34c65c967b4bfd3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 13 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001122627800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0920-4741 |
| IngestDate | Fri Sep 05 12:08:57 EDT 2025 Wed Nov 05 02:01:11 EST 2025 Tue Nov 18 20:52:47 EST 2025 Sat Nov 29 01:46:00 EST 2025 Fri Feb 21 02:41:35 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Optimization of Reservoir Bankruptcy Theory Marine Predators Algorithm Bargaining Nash Conflict Resolution Model Efficiency Index |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c352t-2f3dc7446aaaa94e1759b88e2fa68afa307525719b638dd5ae34c65c967b4bfd3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PQID | 2917703962 |
| PQPubID | 54174 |
| PageCount | 35 |
| ParticipantIDs | proquest_miscellaneous_3153606958 proquest_journals_2917703962 crossref_citationtrail_10_1007_s11269_023_03692_w crossref_primary_10_1007_s11269_023_03692_w springer_journals_10_1007_s11269_023_03692_w |
| PublicationCentury | 2000 |
| PublicationDate | 20240100 2024-01-00 20240101 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – month: 1 year: 2024 text: 20240100 |
| PublicationDecade | 2020 |
| PublicationPlace | Dordrecht |
| PublicationPlace_xml | – name: Dordrecht |
| PublicationSubtitle | An International Journal - Published for the European Water Resources Association (EWRA) |
| PublicationTitle | Water resources management |
| PublicationTitleAbbrev | Water Resour Manage |
| PublicationYear | 2024 |
| Publisher | Springer Netherlands Springer Nature B.V |
| Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
| References | Nash JF Jr (1950) “The bargaining problem.” Econometrica: J Econom Soc 18(2):155–162 GanjiAKhaliliDKaramouzMDevelopment of stochastic dynamic nash game model for reservoir operation. I. The symmetric stochastic model with perfect informationAdv Water Resour200730352854210.1016/j.advwatres.2006.04.004 GanjiAKhaliliDKaramouzMPonnambalamKJavanMA Fuzzy Stochastic Dynamic Nash Game Analysis of Policies for Managing Water Allocation in a Reservoir SystemWater Resour Manage200822516610.1007/s11269-006-9143-y WangYTangFJiangEWangXZhaoJOptimizing hydropower generation and sediment transport in Yellow River basin via cooperative game theoryJ Hydrol202261410.1016/j.jhydrol.2022.128581 VandaSNikooM-RTaravatrooyNAl-RawasGhASadrSMKMemonFANematollahiBA novel compromise approach for risk-based selective water withdrawal from reservoirs considering qualitative-quantitative aspectsWater Resour Manage2023374861487910.1007/s11269-023-03584-z Poorsepahy-SamianHKerachianRNikooM-RWater and pollution discharge permit allocation to agricultural zones: Application of game theory and Min-Max regret analysisWater Resour Manage201226144241425710.1007/s11269-012-0142-x Zarezadeh M, Madani K, Morid S (2013) “Resolving conflicts over trans-boundary rivers using bankruptcy methods”, In: Hydrology and Earth System Sciences. Discussions 10(11):13855–13887 HollandJHGenetic algorithmsSci Am19922671667210.1038/scientificamerican0792-66 Parsapour-MoghaddamPAbed-ElmdoustAKerachianRA heuristic evolutionary Game theoretic methodology for conjunctive use of surface and groundwater resourcesWater Resour Manage201529113905391810.1007/s11269-015-1035-6 CurielIJMaschlerMTijsSHBankruptcy gamesZ Oper Res1987315A143A159 AumannRJMaschlerMGame theoretic analysis of a bankruptcy problem from the TalmudJ Econ Theory198536219521310.1016/0022-0531(85)90102-4 Hemati and AbrishamchiWater allocation using game theory under climate change impact (case study: Zarinehrood)J Water Clim Chang202112375977110.2166/wcc.2020.153 ZhuKZhangYWangMLiuHThe Ecological Compensation Mechanism in a Cross-Regional Water Diversion Project Using Evolutionary Game Theory: The Case of the Hanjiang River Basin, ChinaWater2022147115110.3390/w14071151 American Society of Civil Engineers (ASCE) (1998) Sustainability criteria for water resources systems. Task Committee on Sustainability Criteria, Water Resources Planning and Management Division, ASCE and Working Group, UNESCO/IHP IV Project M-4.3. Reston, VA, USA Azadi F, Ashofteh PS, Shokri A, Loáiciga HA (2021) “Simulation-optimization of reservoir water quality under climate change.” J Water Res Plan Manag 147(9). https://doi.org/10.1061/%28ASCE%29WR.1943-5452.0001436 Loucks DP (1997) “Quantifying trends in system sustainability.” Hydrol Sci J 42(4):513–530 Ansink E (2009) Game-theoretic models of water allocation in transboundary river basins, Wageningen University Jiménez-CisnerosBWater availability index based on quality and quantity: its application in MexicoWater Sci Technol1996341216517210.2166/wst.1996.0328 AshoftehP-SBozorg-HaddadOMariñoMAScenario assessment of streamflow simulation and its transition probability in future periods under climate changeWater Resour Manage201327125527410.1007/s11269-012-0182-2 O’NeillBA problem of rights arbitration from the TalmudMath Soc Sci19822434537110.1016/0165-4896(82)90029-4 TianJYuYLiTZhouYLiJWangXHanYA cooperative game model with bankruptcy theory for water allocation: a case study in China Tarim River BasinEnviron Sci Pollut Res20222922353236410.1007/s11356-021-15748-8 WickramageH-MRobertsD-CHearneR-RWater allocation using the bankruptcy model: A case study of the Missouri RiverWater202012361910.3390/w12030619 WangLFangLHipelKWBasin-wide cooperative water resources allocationEur J Oper Res2008190379881710.1016/j.ejor.2007.06.045 Kheirkhah HasanzadehSSaadatpourMAfsharAA fuzzy equilibrium strategy for sustainable water quality management in river-reservoir systemJ Hydrol202058610.1016/j.jhydrol.2020.124892 Mirzaei-NodoushanFBozorg-HaddadOLoáicigaHAEvaluation of cooperative and non-cooperative game theoretic approaches for water allocation of transboundary riversSci Rep202212111110.1038/s41598-022-07971-1 Hashimoto T, Stedinger JR, Loucks DP (1982) “Reliability, resiliency and vulnerability criteria for water resources system performance evaluation.” Water Resour Res 18(1):14–20 Faramarzi A, Heidarinejad M, Mirjalili S, Gandomi AH (2020) “Marine predators algorithm: A nature-inspired metaheuristic.” Expert Syst Appl 152:113377 HerreroCVillarAThe three musketeers: four classical solutions to bankruptcy problemsMath Soc Sci200142330732810.1016/S0165-4896(01)00075-0 ZareiAMousaviS-FEshaghi GordjiMKaramiHOptimal Reservoir Operation Using Bat and Particle Swarm Algorithm and Game Theory Based on Optimal Water Allocation among ConsumersWater Resour Manage2019333071309310.1007/s11269-019-02286-9 KerachianRFallahniaMBazargan-LariM-RMansooriASedghiHA fuzzy game theoretic approach for groundwater resources management: application of Rubinstein bargaining theoryResour Conserv Recycl2010541067368210.1016/j.resconrec.2009.11.008 AshoftehP-SBozorg-HaddadOMariñoMAClimate change impact on reservoir performance indexes in agricultural water supplyJ Irrig Drain Eng20131392859710.1061/(ASCE)IR.1943-4774.0000496 ShokriABozorg-HaddadOMariñoMAReservoir operation for simultaneously meeting water demand and sediment flushing: a stochastic dynamic programming approach with two uncertaintiesJ Water Resour Plan Manag2013139327728910.1061/(ASCE)WR.1943-5452.0000244 GhadimiSKetabchiHPossibility of cooperative management in groundwater resources using an evolutionary hydro-economic simulation-optimization modelJ Hydrol201957810.1016/j.jhydrol.2019.124094 MadaniKGame theory and water resourcesJ Hydrol20103813–422523810.1016/j.jhydrol.2009.11.045 MehrparvarMAhmadiASafaviH-RResolving water allocation conflicts using WEAP simulation model and non-cooperative game theorySimulation2020961173010.1177/0037549719844827 Safari N, Zarghami M, Szidarovszky F (2014) “Nash bargaining and leader–follower models in water allocation: Application to the Zarrinehrud River basin, Iran.” Appl Math Model 38(7–8):1959–1968 ZengYLiJCaiYTanQDaiChA hybrid game theory and mathematical programming model for solving trans-boundary water conflictsJ Hydrol201957066668110.1016/j.jhydrol.2018.12.053 KhorshidiMSNikooMRSadeghMNematollahiBA Multi-Objective Risk-Based Game Theoretic Approach to Reservoir Operation Policy in Potential Future Drought ConditionWater Resour Manage2019331999201410.1007/s11269-019-02223-w Y Wang (3692_CR33) 2022; 614 S Kheirkhah Hasanzadeh (3692_CR18) 2020; 586 3692_CR20 3692_CR1 S Ghadimi (3692_CR11) 2019; 578 M Mehrparvar (3692_CR22) 2020; 96 3692_CR24 F Mirzaei-Nodoushan (3692_CR23) 2022; 12 3692_CR28 A Shokri (3692_CR29) 2013; 139 P-S Ashofteh (3692_CR3) 2013; 139 P-S Ashofteh (3692_CR4) 2013; 27 H-M Wickramage (3692_CR34) 2020; 12 A Zarei (3692_CR35) 2019; 33 J Tian (3692_CR30) 2022; 29 C Herrero (3692_CR14) 2001; 42 P Parsapour-Moghaddam (3692_CR26) 2015; 29 L Wang (3692_CR32) 2008; 190 R Kerachian (3692_CR17) 2010; 54 Hemati and Abrishamchi (3692_CR13) 2021; 12 JH Holland (3692_CR15) 1992; 267 A Ganji (3692_CR10) 2008; 22 3692_CR12 RJ Aumann (3692_CR5) 1985; 36 3692_CR36 A Ganji (3692_CR9) 2007; 30 IJ Curiel (3692_CR7) 1987; 31 K Zhu (3692_CR38) 2022; 14 MS Khorshidi (3692_CR19) 2019; 33 Y Zeng (3692_CR37) 2019; 570 3692_CR6 B Jiménez-Cisneros (3692_CR16) 1996; 34 K Madani (3692_CR21) 2010; 381 3692_CR8 B O’Neill (3692_CR25) 1982; 2 H Poorsepahy-Samian (3692_CR27) 2012; 26 3692_CR2 S Vanda (3692_CR31) 2023; 37 |
| References_xml | – reference: Jiménez-CisnerosBWater availability index based on quality and quantity: its application in MexicoWater Sci Technol1996341216517210.2166/wst.1996.0328 – reference: Poorsepahy-SamianHKerachianRNikooM-RWater and pollution discharge permit allocation to agricultural zones: Application of game theory and Min-Max regret analysisWater Resour Manage201226144241425710.1007/s11269-012-0142-x – reference: Mirzaei-NodoushanFBozorg-HaddadOLoáicigaHAEvaluation of cooperative and non-cooperative game theoretic approaches for water allocation of transboundary riversSci Rep202212111110.1038/s41598-022-07971-1 – reference: WickramageH-MRobertsD-CHearneR-RWater allocation using the bankruptcy model: A case study of the Missouri RiverWater202012361910.3390/w12030619 – reference: GanjiAKhaliliDKaramouzMPonnambalamKJavanMA Fuzzy Stochastic Dynamic Nash Game Analysis of Policies for Managing Water Allocation in a Reservoir SystemWater Resour Manage200822516610.1007/s11269-006-9143-y – reference: GhadimiSKetabchiHPossibility of cooperative management in groundwater resources using an evolutionary hydro-economic simulation-optimization modelJ Hydrol201957810.1016/j.jhydrol.2019.124094 – reference: Azadi F, Ashofteh PS, Shokri A, Loáiciga HA (2021) “Simulation-optimization of reservoir water quality under climate change.” J Water Res Plan Manag 147(9). https://doi.org/10.1061/%28ASCE%29WR.1943-5452.0001436 – reference: American Society of Civil Engineers (ASCE) (1998) Sustainability criteria for water resources systems. Task Committee on Sustainability Criteria, Water Resources Planning and Management Division, ASCE and Working Group, UNESCO/IHP IV Project M-4.3. Reston, VA, USA – reference: Safari N, Zarghami M, Szidarovszky F (2014) “Nash bargaining and leader–follower models in water allocation: Application to the Zarrinehrud River basin, Iran.” Appl Math Model 38(7–8):1959–1968 – reference: ZengYLiJCaiYTanQDaiChA hybrid game theory and mathematical programming model for solving trans-boundary water conflictsJ Hydrol201957066668110.1016/j.jhydrol.2018.12.053 – reference: MadaniKGame theory and water resourcesJ Hydrol20103813–422523810.1016/j.jhydrol.2009.11.045 – reference: WangLFangLHipelKWBasin-wide cooperative water resources allocationEur J Oper Res2008190379881710.1016/j.ejor.2007.06.045 – reference: GanjiAKhaliliDKaramouzMDevelopment of stochastic dynamic nash game model for reservoir operation. I. The symmetric stochastic model with perfect informationAdv Water Resour200730352854210.1016/j.advwatres.2006.04.004 – reference: KerachianRFallahniaMBazargan-LariM-RMansooriASedghiHA fuzzy game theoretic approach for groundwater resources management: application of Rubinstein bargaining theoryResour Conserv Recycl2010541067368210.1016/j.resconrec.2009.11.008 – reference: O’NeillBA problem of rights arbitration from the TalmudMath Soc Sci19822434537110.1016/0165-4896(82)90029-4 – reference: Kheirkhah HasanzadehSSaadatpourMAfsharAA fuzzy equilibrium strategy for sustainable water quality management in river-reservoir systemJ Hydrol202058610.1016/j.jhydrol.2020.124892 – reference: MehrparvarMAhmadiASafaviH-RResolving water allocation conflicts using WEAP simulation model and non-cooperative game theorySimulation2020961173010.1177/0037549719844827 – reference: AshoftehP-SBozorg-HaddadOMariñoMAScenario assessment of streamflow simulation and its transition probability in future periods under climate changeWater Resour Manage201327125527410.1007/s11269-012-0182-2 – reference: Parsapour-MoghaddamPAbed-ElmdoustAKerachianRA heuristic evolutionary Game theoretic methodology for conjunctive use of surface and groundwater resourcesWater Resour Manage201529113905391810.1007/s11269-015-1035-6 – reference: VandaSNikooM-RTaravatrooyNAl-RawasGhASadrSMKMemonFANematollahiBA novel compromise approach for risk-based selective water withdrawal from reservoirs considering qualitative-quantitative aspectsWater Resour Manage2023374861487910.1007/s11269-023-03584-z – reference: ZareiAMousaviS-FEshaghi GordjiMKaramiHOptimal Reservoir Operation Using Bat and Particle Swarm Algorithm and Game Theory Based on Optimal Water Allocation among ConsumersWater Resour Manage2019333071309310.1007/s11269-019-02286-9 – reference: Hashimoto T, Stedinger JR, Loucks DP (1982) “Reliability, resiliency and vulnerability criteria for water resources system performance evaluation.” Water Resour Res 18(1):14–20 – reference: HerreroCVillarAThe three musketeers: four classical solutions to bankruptcy problemsMath Soc Sci200142330732810.1016/S0165-4896(01)00075-0 – reference: Loucks DP (1997) “Quantifying trends in system sustainability.” Hydrol Sci J 42(4):513–530 – reference: AshoftehP-SBozorg-HaddadOMariñoMAClimate change impact on reservoir performance indexes in agricultural water supplyJ Irrig Drain Eng20131392859710.1061/(ASCE)IR.1943-4774.0000496 – reference: ZhuKZhangYWangMLiuHThe Ecological Compensation Mechanism in a Cross-Regional Water Diversion Project Using Evolutionary Game Theory: The Case of the Hanjiang River Basin, ChinaWater2022147115110.3390/w14071151 – reference: Zarezadeh M, Madani K, Morid S (2013) “Resolving conflicts over trans-boundary rivers using bankruptcy methods”, In: Hydrology and Earth System Sciences. Discussions 10(11):13855–13887 – reference: CurielIJMaschlerMTijsSHBankruptcy gamesZ Oper Res1987315A143A159 – reference: Faramarzi A, Heidarinejad M, Mirjalili S, Gandomi AH (2020) “Marine predators algorithm: A nature-inspired metaheuristic.” Expert Syst Appl 152:113377 – reference: ShokriABozorg-HaddadOMariñoMAReservoir operation for simultaneously meeting water demand and sediment flushing: a stochastic dynamic programming approach with two uncertaintiesJ Water Resour Plan Manag2013139327728910.1061/(ASCE)WR.1943-5452.0000244 – reference: HollandJHGenetic algorithmsSci Am19922671667210.1038/scientificamerican0792-66 – reference: Nash JF Jr (1950) “The bargaining problem.” Econometrica: J Econom Soc 18(2):155–162 – reference: KhorshidiMSNikooMRSadeghMNematollahiBA Multi-Objective Risk-Based Game Theoretic Approach to Reservoir Operation Policy in Potential Future Drought ConditionWater Resour Manage2019331999201410.1007/s11269-019-02223-w – reference: TianJYuYLiTZhouYLiJWangXHanYA cooperative game model with bankruptcy theory for water allocation: a case study in China Tarim River BasinEnviron Sci Pollut Res20222922353236410.1007/s11356-021-15748-8 – reference: WangYTangFJiangEWangXZhaoJOptimizing hydropower generation and sediment transport in Yellow River basin via cooperative game theoryJ Hydrol202261410.1016/j.jhydrol.2022.128581 – reference: AumannRJMaschlerMGame theoretic analysis of a bankruptcy problem from the TalmudJ Econ Theory198536219521310.1016/0022-0531(85)90102-4 – reference: Hemati and AbrishamchiWater allocation using game theory under climate change impact (case study: Zarinehrood)J Water Clim Chang202112375977110.2166/wcc.2020.153 – reference: Ansink E (2009) Game-theoretic models of water allocation in transboundary river basins, Wageningen University – ident: 3692_CR1 – volume: 37 start-page: 4861 year: 2023 ident: 3692_CR31 publication-title: Water Resour Manage doi: 10.1007/s11269-023-03584-z – volume: 42 start-page: 307 issue: 3 year: 2001 ident: 3692_CR14 publication-title: Math Soc Sci doi: 10.1016/S0165-4896(01)00075-0 – volume: 54 start-page: 673 issue: 10 year: 2010 ident: 3692_CR17 publication-title: Resour Conserv Recycl doi: 10.1016/j.resconrec.2009.11.008 – volume: 267 start-page: 66 issue: 1 year: 1992 ident: 3692_CR15 publication-title: Sci Am doi: 10.1038/scientificamerican0792-66 – volume: 586 year: 2020 ident: 3692_CR18 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2020.124892 – ident: 3692_CR20 doi: 10.1080/02626669709492051 – volume: 31 start-page: A143 issue: 5 year: 1987 ident: 3692_CR7 publication-title: Z Oper Res – volume: 33 start-page: 3071 year: 2019 ident: 3692_CR35 publication-title: Water Resour Manage doi: 10.1007/s11269-019-02286-9 – ident: 3692_CR6 doi: 10.1061/%28ASCE%29WR.1943-5452.0001436 – volume: 614 year: 2022 ident: 3692_CR33 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2022.128581 – volume: 14 start-page: 1151 issue: 7 year: 2022 ident: 3692_CR38 publication-title: Water doi: 10.3390/w14071151 – ident: 3692_CR8 doi: 10.1016/j.eswa.2020.113377 – ident: 3692_CR36 doi: 10.5194/hessd-10-13855-2013 – ident: 3692_CR12 doi: 10.1029/WR018i001p00014 – volume: 22 start-page: 51 year: 2008 ident: 3692_CR10 publication-title: Water Resour Manage doi: 10.1007/s11269-006-9143-y – volume: 29 start-page: 3905 issue: 11 year: 2015 ident: 3692_CR26 publication-title: Water Resour Manage doi: 10.1007/s11269-015-1035-6 – volume: 27 start-page: 255 issue: 1 year: 2013 ident: 3692_CR4 publication-title: Water Resour Manage doi: 10.1007/s11269-012-0182-2 – volume: 570 start-page: 666 year: 2019 ident: 3692_CR37 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2018.12.053 – volume: 139 start-page: 85 issue: 2 year: 2013 ident: 3692_CR3 publication-title: J Irrig Drain Eng doi: 10.1061/(ASCE)IR.1943-4774.0000496 – volume: 34 start-page: 165 issue: 12 year: 1996 ident: 3692_CR16 publication-title: Water Sci Technol doi: 10.2166/wst.1996.0328 – volume: 29 start-page: 2353 issue: 2 year: 2022 ident: 3692_CR30 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-021-15748-8 – ident: 3692_CR2 – volume: 139 start-page: 277 issue: 3 year: 2013 ident: 3692_CR29 publication-title: J Water Resour Plan Manag doi: 10.1061/(ASCE)WR.1943-5452.0000244 – volume: 578 year: 2019 ident: 3692_CR11 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2019.124094 – volume: 12 start-page: 619 issue: 3 year: 2020 ident: 3692_CR34 publication-title: Water doi: 10.3390/w12030619 – ident: 3692_CR24 doi: 10.2307/1907266 – volume: 33 start-page: 1999 year: 2019 ident: 3692_CR19 publication-title: Water Resour Manage doi: 10.1007/s11269-019-02223-w – volume: 12 start-page: 759 issue: 3 year: 2021 ident: 3692_CR13 publication-title: J Water Clim Chang doi: 10.2166/wcc.2020.153 – volume: 190 start-page: 798 issue: 3 year: 2008 ident: 3692_CR32 publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2007.06.045 – volume: 30 start-page: 528 issue: 3 year: 2007 ident: 3692_CR9 publication-title: Adv Water Resour doi: 10.1016/j.advwatres.2006.04.004 – volume: 36 start-page: 195 issue: 2 year: 1985 ident: 3692_CR5 publication-title: J Econ Theory doi: 10.1016/0022-0531(85)90102-4 – volume: 96 start-page: 17 issue: 1 year: 2020 ident: 3692_CR22 publication-title: Simulation doi: 10.1177/0037549719844827 – ident: 3692_CR28 doi: 10.1016/j.apm.2013.10.018 – volume: 12 start-page: 1 issue: 1 year: 2022 ident: 3692_CR23 publication-title: Sci Rep doi: 10.1038/s41598-022-07971-1 – volume: 2 start-page: 345 issue: 4 year: 1982 ident: 3692_CR25 publication-title: Math Soc Sci doi: 10.1016/0165-4896(82)90029-4 – volume: 26 start-page: 4241 issue: 14 year: 2012 ident: 3692_CR27 publication-title: Water Resour Manage doi: 10.1007/s11269-012-0142-x – volume: 381 start-page: 225 issue: 3–4 year: 2010 ident: 3692_CR21 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2009.11.045 |
| SSID | ssj0010090 |
| Score | 2.445103 |
| Snippet | Today, one of the most important issues in the field of common water resources management is the allocation of water resources to different stakeholders with... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 665 |
| SubjectTerms | Algorithms Atmospheric Sciences Bankruptcy Civil Engineering Climate change conflict management Earth and Environmental Science Earth Sciences Environment Game theory Geotechnical Engineering & Applied Earth Sciences Hydrogeology Hydrology/Water Resources Performance indices Predators Reliability Reservoir operation Resilience Resource allocation stakeholders Theories Vulnerability water Water resources Water resources management |
| SummonAdditionalLinks | – databaseName: Science Database (ProQuest) dbid: M2P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZgcIADb8RgoCBxgwiaPnNCE2JwYI8DiHGq0iYFpK0b68b-Pk6bboDELuTaNolqx_5sxzbAGedKB18kZcyXaKD4Po2UG1BlB8zHgVotp_SD32oF3S7vGIdbZq5VljIxF9RyEGsf-SVDuwK5k3vsevhBddcoHV01LTSWYQWRjaWvdDVZZxZFQPyQ-1g4mkgOqk6TNFOkzlnM4xQ1FkUZzhmd_lRMc7T5K0Ca653G5n93vAUbBnGSesEi27Ck0h1Y_1aHcBde2ig4-iYjk7SHqmALMkjIM2LRESmd_BnJrxiQO9FXpEjrJyKVpCl0EiHpjJTURjyp915xJ-O3_h48NW4fb-6p6blAY4RiY8oSW8Y-2ogCB3cUogseBYFiifACkQgUCbp-qsUjPLhSukLZTuy5Mff8yIkSae9DJR2k6gCI8hLBHJwEUYEjbcbdJLAT4XhSOFfS9atglT88jE1Bct0XoxfOSylrIoVIpDAnUjitwvnsm2FRjmPh27WSMqE5mlk4J0sVTmeP8VDpSIlI1WCShTbqAbTsuBtU4aKk_3yKv1c8XLziEawxBEWFC6cGlfFooo5hNf4cv2ejk5x5vwCRxfO0 priority: 102 providerName: ProQuest |
| Title | Optimization Operation of Water Resources Using Game Theory and Marine Predator Algorithm |
| URI | https://link.springer.com/article/10.1007/s11269-023-03692-w https://www.proquest.com/docview/2917703962 https://www.proquest.com/docview/3153606958 |
| Volume | 38 |
| WOSCitedRecordID | wos001122627800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-1650 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010090 issn: 0920-4741 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZ4HeDAGzEeU5C4QSSWPpIcATE4wDbx5lSlTQpIrJvaDf4-Th8bIECCHCJVTZPKie3PcewA7EpprPNFU8a4RgOFcxoaT1DjCMaxoFbLZ_qct1ri_l52yqCwrDrtXrkkc0k9DnZrMF9S1DEUpa5k9G0SplHdCXthw-XV7ch3gKgh31mRaBi5qDDLUJnv-_isjsYY84tbNNc2zYX__ecizJfokhwWy2EJJkyyDHMfcg6uwEMbhUS3jL4k7b4plgDpxeQOcWdKqg39jOTHCcip6hpShPATlWhyoWzAIOmkRluDnRy-PPbS58FTdxVumifXx2e0vF-BRgi7BpTFjo442oMKi3QNIgkZCmFYrHyhYoXsb3OlNmSITKq1p4zjRr4XSZ-HbhhrZw2mkl5i1oEYP1bMxU4QAbjaYdKLhRMr19fKPdAer0GjInMQlcnH7R0YL8E4bbIlW4BkC3KyBW812Bt90y9Sb_zaequavaBkwyxgaIyiSJM-q8HO6DUykPWKqMT0hlngoMxHK056ogb71YyOu_h5xI2_Nd-EWYaAqNi-2YKpQTo02zATvQ6es7QOk_zuoQ7TRyetziU-XRwc25p1bM2L-qqeL_R3UNXw3Q |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1JT-MwFH5iAGngAAyLKMvgkeAEFtRxFh8QQuyilB4YASfjxA4g0bQ0hYo_xW_kOUsLIw03DviaxJbjz-97i98zwKoQxgZfNGXM12ig-D4NjRtQ4wTMx4aslq10za_Xg6sr0RiC1zIXxh6rLGViJqh1K7I-8k2GdgWiU3hsp_1I7a1RNrpaXqGRw-LUvPTQZEu3T_ZxfdcYOzy42Dumxa0CNEJlo0tZ7OjIRytIYRPcIH-KMAgMi5UXqFgh6G2F0KoIEZpau8o4PPLcSHh-yMNYO9jvDxjhtrKYPSrIGv2oBeormU9HoEnGkaqLJJ08Va_KPEGRISlyhmC095EIB9rtPwHZjOcOJ7_bH5qCiUKjJrv5FvgFQyaZhvF3dRZn4PocBWOzyDgl522Tw560YnKJunaHlEGMlGRHKMiRahqSly0gKtHkTNkkSdLoGG2dFGT34RZn3r1rzsLfL5nbHAwnrcTMAzFerBjHTlDr4dphwo0DJ1bc04pvadevQLVcYBkVBdftvR8PclAq2oJCIihkBgrZq8B6_5t2Xm7k07eXSiTIQvSkcgCDCvzpP0ahYSNBKjGtp1Q6yHNouQo3qMBGibdBF_8fceHzEVfg5_HFWU3WTuqnizDGUAHM3VVLMNztPJllGI2eu_dp53e2cQjcfDUO3wBJ1FGq |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB7xqBAcoC_U5dG6UjlRC9Zx4viAEIJui6DLHoqAk-vEdluJzS6bhRV_jV_HOI_dUgluHOprEluOP883D88Y4JOU1gdfDGVMGDRQhKCJDWNqg5gJbMhqxUofi3Y7Pj-XnSm4q3Nh_LHKWiYWgtr0Uu8j32JoVyA6ZcS2XHUsonPQ2u1fUX-DlI-01tdplBA5srcjNN_yncMDXOsNxlpffux_o9UNAzRFxWNImQtMKtAi0tgkt8ilMoljy5yOYu00bgBfLbQpE4SpMaG2AU-jMJWRSHjiTID9TsOs4Eib_tjg9v44goG6S-HfkWiecaTtKmGnTNtrskhSZEuK_CEZHT0kxYmm-09wtuC81tL__LdewmKlaZO9cmu8gimbvYaFv-ovvoGLExSY3SoTlZz0bbkdSM-RM9TBB6QObuSkOFpBvuquJWU5A6IzQ75rnzxJOgNrvPOC7F3-wpkPf3ffwumzzG0ZZrJeZt8BsZHTjGMnqA1xEzAZujhwmkdG820TigY068VWaVWI3d8HcqkmJaQ9QBQCRBUAUaMGbI6_6ZdlSJ58e61GhapEUq4mkGjAx_FjFCY-QqQz27vOVYD8hxatDOMGfK6xN-ni8RFXnh7xA8wh_NTxYftoFeYZ6oWlF2sNZoaDa7sOL9Kb4Z988L7YQwR-PjcM7wEwwFpM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+Operation+of+Water+Resources+Using+Game+Theory+and+Marine+Predator+Algorithm&rft.jtitle=Water+resources+management&rft.au=Far%2C+Shirin+Moradi&rft.au=Ashofteh%2C+Parisa-Sadat&rft.date=2024-01-01&rft.pub=Springer+Netherlands&rft.issn=0920-4741&rft.eissn=1573-1650&rft.volume=38&rft.issue=2&rft.spage=665&rft.epage=699&rft_id=info:doi/10.1007%2Fs11269-023-03692-w&rft.externalDocID=10_1007_s11269_023_03692_w |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-4741&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-4741&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-4741&client=summon |