Optimization Operation of Water Resources Using Game Theory and Marine Predator Algorithm

Today, one of the most important issues in the field of common water resources management is the allocation of water resources to different stakeholders with different interests. Game theory and conflict resolution methods, taking into account the interests and strategies of the players, provide eff...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Water resources management Ročník 38; číslo 2; s. 665 - 699
Hlavní autoři: Far, Shirin Moradi, Ashofteh, Parisa-Sadat
Médium: Journal Article
Jazyk:angličtina
Vydáno: Dordrecht Springer Netherlands 01.01.2024
Springer Nature B.V
Témata:
ISSN:0920-4741, 1573-1650
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Today, one of the most important issues in the field of common water resources management is the allocation of water resources to different stakeholders with different interests. Game theory and conflict resolution methods, taking into account the interests and strategies of the players, provide efficient methods for allocating reservoirs water resources to stakeholders. In this research, for the first time, a wide range of different methods of game theory are used in order to allocate the water resources of Idoghmosh Dam reservoir (East Azarbaijan—Iran) to the agricultural and environmental stakeholders in the downstream. For this purpose, the NASH and four methods of bankruptcy theory, including PRO, AP, CEA, and CEL are used in this research. Also, in this research, the dam component is considered as a player. In the presented model for the optimal allocation of water to consumers, for the first time, the combination of game theory and the MPA as main innovation of this study is used, and the results obtained from it are compared with the GA. The proposed model is used in the base period (1987–2000) and the 14-year climate change period (2026–2039). In the following, for the first time, a wide range of different efficiency indexes of reliability, resiliency, vulnerability, flexibility, availability, supply to demand, volume reliability and SSD are used to analyze the reservoir operation policies. The results show that for each agricultural and environmental player in different base and future periods, the performance of different game theory methods on different indexes has been different. For example, the results for the agricultural player in the future period show that MPA with PRO method and then AP provided the best results for the indexes of vulnerability, resiliency, reliability, SSD , and supply to demand, that the similar values provided using GA and other bankruptcy methods have assigned lower values than MPA.
AbstractList Today, one of the most important issues in the field of common water resources management is the allocation of water resources to different stakeholders with different interests. Game theory and conflict resolution methods, taking into account the interests and strategies of the players, provide efficient methods for allocating reservoirs water resources to stakeholders. In this research, for the first time, a wide range of different methods of game theory are used in order to allocate the water resources of Idoghmosh Dam reservoir (East Azarbaijan—Iran) to the agricultural and environmental stakeholders in the downstream. For this purpose, the NASH and four methods of bankruptcy theory, including PRO, AP, CEA, and CEL are used in this research. Also, in this research, the dam component is considered as a player. In the presented model for the optimal allocation of water to consumers, for the first time, the combination of game theory and the MPA as main innovation of this study is used, and the results obtained from it are compared with the GA. The proposed model is used in the base period (1987–2000) and the 14-year climate change period (2026–2039). In the following, for the first time, a wide range of different efficiency indexes of reliability, resiliency, vulnerability, flexibility, availability, supply to demand, volume reliability and SSD are used to analyze the reservoir operation policies. The results show that for each agricultural and environmental player in different base and future periods, the performance of different game theory methods on different indexes has been different. For example, the results for the agricultural player in the future period show that MPA with PRO method and then AP provided the best results for the indexes of vulnerability, resiliency, reliability, SSD , and supply to demand, that the similar values provided using GA and other bankruptcy methods have assigned lower values than MPA.
Today, one of the most important issues in the field of common water resources management is the allocation of water resources to different stakeholders with different interests. Game theory and conflict resolution methods, taking into account the interests and strategies of the players, provide efficient methods for allocating reservoirs water resources to stakeholders. In this research, for the first time, a wide range of different methods of game theory are used in order to allocate the water resources of Idoghmosh Dam reservoir (East Azarbaijan—Iran) to the agricultural and environmental stakeholders in the downstream. For this purpose, the NASH and four methods of bankruptcy theory, including PRO, AP, CEA, and CEL are used in this research. Also, in this research, the dam component is considered as a player. In the presented model for the optimal allocation of water to consumers, for the first time, the combination of game theory and the MPA as main innovation of this study is used, and the results obtained from it are compared with the GA. The proposed model is used in the base period (1987–2000) and the 14-year climate change period (2026–2039). In the following, for the first time, a wide range of different efficiency indexes of reliability, resiliency, vulnerability, flexibility, availability, supply to demand, volume reliability and SSD are used to analyze the reservoir operation policies. The results show that for each agricultural and environmental player in different base and future periods, the performance of different game theory methods on different indexes has been different. For example, the results for the agricultural player in the future period show that MPA with PRO method and then AP provided the best results for the indexes of vulnerability, resiliency, reliability, SSD, and supply to demand, that the similar values provided using GA and other bankruptcy methods have assigned lower values than MPA.
Author Ashofteh, Parisa-Sadat
Far, Shirin Moradi
Author_xml – sequence: 1
  givenname: Shirin Moradi
  surname: Far
  fullname: Far, Shirin Moradi
  organization: Department of Civil Engineering, University of Qom
– sequence: 2
  givenname: Parisa-Sadat
  surname: Ashofteh
  fullname: Ashofteh, Parisa-Sadat
  email: ps.ashofteh@qom.ac.ir
  organization: Department of Civil Engineering, University of Qom
BookMark eNp9kEtL9DAUQIMoOD7-gKuAm29TzaNJmqWIL1BGRBFXIdPejpE2mS_JIPrrjVYQXJhNsjgn3Ht20KYPHhA6oOSIEqKOE6VM6oowXhEuNateN9CMCsUrKgXZRDOiGalqVdNttJPSCyFF02SGnuar7Eb3brMLHs9XEKdX6PGjzRDxHaSwji0k_JCcX-ILOwK-f4YQ37D1Hb6x0XnAtxE6m0PEJ8MyRJefxz201dshwf73vYsezs_uTy-r6_nF1enJddVywXLFet61qq6lLUfXQJXQi6YB1lvZ2N5yogQTiuqF5E3XCQu8bqVotVSLetF3fBf9m_5dxfB_DSmb0aUWhsF6COtkOBVcEqlFU9DDX-hL2c2X6QzTVCnCtWSFaiaqjSGlCL1pXf6qkqN1g6HEfDY3U3NTmpuv5ua1qOyXuoputPHtb4lPUiqwX0L8meoP6wPn1Jb5
CitedBy_id crossref_primary_10_1007_s11269_024_04078_2
crossref_primary_10_1007_s11269_024_03745_8
crossref_primary_10_1007_s11269_024_03945_2
crossref_primary_10_1007_s10584_025_03886_8
crossref_primary_10_1016_j_jclepro_2024_141812
crossref_primary_10_1016_j_jclepro_2024_144164
crossref_primary_10_2166_ws_2025_048
crossref_primary_10_3390_w16192828
crossref_primary_10_1016_j_jenvman_2025_126325
crossref_primary_10_1061_JITSE4_ISENG_2619
crossref_primary_10_1016_j_agwat_2025_109499
crossref_primary_10_1007_s00477_024_02868_z
crossref_primary_10_1016_j_rineng_2025_107132
Cites_doi 10.1007/s11269-023-03584-z
10.1016/S0165-4896(01)00075-0
10.1016/j.resconrec.2009.11.008
10.1038/scientificamerican0792-66
10.1016/j.jhydrol.2020.124892
10.1080/02626669709492051
10.1007/s11269-019-02286-9
10.1061/%28ASCE%29WR.1943-5452.0001436
10.1016/j.jhydrol.2022.128581
10.3390/w14071151
10.1016/j.eswa.2020.113377
10.5194/hessd-10-13855-2013
10.1029/WR018i001p00014
10.1007/s11269-006-9143-y
10.1007/s11269-015-1035-6
10.1007/s11269-012-0182-2
10.1016/j.jhydrol.2018.12.053
10.1061/(ASCE)IR.1943-4774.0000496
10.2166/wst.1996.0328
10.1007/s11356-021-15748-8
10.1061/(ASCE)WR.1943-5452.0000244
10.1016/j.jhydrol.2019.124094
10.3390/w12030619
10.2307/1907266
10.1007/s11269-019-02223-w
10.2166/wcc.2020.153
10.1016/j.ejor.2007.06.045
10.1016/j.advwatres.2006.04.004
10.1016/0022-0531(85)90102-4
10.1177/0037549719844827
10.1016/j.apm.2013.10.018
10.1038/s41598-022-07971-1
10.1016/0165-4896(82)90029-4
10.1007/s11269-012-0142-x
10.1016/j.jhydrol.2009.11.045
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
3V.
7QH
7ST
7UA
7WY
7WZ
7XB
87Z
88I
8FD
8FE
8FG
8FH
8FK
8FL
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BEZIV
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
FRNLG
F~G
GNUQQ
H97
HCIFZ
K60
K6~
KR7
L.-
L.G
L6V
LK8
M0C
M2P
M7P
M7S
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
Q9U
SOI
7S9
L.6
DOI 10.1007/s11269-023-03692-w
DatabaseName CrossRef
ProQuest Central (Corporate)
Aqualine
Environment Abstracts
Water Resources Abstracts
ProQuest_ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest SciTech Premium Collection Technology Collection Materials Science & Engineering Database
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest SciTech Premium Collection Natural Science Collection Biological Science Collection
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
SciTech Collection (ProQuest)
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Civil Engineering Abstracts
ABI/INFORM Professional Advanced
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
ProQuest Biological Science Collection
ABI/INFORM Global
Science Database (ProQuest)
Biological Science Database
Engineering Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
Biological Science Collection
ProQuest Central (New)
Engineering Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Biological Science Database
ProQuest Business Collection
Aqualine
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ABI/INFORM Complete (Alumni Edition)
Civil Engineering Abstracts
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
Environment Abstracts
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
ProQuest Business Collection (Alumni Edition)
AGRICOLA
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central Database Suite (ProQuest)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1573-1650
EndPage 699
ExternalDocumentID 10_1007_s11269_023_03692_w
GroupedDBID -5A
-5G
-5~
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29R
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
4P2
5QI
5VS
67M
67Z
6NX
78A
7WY
7XC
88I
8CJ
8FE
8FG
8FH
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACSNA
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D1J
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
ECGQY
EDH
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6~
KDC
KOV
KOW
L6V
L8X
LAK
LK5
LK8
LLZTM
M0C
M2P
M4Y
M7P
M7R
M7S
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
PATMY
PCBAR
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
PYCSY
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCLPG
SDH
SDM
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK6
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8S
Z8T
Z8U
Z8W
Z8Z
Z92
ZMTXR
~02
~A9
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
BANNL
CITATION
PHGZM
PHGZT
PQGLB
7QH
7ST
7UA
7XB
8FD
8FK
C1K
F1W
FR3
H97
KR7
L.-
L.G
PKEHL
PQEST
PQUKI
PRINS
Q9U
SOI
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c352t-2f3dc7446aaaa94e1759b88e2fa68afa307525719b638dd5ae34c65c967b4bfd3
IEDL.DBID RSV
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001122627800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0920-4741
IngestDate Fri Sep 05 12:08:57 EDT 2025
Wed Nov 05 02:01:11 EST 2025
Tue Nov 18 20:52:47 EST 2025
Sat Nov 29 01:46:00 EST 2025
Fri Feb 21 02:41:35 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Optimization of Reservoir
Bankruptcy Theory
Marine Predators Algorithm
Bargaining
Nash Conflict Resolution Model
Efficiency Index
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-2f3dc7446aaaa94e1759b88e2fa68afa307525719b638dd5ae34c65c967b4bfd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2917703962
PQPubID 54174
PageCount 35
ParticipantIDs proquest_miscellaneous_3153606958
proquest_journals_2917703962
crossref_citationtrail_10_1007_s11269_023_03692_w
crossref_primary_10_1007_s11269_023_03692_w
springer_journals_10_1007_s11269_023_03692_w
PublicationCentury 2000
PublicationDate 20240100
2024-01-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 1
  year: 2024
  text: 20240100
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle An International Journal - Published for the European Water Resources Association (EWRA)
PublicationTitle Water resources management
PublicationTitleAbbrev Water Resour Manage
PublicationYear 2024
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References Nash JF Jr (1950) “The bargaining problem.” Econometrica: J Econom Soc 18(2):155–162
GanjiAKhaliliDKaramouzMDevelopment of stochastic dynamic nash game model for reservoir operation. I. The symmetric stochastic model with perfect informationAdv Water Resour200730352854210.1016/j.advwatres.2006.04.004
GanjiAKhaliliDKaramouzMPonnambalamKJavanMA Fuzzy Stochastic Dynamic Nash Game Analysis of Policies for Managing Water Allocation in a Reservoir SystemWater Resour Manage200822516610.1007/s11269-006-9143-y
WangYTangFJiangEWangXZhaoJOptimizing hydropower generation and sediment transport in Yellow River basin via cooperative game theoryJ Hydrol202261410.1016/j.jhydrol.2022.128581
VandaSNikooM-RTaravatrooyNAl-RawasGhASadrSMKMemonFANematollahiBA novel compromise approach for risk-based selective water withdrawal from reservoirs considering qualitative-quantitative aspectsWater Resour Manage2023374861487910.1007/s11269-023-03584-z
Poorsepahy-SamianHKerachianRNikooM-RWater and pollution discharge permit allocation to agricultural zones: Application of game theory and Min-Max regret analysisWater Resour Manage201226144241425710.1007/s11269-012-0142-x
Zarezadeh M, Madani K, Morid S (2013) “Resolving conflicts over trans-boundary rivers using bankruptcy methods”, In: Hydrology and Earth System Sciences. Discussions 10(11):13855–13887
HollandJHGenetic algorithmsSci Am19922671667210.1038/scientificamerican0792-66
Parsapour-MoghaddamPAbed-ElmdoustAKerachianRA heuristic evolutionary Game theoretic methodology for conjunctive use of surface and groundwater resourcesWater Resour Manage201529113905391810.1007/s11269-015-1035-6
CurielIJMaschlerMTijsSHBankruptcy gamesZ Oper Res1987315A143A159
AumannRJMaschlerMGame theoretic analysis of a bankruptcy problem from the TalmudJ Econ Theory198536219521310.1016/0022-0531(85)90102-4
Hemati and AbrishamchiWater allocation using game theory under climate change impact (case study: Zarinehrood)J Water Clim Chang202112375977110.2166/wcc.2020.153
ZhuKZhangYWangMLiuHThe Ecological Compensation Mechanism in a Cross-Regional Water Diversion Project Using Evolutionary Game Theory: The Case of the Hanjiang River Basin, ChinaWater2022147115110.3390/w14071151
American Society of Civil Engineers (ASCE) (1998) Sustainability criteria for water resources systems. Task Committee on Sustainability Criteria, Water Resources Planning and Management Division, ASCE and Working Group, UNESCO/IHP IV Project M-4.3. Reston, VA, USA
Azadi F, Ashofteh PS, Shokri A, Loáiciga HA (2021) “Simulation-optimization of reservoir water quality under climate change.” J Water Res Plan Manag 147(9). https://doi.org/10.1061/%28ASCE%29WR.1943-5452.0001436
Loucks DP (1997) “Quantifying trends in system sustainability.” Hydrol Sci J 42(4):513–530
Ansink E (2009) Game-theoretic models of water allocation in transboundary river basins, Wageningen University
Jiménez-CisnerosBWater availability index based on quality and quantity: its application in MexicoWater Sci Technol1996341216517210.2166/wst.1996.0328
AshoftehP-SBozorg-HaddadOMariñoMAScenario assessment of streamflow simulation and its transition probability in future periods under climate changeWater Resour Manage201327125527410.1007/s11269-012-0182-2
O’NeillBA problem of rights arbitration from the TalmudMath Soc Sci19822434537110.1016/0165-4896(82)90029-4
TianJYuYLiTZhouYLiJWangXHanYA cooperative game model with bankruptcy theory for water allocation: a case study in China Tarim River BasinEnviron Sci Pollut Res20222922353236410.1007/s11356-021-15748-8
WickramageH-MRobertsD-CHearneR-RWater allocation using the bankruptcy model: A case study of the Missouri RiverWater202012361910.3390/w12030619
WangLFangLHipelKWBasin-wide cooperative water resources allocationEur J Oper Res2008190379881710.1016/j.ejor.2007.06.045
Kheirkhah HasanzadehSSaadatpourMAfsharAA fuzzy equilibrium strategy for sustainable water quality management in river-reservoir systemJ Hydrol202058610.1016/j.jhydrol.2020.124892
Mirzaei-NodoushanFBozorg-HaddadOLoáicigaHAEvaluation of cooperative and non-cooperative game theoretic approaches for water allocation of transboundary riversSci Rep202212111110.1038/s41598-022-07971-1
Hashimoto T, Stedinger JR, Loucks DP (1982) “Reliability, resiliency and vulnerability criteria for water resources system performance evaluation.” Water Resour Res 18(1):14–20
Faramarzi A, Heidarinejad M, Mirjalili S, Gandomi AH (2020) “Marine predators algorithm: A nature-inspired metaheuristic.” Expert Syst Appl 152:113377
HerreroCVillarAThe three musketeers: four classical solutions to bankruptcy problemsMath Soc Sci200142330732810.1016/S0165-4896(01)00075-0
ZareiAMousaviS-FEshaghi GordjiMKaramiHOptimal Reservoir Operation Using Bat and Particle Swarm Algorithm and Game Theory Based on Optimal Water Allocation among ConsumersWater Resour Manage2019333071309310.1007/s11269-019-02286-9
KerachianRFallahniaMBazargan-LariM-RMansooriASedghiHA fuzzy game theoretic approach for groundwater resources management: application of Rubinstein bargaining theoryResour Conserv Recycl2010541067368210.1016/j.resconrec.2009.11.008
AshoftehP-SBozorg-HaddadOMariñoMAClimate change impact on reservoir performance indexes in agricultural water supplyJ Irrig Drain Eng20131392859710.1061/(ASCE)IR.1943-4774.0000496
ShokriABozorg-HaddadOMariñoMAReservoir operation for simultaneously meeting water demand and sediment flushing: a stochastic dynamic programming approach with two uncertaintiesJ Water Resour Plan Manag2013139327728910.1061/(ASCE)WR.1943-5452.0000244
GhadimiSKetabchiHPossibility of cooperative management in groundwater resources using an evolutionary hydro-economic simulation-optimization modelJ Hydrol201957810.1016/j.jhydrol.2019.124094
MadaniKGame theory and water resourcesJ Hydrol20103813–422523810.1016/j.jhydrol.2009.11.045
MehrparvarMAhmadiASafaviH-RResolving water allocation conflicts using WEAP simulation model and non-cooperative game theorySimulation2020961173010.1177/0037549719844827
Safari N, Zarghami M, Szidarovszky F (2014) “Nash bargaining and leader–follower models in water allocation: Application to the Zarrinehrud River basin, Iran.” Appl Math Model 38(7–8):1959–1968
ZengYLiJCaiYTanQDaiChA hybrid game theory and mathematical programming model for solving trans-boundary water conflictsJ Hydrol201957066668110.1016/j.jhydrol.2018.12.053
KhorshidiMSNikooMRSadeghMNematollahiBA Multi-Objective Risk-Based Game Theoretic Approach to Reservoir Operation Policy in Potential Future Drought ConditionWater Resour Manage2019331999201410.1007/s11269-019-02223-w
Y Wang (3692_CR33) 2022; 614
S Kheirkhah Hasanzadeh (3692_CR18) 2020; 586
3692_CR20
3692_CR1
S Ghadimi (3692_CR11) 2019; 578
M Mehrparvar (3692_CR22) 2020; 96
3692_CR24
F Mirzaei-Nodoushan (3692_CR23) 2022; 12
3692_CR28
A Shokri (3692_CR29) 2013; 139
P-S Ashofteh (3692_CR3) 2013; 139
P-S Ashofteh (3692_CR4) 2013; 27
H-M Wickramage (3692_CR34) 2020; 12
A Zarei (3692_CR35) 2019; 33
J Tian (3692_CR30) 2022; 29
C Herrero (3692_CR14) 2001; 42
P Parsapour-Moghaddam (3692_CR26) 2015; 29
L Wang (3692_CR32) 2008; 190
R Kerachian (3692_CR17) 2010; 54
Hemati and Abrishamchi (3692_CR13) 2021; 12
JH Holland (3692_CR15) 1992; 267
A Ganji (3692_CR10) 2008; 22
3692_CR12
RJ Aumann (3692_CR5) 1985; 36
3692_CR36
A Ganji (3692_CR9) 2007; 30
IJ Curiel (3692_CR7) 1987; 31
K Zhu (3692_CR38) 2022; 14
MS Khorshidi (3692_CR19) 2019; 33
Y Zeng (3692_CR37) 2019; 570
3692_CR6
B Jiménez-Cisneros (3692_CR16) 1996; 34
K Madani (3692_CR21) 2010; 381
3692_CR8
B O’Neill (3692_CR25) 1982; 2
H Poorsepahy-Samian (3692_CR27) 2012; 26
3692_CR2
S Vanda (3692_CR31) 2023; 37
References_xml – reference: Jiménez-CisnerosBWater availability index based on quality and quantity: its application in MexicoWater Sci Technol1996341216517210.2166/wst.1996.0328
– reference: Poorsepahy-SamianHKerachianRNikooM-RWater and pollution discharge permit allocation to agricultural zones: Application of game theory and Min-Max regret analysisWater Resour Manage201226144241425710.1007/s11269-012-0142-x
– reference: Mirzaei-NodoushanFBozorg-HaddadOLoáicigaHAEvaluation of cooperative and non-cooperative game theoretic approaches for water allocation of transboundary riversSci Rep202212111110.1038/s41598-022-07971-1
– reference: WickramageH-MRobertsD-CHearneR-RWater allocation using the bankruptcy model: A case study of the Missouri RiverWater202012361910.3390/w12030619
– reference: GanjiAKhaliliDKaramouzMPonnambalamKJavanMA Fuzzy Stochastic Dynamic Nash Game Analysis of Policies for Managing Water Allocation in a Reservoir SystemWater Resour Manage200822516610.1007/s11269-006-9143-y
– reference: GhadimiSKetabchiHPossibility of cooperative management in groundwater resources using an evolutionary hydro-economic simulation-optimization modelJ Hydrol201957810.1016/j.jhydrol.2019.124094
– reference: Azadi F, Ashofteh PS, Shokri A, Loáiciga HA (2021) “Simulation-optimization of reservoir water quality under climate change.” J Water Res Plan Manag 147(9). https://doi.org/10.1061/%28ASCE%29WR.1943-5452.0001436
– reference: American Society of Civil Engineers (ASCE) (1998) Sustainability criteria for water resources systems. Task Committee on Sustainability Criteria, Water Resources Planning and Management Division, ASCE and Working Group, UNESCO/IHP IV Project M-4.3. Reston, VA, USA
– reference: Safari N, Zarghami M, Szidarovszky F (2014) “Nash bargaining and leader–follower models in water allocation: Application to the Zarrinehrud River basin, Iran.” Appl Math Model 38(7–8):1959–1968
– reference: ZengYLiJCaiYTanQDaiChA hybrid game theory and mathematical programming model for solving trans-boundary water conflictsJ Hydrol201957066668110.1016/j.jhydrol.2018.12.053
– reference: MadaniKGame theory and water resourcesJ Hydrol20103813–422523810.1016/j.jhydrol.2009.11.045
– reference: WangLFangLHipelKWBasin-wide cooperative water resources allocationEur J Oper Res2008190379881710.1016/j.ejor.2007.06.045
– reference: GanjiAKhaliliDKaramouzMDevelopment of stochastic dynamic nash game model for reservoir operation. I. The symmetric stochastic model with perfect informationAdv Water Resour200730352854210.1016/j.advwatres.2006.04.004
– reference: KerachianRFallahniaMBazargan-LariM-RMansooriASedghiHA fuzzy game theoretic approach for groundwater resources management: application of Rubinstein bargaining theoryResour Conserv Recycl2010541067368210.1016/j.resconrec.2009.11.008
– reference: O’NeillBA problem of rights arbitration from the TalmudMath Soc Sci19822434537110.1016/0165-4896(82)90029-4
– reference: Kheirkhah HasanzadehSSaadatpourMAfsharAA fuzzy equilibrium strategy for sustainable water quality management in river-reservoir systemJ Hydrol202058610.1016/j.jhydrol.2020.124892
– reference: MehrparvarMAhmadiASafaviH-RResolving water allocation conflicts using WEAP simulation model and non-cooperative game theorySimulation2020961173010.1177/0037549719844827
– reference: AshoftehP-SBozorg-HaddadOMariñoMAScenario assessment of streamflow simulation and its transition probability in future periods under climate changeWater Resour Manage201327125527410.1007/s11269-012-0182-2
– reference: Parsapour-MoghaddamPAbed-ElmdoustAKerachianRA heuristic evolutionary Game theoretic methodology for conjunctive use of surface and groundwater resourcesWater Resour Manage201529113905391810.1007/s11269-015-1035-6
– reference: VandaSNikooM-RTaravatrooyNAl-RawasGhASadrSMKMemonFANematollahiBA novel compromise approach for risk-based selective water withdrawal from reservoirs considering qualitative-quantitative aspectsWater Resour Manage2023374861487910.1007/s11269-023-03584-z
– reference: ZareiAMousaviS-FEshaghi GordjiMKaramiHOptimal Reservoir Operation Using Bat and Particle Swarm Algorithm and Game Theory Based on Optimal Water Allocation among ConsumersWater Resour Manage2019333071309310.1007/s11269-019-02286-9
– reference: Hashimoto T, Stedinger JR, Loucks DP (1982) “Reliability, resiliency and vulnerability criteria for water resources system performance evaluation.” Water Resour Res 18(1):14–20
– reference: HerreroCVillarAThe three musketeers: four classical solutions to bankruptcy problemsMath Soc Sci200142330732810.1016/S0165-4896(01)00075-0
– reference: Loucks DP (1997) “Quantifying trends in system sustainability.” Hydrol Sci J 42(4):513–530
– reference: AshoftehP-SBozorg-HaddadOMariñoMAClimate change impact on reservoir performance indexes in agricultural water supplyJ Irrig Drain Eng20131392859710.1061/(ASCE)IR.1943-4774.0000496
– reference: ZhuKZhangYWangMLiuHThe Ecological Compensation Mechanism in a Cross-Regional Water Diversion Project Using Evolutionary Game Theory: The Case of the Hanjiang River Basin, ChinaWater2022147115110.3390/w14071151
– reference: Zarezadeh M, Madani K, Morid S (2013) “Resolving conflicts over trans-boundary rivers using bankruptcy methods”, In: Hydrology and Earth System Sciences. Discussions 10(11):13855–13887
– reference: CurielIJMaschlerMTijsSHBankruptcy gamesZ Oper Res1987315A143A159
– reference: Faramarzi A, Heidarinejad M, Mirjalili S, Gandomi AH (2020) “Marine predators algorithm: A nature-inspired metaheuristic.” Expert Syst Appl 152:113377
– reference: ShokriABozorg-HaddadOMariñoMAReservoir operation for simultaneously meeting water demand and sediment flushing: a stochastic dynamic programming approach with two uncertaintiesJ Water Resour Plan Manag2013139327728910.1061/(ASCE)WR.1943-5452.0000244
– reference: HollandJHGenetic algorithmsSci Am19922671667210.1038/scientificamerican0792-66
– reference: Nash JF Jr (1950) “The bargaining problem.” Econometrica: J Econom Soc 18(2):155–162
– reference: KhorshidiMSNikooMRSadeghMNematollahiBA Multi-Objective Risk-Based Game Theoretic Approach to Reservoir Operation Policy in Potential Future Drought ConditionWater Resour Manage2019331999201410.1007/s11269-019-02223-w
– reference: TianJYuYLiTZhouYLiJWangXHanYA cooperative game model with bankruptcy theory for water allocation: a case study in China Tarim River BasinEnviron Sci Pollut Res20222922353236410.1007/s11356-021-15748-8
– reference: WangYTangFJiangEWangXZhaoJOptimizing hydropower generation and sediment transport in Yellow River basin via cooperative game theoryJ Hydrol202261410.1016/j.jhydrol.2022.128581
– reference: AumannRJMaschlerMGame theoretic analysis of a bankruptcy problem from the TalmudJ Econ Theory198536219521310.1016/0022-0531(85)90102-4
– reference: Hemati and AbrishamchiWater allocation using game theory under climate change impact (case study: Zarinehrood)J Water Clim Chang202112375977110.2166/wcc.2020.153
– reference: Ansink E (2009) Game-theoretic models of water allocation in transboundary river basins, Wageningen University
– ident: 3692_CR1
– volume: 37
  start-page: 4861
  year: 2023
  ident: 3692_CR31
  publication-title: Water Resour Manage
  doi: 10.1007/s11269-023-03584-z
– volume: 42
  start-page: 307
  issue: 3
  year: 2001
  ident: 3692_CR14
  publication-title: Math Soc Sci
  doi: 10.1016/S0165-4896(01)00075-0
– volume: 54
  start-page: 673
  issue: 10
  year: 2010
  ident: 3692_CR17
  publication-title: Resour Conserv Recycl
  doi: 10.1016/j.resconrec.2009.11.008
– volume: 267
  start-page: 66
  issue: 1
  year: 1992
  ident: 3692_CR15
  publication-title: Sci Am
  doi: 10.1038/scientificamerican0792-66
– volume: 586
  year: 2020
  ident: 3692_CR18
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2020.124892
– ident: 3692_CR20
  doi: 10.1080/02626669709492051
– volume: 31
  start-page: A143
  issue: 5
  year: 1987
  ident: 3692_CR7
  publication-title: Z Oper Res
– volume: 33
  start-page: 3071
  year: 2019
  ident: 3692_CR35
  publication-title: Water Resour Manage
  doi: 10.1007/s11269-019-02286-9
– ident: 3692_CR6
  doi: 10.1061/%28ASCE%29WR.1943-5452.0001436
– volume: 614
  year: 2022
  ident: 3692_CR33
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2022.128581
– volume: 14
  start-page: 1151
  issue: 7
  year: 2022
  ident: 3692_CR38
  publication-title: Water
  doi: 10.3390/w14071151
– ident: 3692_CR8
  doi: 10.1016/j.eswa.2020.113377
– ident: 3692_CR36
  doi: 10.5194/hessd-10-13855-2013
– ident: 3692_CR12
  doi: 10.1029/WR018i001p00014
– volume: 22
  start-page: 51
  year: 2008
  ident: 3692_CR10
  publication-title: Water Resour Manage
  doi: 10.1007/s11269-006-9143-y
– volume: 29
  start-page: 3905
  issue: 11
  year: 2015
  ident: 3692_CR26
  publication-title: Water Resour Manage
  doi: 10.1007/s11269-015-1035-6
– volume: 27
  start-page: 255
  issue: 1
  year: 2013
  ident: 3692_CR4
  publication-title: Water Resour Manage
  doi: 10.1007/s11269-012-0182-2
– volume: 570
  start-page: 666
  year: 2019
  ident: 3692_CR37
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2018.12.053
– volume: 139
  start-page: 85
  issue: 2
  year: 2013
  ident: 3692_CR3
  publication-title: J Irrig Drain Eng
  doi: 10.1061/(ASCE)IR.1943-4774.0000496
– volume: 34
  start-page: 165
  issue: 12
  year: 1996
  ident: 3692_CR16
  publication-title: Water Sci Technol
  doi: 10.2166/wst.1996.0328
– volume: 29
  start-page: 2353
  issue: 2
  year: 2022
  ident: 3692_CR30
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-021-15748-8
– ident: 3692_CR2
– volume: 139
  start-page: 277
  issue: 3
  year: 2013
  ident: 3692_CR29
  publication-title: J Water Resour Plan Manag
  doi: 10.1061/(ASCE)WR.1943-5452.0000244
– volume: 578
  year: 2019
  ident: 3692_CR11
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2019.124094
– volume: 12
  start-page: 619
  issue: 3
  year: 2020
  ident: 3692_CR34
  publication-title: Water
  doi: 10.3390/w12030619
– ident: 3692_CR24
  doi: 10.2307/1907266
– volume: 33
  start-page: 1999
  year: 2019
  ident: 3692_CR19
  publication-title: Water Resour Manage
  doi: 10.1007/s11269-019-02223-w
– volume: 12
  start-page: 759
  issue: 3
  year: 2021
  ident: 3692_CR13
  publication-title: J Water Clim Chang
  doi: 10.2166/wcc.2020.153
– volume: 190
  start-page: 798
  issue: 3
  year: 2008
  ident: 3692_CR32
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2007.06.045
– volume: 30
  start-page: 528
  issue: 3
  year: 2007
  ident: 3692_CR9
  publication-title: Adv Water Resour
  doi: 10.1016/j.advwatres.2006.04.004
– volume: 36
  start-page: 195
  issue: 2
  year: 1985
  ident: 3692_CR5
  publication-title: J Econ Theory
  doi: 10.1016/0022-0531(85)90102-4
– volume: 96
  start-page: 17
  issue: 1
  year: 2020
  ident: 3692_CR22
  publication-title: Simulation
  doi: 10.1177/0037549719844827
– ident: 3692_CR28
  doi: 10.1016/j.apm.2013.10.018
– volume: 12
  start-page: 1
  issue: 1
  year: 2022
  ident: 3692_CR23
  publication-title: Sci Rep
  doi: 10.1038/s41598-022-07971-1
– volume: 2
  start-page: 345
  issue: 4
  year: 1982
  ident: 3692_CR25
  publication-title: Math Soc Sci
  doi: 10.1016/0165-4896(82)90029-4
– volume: 26
  start-page: 4241
  issue: 14
  year: 2012
  ident: 3692_CR27
  publication-title: Water Resour Manage
  doi: 10.1007/s11269-012-0142-x
– volume: 381
  start-page: 225
  issue: 3–4
  year: 2010
  ident: 3692_CR21
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2009.11.045
SSID ssj0010090
Score 2.445103
Snippet Today, one of the most important issues in the field of common water resources management is the allocation of water resources to different stakeholders with...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 665
SubjectTerms Algorithms
Atmospheric Sciences
Bankruptcy
Civil Engineering
Climate change
conflict management
Earth and Environmental Science
Earth Sciences
Environment
Game theory
Geotechnical Engineering & Applied Earth Sciences
Hydrogeology
Hydrology/Water Resources
Performance indices
Predators
Reliability
Reservoir operation
Resilience
Resource allocation
stakeholders
Theories
Vulnerability
water
Water resources
Water resources management
SummonAdditionalLinks – databaseName: Science Database (ProQuest)
  dbid: M2P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZ4HeDAGzFeChI3iFibvnJCCPG4ADuAgFOVNjEgsW6sA_4-TptugAQXeqrUR6LYsT_bsQ2whyKKYylzngUCeSCR7qRQPItRY6wkosCq2UR8dZXc38uOc7iV7lhlIxMrQa17ufWRH_pkVxB3ysg_6r9y2zXKRlddC41JmCZk49kjXZd-ZxRFIPxQ-VgkmUgBqU6XNFOnznl-JDlpLE4yXPr847tiGqPNHwHSSu-cLfx3xosw7xAnO65ZZAkmTLEMc1_qEK7AwzUJjq7LyGTXfVOzBeshuyMsOmCNk79k1REDdq66htVp_UwVml0qm0TIOgOjrRHPjl8eaSbDp-4q3J6d3pxccNdzgecExYbcR6HzmGxERZcMDKELmSWJ8VFFiUJFIsHWT_VkRhtX61AZEeRRmMsozoIMtViDqaJXmHVgceYlWZh4KhQYIJnhykPZNlokbTRtJVrgNQue5q4gue2L8ZKOSylbIqVEpLQiUvrRgv3RN_26HMefb281lEnd1izTMVlasDt6TJvKRkpUYXpvZSpID5BlJ8OkBQcN_ce_-H3Ejb9H3IRZn0BR7cLZgqnh4M1sw0z-PnwuBzsV834CvRL1xg
  priority: 102
  providerName: ProQuest
Title Optimization Operation of Water Resources Using Game Theory and Marine Predator Algorithm
URI https://link.springer.com/article/10.1007/s11269-023-03692-w
https://www.proquest.com/docview/2917703962
https://www.proquest.com/docview/3153606958
Volume 38
WOSCitedRecordID wos001122627800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-1650
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7x6AEOlLYglsLKSL1RS5s4ie0jIB4XlhWUAqfISTyAxGZRssDfZ5zHLkUFCXKwEiVxorFn5huPZwbgF4pISq1TngQCeaCRzrQwPJGYoTQaUWBVbEL2--ryUg-aoLCy3e3euiQrST0NdvP8SHPSMZykrvb50yzMk7pTrmDD6dnfie-AUEO1sqLJMApIYTahMv_v4191NMWYr9yilbY5-Pq5_1yGpQZdsp16OnyDGZt_h8UXOQd_wNUJCYlhE33JTu5tPQXYCNkF4c6CtQv6Jau2E7BDM7SsDuFnJs_YsXEBg2xQ2MwZ7Gzn7npU3I5vhitwfrD_Z--IN_UVeEqwa8x9FFkqyR40dOjAEpLQiVLWRxMpg4bY3-VK9XRCTJplobEiSKMw1ZFMggQzsQpz-Si3a8Bk4qkkVJ4JBQZIJrfxUPdsJlQPbc-IDngtmeO0ST7uamDcxdO0yY5sMZEtrsgWP3Vge_LOfZ16492nN9rRixs2LGOfjFESaTryO7A1uU0M5LwiJrejhzIWJPPJitOh6sDvdkSnXbz9xfWPPf4TFnwCRPXyzQbMjYsHuwlf0sfxbVl0YVZeXHVhfne_Pzilq-Penmv9gWtl3Z51q4n-DMW68u8
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qLRL0QFnVgQJGghNYTGxneQeEKqC0ajudQxHtyTixDUidzDCZMuJP8Rt5zjIDSPTWAzlFSmLL8ee3LwBPvUzSFLHguZKeK_R0h9LwPPXWpwa9l75uNpEOBtnJCQ5X4GeXCxPCKjuaWBNqOy6CjfylIL2C0ImJeD35xkPXqOBd7VpoNLDYdz_mpLJVr_be0v4-E2Ln3fGbXd52FeAFCRszLry0RUpakKELlSP-iXmWOeFNkhlvCPShQmiEOUHT2tg4qYokLjBJc5V7K2ncK7CmQmWxECoohguvBckrtU0HSSVTxKrbJJ0mVS8SCXLikJx4Bgo-_5MRLqXbvxyyNZ_b2fjf_tBNuNFK1Gy7OQK3YMWVt2H9tzqLd-D0iAjjqM04ZUcT18CejT37SLL2lHVOjIrVIRTsvRk51pQtYKa07NCEJEk2nDobjBRs--wzrXz2ZXQXPlzK2u7Bajku3SawNI-yPM4iE0uvvErQRB77zsqs713fyB5E3Qbroi24Hvp-nOllqegACk2g0DUo9LwHzxffTJpyIxe-vdUhQbekp9JLGPTgyeIxEY3gCTKlG59XWhKfI80V46wHLzq8LYf494z3L57xMVzbPT480Ad7g_0HcF2QANiYq7ZgdTY9dw_havF99rWaPqoPDoNPl43DXwb8U7w
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Lb9MwGP80BkLsMN5aYYCR4ATWGtt5-IDQtFGYBl0PIMbJOLE_QFrT0nRU-9f46_icRwtI7LYDOUVKYsvxz9_7AfAEZZKmWhc8VxK50kh3Wlqep-gwtRpRYt1sIh0Os-NjPVqDn10uTAir7GhiTajdpAg28h1BegWhUydiB9uwiNH-4OX0Ow8dpIKntWun0UDk0J8tSH2rXhzs014_FWLw6v3eG952GOAFCR5zLlC6IiWNyNKllSdeqvMs8wJtklm0dABCtdBI5wRT52LrpSqSuNBJmqscnaRxL8HlVBHbDGGD_b2lB4Nkl9q-o0k9U8S224SdJm0vEonmxC058Q8t-OJPpriSdP9yztY8b3D9f_5bN2CzlbTZbnM0bsKaL2_Bxm_1F2_DpyMimOM2E5UdTX1zHNgE2UeSwWesc25UrA6tYK_t2LOmnAGzpWPvbEieZKOZd8F4wXZPvtDK51_Hd-DDhaztLqyXk9JvAUvzKMvjLLKxRIUq0TZC3fdOZn30fSt7EHWbbYq2EHvoB3JiViWkA0AMAcTUADGLHjxbfjNtypCc-_Z2hwrTkqTKrCDRg8fLx0RMgofIln5yWhlJ_I80Wh1nPXjeYW81xL9nvHf-jI_gKsHPvD0YHt6Ha4LkwsaKtQ3r89mpfwBXih_zb9XsYX2GGHy-aBj-AhmuXF4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+Operation+of+Water+Resources+Using+Game+Theory+and+Marine+Predator+Algorithm&rft.jtitle=Water+resources+management&rft.au=Far%2C+Shirin+Moradi&rft.au=Ashofteh%2C+Parisa-Sadat&rft.date=2024-01-01&rft.pub=Springer+Netherlands&rft.issn=0920-4741&rft.eissn=1573-1650&rft.volume=38&rft.issue=2&rft.spage=665&rft.epage=699&rft_id=info:doi/10.1007%2Fs11269-023-03692-w&rft.externalDocID=10_1007_s11269_023_03692_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-4741&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-4741&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-4741&client=summon