Homodyned K-Distribution Parameter Estimation in Quantitative Ultrasound: Autoencoder and Bayesian Neural Network Approaches

Quantitative ultrasound (QUS) analyzes the ultrasound (US) backscattered data to find the properties of scatterers that correlate with the tissue microstructure. Statistics of the envelope of the backscattered radio frequency (RF) data can be utilized to estimate several QUS parameters. Different di...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on ultrasonics, ferroelectrics, and frequency control Ročník 71; číslo 3; s. 354 - 365
Hlavní autori: Tehrani, Ali K. Z., Cloutier, Guy, Tang, An, Rosado-Mendez, Ivan M., Rivaz, Hassan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States IEEE 01.03.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:0885-3010, 1525-8955, 1525-8955
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Quantitative ultrasound (QUS) analyzes the ultrasound (US) backscattered data to find the properties of scatterers that correlate with the tissue microstructure. Statistics of the envelope of the backscattered radio frequency (RF) data can be utilized to estimate several QUS parameters. Different distributions have been proposed to model envelope data. The homodyned K-distribution (HK-distribution) is one of the most comprehensive distributions that can model US backscattered envelope data under diverse scattering conditions (varying scatterer number density and coherent scattering). The scatterer clustering parameter (<inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula>) and the ratio of the coherent to diffuse scattering power (<inline-formula> <tex-math notation="LaTeX">{k} </tex-math></inline-formula>) are the parameters of this distribution that have been used extensively for tissue characterization in diagnostic US. The estimation of these two parameters (which we refer to as HK parameters) is done using optimization algorithms in which statistical features such as the envelope point-wise signal-to-noise ratio (SNR), skewness, kurtosis, and the log-based moments have been utilized as input to such algorithms. The optimization methods minimize the difference between features and their theoretical value from the HK model. We propose that the true value of these statistical features is a hyperplane that covers a small portion of the feature space. In this article, we follow two approaches to reduce the effect of sample features' error. We propose a model projection neural network based on denoising autoencoders to project the noisy features into this space based on this assumption. We also investigate if the noise distribution can be learned by the deep estimators. We compare the proposed methods with conventional methods using simulations, an experimental phantom, and data from an in vivo animal model of hepatic steatosis. The network weight and a demo code are available online at ht.tp://code.sonography.ai.
AbstractList Quantitative ultrasound (QUS) analyzes the ultrasound (US) backscattered data to find the properties of scatterers that correlate with the tissue microstructure. Statistics of the envelope of the backscattered radio frequency (RF) data can be utilized to estimate several QUS parameters. Different distributions have been proposed to model envelope data. The homodyned K-distribution (HK-distribution) is one of the most comprehensive distributions that can model US backscattered envelope data under diverse scattering conditions (varying scatterer number density and coherent scattering). The scatterer clustering parameter ( α ) and the ratio of the coherent to diffuse scattering power ( k ) are the parameters of this distribution that have been used extensively for tissue characterization in diagnostic US. The estimation of these two parameters (which we refer to as HK parameters) is done using optimization algorithms in which statistical features such as the envelope point-wise signal-to-noise ratio (SNR), skewness, kurtosis, and the log-based moments have been utilized as input to such algorithms. The optimization methods minimize the difference between features and their theoretical value from the HK model. We propose that the true value of these statistical features is a hyperplane that covers a small portion of the feature space. In this article, we follow two approaches to reduce the effect of sample features' error. We propose a model projection neural network based on denoising autoencoders to project the noisy features into this space based on this assumption. We also investigate if the noise distribution can be learned by the deep estimators. We compare the proposed methods with conventional methods using simulations, an experimental phantom, and data from an in vivo animal model of hepatic steatosis. The network weight and a demo code are available online at ht.tp://code.sonography.ai.Quantitative ultrasound (QUS) analyzes the ultrasound (US) backscattered data to find the properties of scatterers that correlate with the tissue microstructure. Statistics of the envelope of the backscattered radio frequency (RF) data can be utilized to estimate several QUS parameters. Different distributions have been proposed to model envelope data. The homodyned K-distribution (HK-distribution) is one of the most comprehensive distributions that can model US backscattered envelope data under diverse scattering conditions (varying scatterer number density and coherent scattering). The scatterer clustering parameter ( α ) and the ratio of the coherent to diffuse scattering power ( k ) are the parameters of this distribution that have been used extensively for tissue characterization in diagnostic US. The estimation of these two parameters (which we refer to as HK parameters) is done using optimization algorithms in which statistical features such as the envelope point-wise signal-to-noise ratio (SNR), skewness, kurtosis, and the log-based moments have been utilized as input to such algorithms. The optimization methods minimize the difference between features and their theoretical value from the HK model. We propose that the true value of these statistical features is a hyperplane that covers a small portion of the feature space. In this article, we follow two approaches to reduce the effect of sample features' error. We propose a model projection neural network based on denoising autoencoders to project the noisy features into this space based on this assumption. We also investigate if the noise distribution can be learned by the deep estimators. We compare the proposed methods with conventional methods using simulations, an experimental phantom, and data from an in vivo animal model of hepatic steatosis. The network weight and a demo code are available online at ht.tp://code.sonography.ai.
Quantitative ultrasound (QUS) analyzes the ultrasound (US) backscattered data to find the properties of scatterers that correlate with the tissue microstructure. Statistics of the envelope of the backscattered radio frequency (RF) data can be utilized to estimate several QUS parameters. Different distributions have been proposed to model envelope data. The homodyned K-distribution (HK-distribution) is one of the most comprehensive distributions that can model US backscattered envelope data under diverse scattering conditions (varying scatterer number density and coherent scattering). The scatterer clustering parameter (<inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula>) and the ratio of the coherent to diffuse scattering power (<inline-formula> <tex-math notation="LaTeX">{k} </tex-math></inline-formula>) are the parameters of this distribution that have been used extensively for tissue characterization in diagnostic US. The estimation of these two parameters (which we refer to as HK parameters) is done using optimization algorithms in which statistical features such as the envelope point-wise signal-to-noise ratio (SNR), skewness, kurtosis, and the log-based moments have been utilized as input to such algorithms. The optimization methods minimize the difference between features and their theoretical value from the HK model. We propose that the true value of these statistical features is a hyperplane that covers a small portion of the feature space. In this article, we follow two approaches to reduce the effect of sample features' error. We propose a model projection neural network based on denoising autoencoders to project the noisy features into this space based on this assumption. We also investigate if the noise distribution can be learned by the deep estimators. We compare the proposed methods with conventional methods using simulations, an experimental phantom, and data from an in vivo animal model of hepatic steatosis. The network weight and a demo code are available online at ht.tp://code.sonography.ai.
Quantitative ultrasound (QUS) analyzes the ultrasound (US) backscattered data to find the properties of scatterers that correlate with the tissue microstructure. Statistics of the envelope of the backscattered radio frequency (RF) data can be utilized to estimate several QUS parameters. Different distributions have been proposed to model envelope data. The homodyned K-distribution (HK-distribution) is one of the most comprehensive distributions that can model US backscattered envelope data under diverse scattering conditions (varying scatterer number density and coherent scattering). The scatterer clustering parameter ([Formula Omitted]) and the ratio of the coherent to diffuse scattering power ([Formula Omitted]) are the parameters of this distribution that have been used extensively for tissue characterization in diagnostic US. The estimation of these two parameters (which we refer to as HK parameters) is done using optimization algorithms in which statistical features such as the envelope point-wise signal-to-noise ratio (SNR), skewness, kurtosis, and the log-based moments have been utilized as input to such algorithms. The optimization methods minimize the difference between features and their theoretical value from the HK model. We propose that the true value of these statistical features is a hyperplane that covers a small portion of the feature space. In this article, we follow two approaches to reduce the effect of sample features’ error. We propose a model projection neural network based on denoising autoencoders to project the noisy features into this space based on this assumption. We also investigate if the noise distribution can be learned by the deep estimators. We compare the proposed methods with conventional methods using simulations, an experimental phantom, and data from an in vivo animal model of hepatic steatosis. The network weight and a demo code are available online at ht.tp://code.sonography.ai.
Quantitative ultrasound (QUS) analyzes the ultrasound backscattered data to find the properties of scatterers that correlate with the tissue microstructure. Statistics of the envelope of the backscattered radiofrequency (RF) data can be utilized to estimate several QUS parameters. Different distributions have been proposed to model envelope data. The homodyned K-distribution (HK-distribution) is one of the most comprehensive distributions that can model ultrasound backscattered envelope data under diverse scattering conditions (varying scatterer number density and coherent scattering). The scatterer clustering parameter (α) and the ratio of the coherent to diffuse scattering power (k) are the parameters of this distribution that have been used extensively for tissue characterization in diagnostic ultrasound. The estimation of these two parameters (which we refer to as HK parameters) is done using optimization algorithms in which statistical features such as the envelope point-wise signal-to-noise ratio (SNR), skewness, kurtosis, and the log-based moments have been utilized as input to such algorithms. The optimization methods minimize the difference between features and their theoretical value from the HK model. We propose that the true value of these statistical features is a hyperplane that covers a small portion of the feature space. In this paper, we follow two approaches to reduce the effect of sample features' error. We propose a model projection neural network based on denoising autoencoders to project the noisy features into this space based on this assumption. We also investigate if the noise distribution can be learned by the deep estimators. We compare the proposed methods with conventional methods using simulations, an experimental phantom, and data from an in vivo animal model of hepatic steatosis. The network weight and a demo code are available online at http://code.sonography.ai.
Author Tehrani, Ali K. Z.
Tang, An
Cloutier, Guy
Rosado-Mendez, Ivan M.
Rivaz, Hassan
Author_xml – sequence: 1
  givenname: Ali K. Z.
  orcidid: 0000-0002-2686-8989
  surname: Tehrani
  fullname: Tehrani, Ali K. Z.
  email: A_Kafaei@encs.concordia.ca
  organization: Department of Electrical and Computer Engineering, Concordia University, Montreal, Canada
– sequence: 2
  givenname: Guy
  orcidid: 0000-0002-4957-4844
  surname: Cloutier
  fullname: Cloutier, Guy
  email: guy.cloutier@umontreal.ca
  organization: Department of Radiology, Radio-Oncology and Nuclear Medicine, Institute of Biomedical Engineering, University of Montreal, Montreal, Canada
– sequence: 3
  givenname: An
  orcidid: 0000-0001-8967-5503
  surname: Tang
  fullname: Tang, An
  email: an.tang@umontreal.ca
  organization: Department of Radiology, Radio-Oncology and Nuclear Medicine, University of Montreal, Montreal, Canada
– sequence: 4
  givenname: Ivan M.
  orcidid: 0000-0003-0778-1260
  surname: Rosado-Mendez
  fullname: Rosado-Mendez, Ivan M.
  email: rosadomendez@wisc.edu
  organization: Department of Medical Physics and Radiology, University of Wisconsin, Madison, WI, USA
– sequence: 5
  givenname: Hassan
  orcidid: 0000-0001-5800-3034
  surname: Rivaz
  fullname: Rivaz, Hassan
  email: hrivaz@ece.concordia.ca
  organization: Department of Electrical and Computer Engineering, Concordia University, Montreal, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38252581$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtvEzEURi1URNPCH0AIjcSmmwl-TjzsQmgoouIhNeuRx74jXGbs4AcoUn88bhIQ6oLVla1zfK3vO0MnzjtA6DnBc0Jw-_pms16v5hRTPmdMLDiTj9CMCCpq2QpxgmZYSlEzTPApOovxFmPCeUufoFMmacEkmaG7Kz95s3Ngqo_1OxtTsH1O1rvqiwpqggShuozJTmp_aV31NSuXbCrnn1BtxhRU9NmZN9UyJw9Oe1MU5Uz1Vu0gWuWqT5CDGstIv3z4Xi232-CV_gbxKXo8qDHCs-M8R5v15c3qqr7-_P7DanldayZoqsmgmsXQKymY1rzpzaAoEEYZBsH7oTdyAA4NMYJxJU3PG6mHHoZWSE5BK3aOLg7vlsU_MsTUTTZqGEflwOfY0ZYsZLMgTBT01QP01ufgyu8KxahoWMNZoV4eqdxPYLptKAGFXfcn1wLQA6CDjzHA8BchuLsvr9uX192X1x3LK5J8IOl9zt6VkO34f_XFQbUA8M8uTkgrGPsNzYup0Q
CODEN ITUCER
CitedBy_id crossref_primary_10_1109_TUFFC_2024_3384815
crossref_primary_10_1016_j_ultrasmedbio_2025_05_014
crossref_primary_10_1016_j_cmpb_2024_108374
crossref_primary_10_1016_j_slast_2025_100297
crossref_primary_10_1016_j_ultsonch_2024_106910
Cites_doi 10.1109/TUFFC.2018.2851846
10.1186/s13244-021-01071-w
10.1016/j.ultrasmedbio.2022.10.018
10.1121/10.0007047
10.1109/TUFFC.2023.3263119
10.1117/12.2651583
10.21037/qims.2019.08.03
10.1177/016173469001200105
10.1145/1390156.1390294
10.1016/j.ultrasmedbio.2022.11.019
10.1155/2022/1633858
10.1109/T-SU.1983.31404
10.1109/TUFFC.2015.2513958
10.1016/j.ultras.2022.106744
10.1109/ISBI53787.2023.10230797
10.1148/radiol.14140318
10.1109/ULTSYM.2019.8925666
10.1109/TUFFC.2009.1334
10.1007/978-3-031-21987-0_7
10.1016/j.ultrasmedbio.2020.03.005
10.1109/TUFFC.2016.2547341
10.4324/9780203734797-4
10.1109/TMI.2015.2479455
10.1137/120875727
10.1016/j.ultras.2020.106308
10.1109/TUFFC.2016.2532932
10.1109/ICASSP39728.2021.9413652
10.1109/TUFFC.2020.3042942
10.1109/TUFFC.2018.2869810
10.1177/016173469501700401
10.1109/TUFFC.2022.3166448
10.1016/j.ultrasmedbio.2019.10.024
10.3390/diagnostics10080557
10.1016/j.ultras.2019.106001
10.1109/ULTSYM.2007.200
10.1371/journal.pone.0262291
10.1177/0161734612464451
10.1016/j.psj.2021.101076
10.1109/TUFFC.2020.2973047
10.1016/j.ultras.2023.106987
10.1118/1.4962928
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SP
7U5
8FD
F28
FR3
L7M
7X8
DOI 10.1109/TUFFC.2024.3357438
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
PubMed
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Solid State and Superconductivity Abstracts
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Electronics & Communications Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Solid State and Superconductivity Abstracts
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1525-8955
EndPage 365
ExternalDocumentID 38252581
10_1109_TUFFC_2024_3357438
10411953
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Fonds de Recherche du Québec under Audace Grant
  grantid: #2019-AUDC-263591
  funderid: 10.13039/501100020951
– fundername: Natural Sciences and Engineering Research Council of Canada (NSERC)
  funderid: 10.13039/501100000038
– fundername: Fonds de Recherche du Québec-Santé (FRQS)
  grantid: 34939
  funderid: 10.13039/501100000156
GroupedDBID ---
-~X
.GJ
0R~
186
29I
3EH
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
UKR
VH1
ZXP
ZY4
AAYXX
CITATION
NPM
Z5M
7SP
7U5
8FD
F28
FR3
L7M
7X8
ID FETCH-LOGICAL-c352t-1fa67fba853cc46bdfa2e13230e54bfbd8fe4e61d534a8db468cfbef95842eca3
IEDL.DBID RIE
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001177955500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0885-3010
1525-8955
IngestDate Mon Sep 29 05:30:03 EDT 2025
Mon Jun 30 16:36:10 EDT 2025
Wed Feb 19 02:09:23 EST 2025
Sat Nov 29 03:07:29 EST 2025
Tue Nov 18 20:52:05 EST 2025
Wed Aug 27 02:17:10 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-1fa67fba853cc46bdfa2e13230e54bfbd8fe4e61d534a8db468cfbef95842eca3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2686-8989
0000-0003-0778-1260
0000-0002-4957-4844
0000-0001-8967-5503
0000-0001-5800-3034
PMID 38252581
PQID 2932563643
PQPubID 85455
PageCount 12
ParticipantIDs crossref_primary_10_1109_TUFFC_2024_3357438
proquest_journals_2932563643
crossref_citationtrail_10_1109_TUFFC_2024_3357438
ieee_primary_10411953
proquest_miscellaneous_2917867135
pubmed_primary_38252581
PublicationCentury 2000
PublicationDate 2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on ultrasonics, ferroelectrics, and frequency control
PublicationTitleAbbrev T-UFFC
PublicationTitleAlternate IEEE Trans Ultrason Ferroelectr Freq Control
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
McDonald (ref39) 2009; 2
ref2
ref1
ref17
Ladjal (ref32) 2019
ref16
ref38
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref42
ref41
ref22
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref38
  doi: 10.1109/TUFFC.2018.2851846
– ident: ref43
  doi: 10.1186/s13244-021-01071-w
– ident: ref25
  doi: 10.1016/j.ultrasmedbio.2022.10.018
– ident: ref42
  doi: 10.1121/10.0007047
– ident: ref7
  doi: 10.1109/TUFFC.2023.3263119
– ident: ref37
  doi: 10.1117/12.2651583
– ident: ref17
  doi: 10.21037/qims.2019.08.03
– ident: ref5
  doi: 10.1177/016173469001200105
– ident: ref31
  doi: 10.1145/1390156.1390294
– ident: ref28
  doi: 10.1016/j.ultrasmedbio.2022.11.019
– ident: ref20
  doi: 10.1155/2022/1633858
– ident: ref2
  doi: 10.1109/T-SU.1983.31404
– ident: ref1
  doi: 10.1109/TUFFC.2015.2513958
– ident: ref21
  doi: 10.1016/j.ultras.2022.106744
– ident: ref30
  doi: 10.1109/ISBI53787.2023.10230797
– ident: ref23
  doi: 10.1148/radiol.14140318
– ident: ref19
  doi: 10.1109/ULTSYM.2019.8925666
– volume: 2
  volume-title: Handbook of Biological Statistics
  year: 2009
  ident: ref39
– ident: ref26
  doi: 10.1109/TUFFC.2009.1334
– ident: ref12
  doi: 10.1007/978-3-031-21987-0_7
– ident: ref40
  doi: 10.1016/j.ultrasmedbio.2020.03.005
– ident: ref11
  doi: 10.1109/TUFFC.2016.2547341
– ident: ref35
  doi: 10.4324/9780203734797-4
– ident: ref14
  doi: 10.1109/TMI.2015.2479455
– ident: ref27
  doi: 10.1137/120875727
– ident: ref29
  doi: 10.1016/j.ultras.2020.106308
– year: 2019
  ident: ref32
  article-title: A PCA-like autoencoder
  publication-title: arXiv:1904.01277
– ident: ref6
  doi: 10.1109/TUFFC.2016.2532932
– ident: ref8
  doi: 10.1109/ICASSP39728.2021.9413652
– ident: ref3
  doi: 10.1109/TUFFC.2020.3042942
– ident: ref4
  doi: 10.1109/TUFFC.2018.2869810
– ident: ref13
  doi: 10.1177/016173469501700401
– ident: ref10
  doi: 10.1109/TUFFC.2022.3166448
– ident: ref22
  doi: 10.1016/j.ultrasmedbio.2019.10.024
– ident: ref16
  doi: 10.3390/diagnostics10080557
– ident: ref18
  doi: 10.1016/j.ultras.2019.106001
– ident: ref41
  doi: 10.1109/ULTSYM.2007.200
– ident: ref15
  doi: 10.1371/journal.pone.0262291
– ident: ref34
  doi: 10.1177/0161734612464451
– ident: ref36
  doi: 10.1016/j.psj.2021.101076
– ident: ref9
  doi: 10.1109/TUFFC.2020.2973047
– ident: ref33
  doi: 10.1016/j.ultras.2023.106987
– ident: ref24
  doi: 10.1118/1.4962928
SSID ssj0014492
Score 2.46546
Snippet Quantitative ultrasound (QUS) analyzes the ultrasound (US) backscattered data to find the properties of scatterers that correlate with the tissue...
Quantitative ultrasound (QUS) analyzes the ultrasound backscattered data to find the properties of scatterers that correlate with the tissue microstructure....
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 354
SubjectTerms Algorithms
Autoencoder
Backscattering
Clustering
Coherent scattering
deep learning (DL)
homodyned K-distribution
Hyperplanes
In vivo methods and tests
K-distribution
Kurtosis
Mathematical models
Neural networks
Noise reduction
Optimization
Optimization methods
Parameter estimation
quantitative ultrasound (QUS)
Radio frequency
Scattering
Signal to noise ratio
Ultrasonic imaging
Title Homodyned K-Distribution Parameter Estimation in Quantitative Ultrasound: Autoencoder and Bayesian Neural Network Approaches
URI https://ieeexplore.ieee.org/document/10411953
https://www.ncbi.nlm.nih.gov/pubmed/38252581
https://www.proquest.com/docview/2932563643
https://www.proquest.com/docview/2917867135
Volume 71
WOSCitedRecordID wos001177955500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1525-8955
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014492
  issn: 0885-3010
  databaseCode: RIE
  dateStart: 19860101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEA-2KOiDH7XqaS0RfJOtu9lkN_HtrD0KwlGhB_e25GMChXZXbneFgn-8k2TvqA8VfFtIsgn7m2RmNjO_IeSjMV5Z5l2WaxAZ5yoWcjeZsSw3YEwllInFJurlUq7X6mJKVo-5MAAQg8_gJDzGu3zX2TH8KsMdzgNDWblH9uq6SslauysDnIclk1FkKLX5NkMmV58vV4vFKfqCjJ-UpUCdGar0legbMSGLvxRSrLByv7EZlc7i2X8u9zl5OlmXdJ7E4QV5AO0BeXKHc_CAPIoxn7Z_SX6fdzedu8Vzln7PvgUC3an2Fb3QIWQLvzg9wxMgJTfSq5b-GHUbk9LwiKSr62Gj-1CV6Qudj0MXGDEdDtGto1_1LYTsTBq4P3BByxRsTucTgzn0h2S1OLs8Pc-mYgyZRRttyAqvq9objerdWkTTec0AXdkyB8GNN0564FAVTpRcS2d4Ja034BVaOAysLl-R_bZr4Q2hSihZaygMZ44zREMybyVamiU6Q-jVzkixRaSxE1N5KJhx3USPJVdNBLQJgDYToDPyaTfmZ-Lp-GfvwwDXnZ4JqRk52iLfTHu5b9AgQrsQ14bNH3bNuAvD1YpuoRtDn6IOTIGlmJHXSWJ2L98K2tt7Jn1HHoe1pcC2I7I_bEZ4Tx7aX8NVvzlGUV_L4yjqfwD9E_m8
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB1BAQEHPtoCCwWMxA2lJI69m3BbSleLWlZF2pV6i_wxliqVBG0SpEr8eMaOd1UOReIWKXZi5Y3tmXjmPYD3WrvScGeTVKFMhCiDkLtOtOGpRq3HstRBbGKyWBTn5-VZLFYPtTCIGJLP8NBfhrN825je_yqjGS48Q1l-G-546axYrrU9NKA38cFplAnZbbqpkUnLj8vVbHZE0SAXh3kuadf0On05RUdcFtlfW1LQWLnZ3Qzbzuzxfw74CTyK_iWbDgbxFG5hvQsPr7EO7sK9kPVp2j34PW9-NPaKVlp2knzxFLpR_YqdKZ-0Rd-cHdMaMJQ3souafe9VHcrSaJFkq8turVqvy_SJTfuu8ZyYlrqo2rLP6gp9fSbz7B80oMWQbs6mkcMc231YzY6XR_MkyjEkhry0LsmcGk-cVrTBG0N4Wqc4UjCbpyiFdtoWDgWOMytzoQqrxbgwTqMrycfhaFT-DHbqpsYXwEpZFhOFmRbcCk5oFNyZgnzNnMIhimtHkG0QqUzkKveSGZdViFnSsgqAVh7QKgI6gg_bPj8Hpo5_tt73cF1rOSA1goMN8lWczW1FLhF5hjQ2uv1ue5vmoT9cUTU2vW-TTTxXYC5H8HywmO3DN4b28oaXvoX78-W30-r06-LkFTzw4xzS3A5gp1v3-Bruml_dRbt-Ewz-D0AA_B0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Homodyned+K-Distribution+Parameter+Estimation+in+Quantitative+Ultrasound%3A+Autoencoder+and+Bayesian+Neural+Network+Approaches&rft.jtitle=IEEE+transactions+on+ultrasonics%2C+ferroelectrics%2C+and+frequency+control&rft.au=Tehrani%2C+Ali+K.+Z.&rft.au=Cloutier%2C+Guy&rft.au=Tang%2C+An&rft.au=Rosado-Mendez%2C+Ivan+M.&rft.date=2024-03-01&rft.pub=IEEE&rft.issn=0885-3010&rft.volume=71&rft.issue=3&rft.spage=354&rft.epage=365&rft_id=info:doi/10.1109%2FTUFFC.2024.3357438&rft_id=info%3Apmid%2F38252581&rft.externalDocID=10411953
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-3010&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-3010&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-3010&client=summon