Denoising autoencoder based topology identification in distribution systems with missing measurements

In distribution systems, the loss of existing real measurements and the stochastic penetration levels of renewable energy sources (RES) are the major issues while identifying the correct topology. The frequent switching and control actions of RES can lead to many topology changes. The loss of existi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of electrical power & energy systems Jg. 154; S. 109464
Hauptverfasser: Raghuvamsi, Y., Teeparthi, Kiran, Kosana, Vishalteja
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.12.2023
Schlagworte:
ISSN:0142-0615
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In distribution systems, the loss of existing real measurements and the stochastic penetration levels of renewable energy sources (RES) are the major issues while identifying the correct topology. The frequent switching and control actions of RES can lead to many topology changes. The loss of existing measurements from the physical meters due to failures in meters or communication aggravates the topology identification process and also it brings the convergence issues in state estimation algorithm. In this work, a deep learning approach is utilized to address the issue of incomplete measurement data and to provide accurate topology identification. A temporal convolutional denoising autoencoder (TCDAE) is developed for dimensionality reduction, reconstruction of incomplete data, and accurate topology identification. The model performance is compared with other traditional deep learning approaches such as simple denoising autoencoder (DAE), convolutional DAE, and the LSTM-based DAE. The power injection measurements and the line current sensor measurements are considered as the input measurement data for topology identification. The simulations have been carried out on IEEE 13-node and IEEE 37-node distribution test systems. The corresponding results indicate that the model can fill the incomplete data with more accurate values and its classification results prove that the model performance is effective in identifying the correct topology. •A temporal convolutional DAE is developed for reconstruction of incomplete data.•Further, the proposed model is utilized for accurate topology identification (TI).•The model performance is compared with simple DAE, CNN-DAE, and LSTMDAE.•The results show that the model can fill the lost data with more accurate values.•The classification results prove that the model performance is effective in TI.
AbstractList In distribution systems, the loss of existing real measurements and the stochastic penetration levels of renewable energy sources (RES) are the major issues while identifying the correct topology. The frequent switching and control actions of RES can lead to many topology changes. The loss of existing measurements from the physical meters due to failures in meters or communication aggravates the topology identification process and also it brings the convergence issues in state estimation algorithm. In this work, a deep learning approach is utilized to address the issue of incomplete measurement data and to provide accurate topology identification. A temporal convolutional denoising autoencoder (TCDAE) is developed for dimensionality reduction, reconstruction of incomplete data, and accurate topology identification. The model performance is compared with other traditional deep learning approaches such as simple denoising autoencoder (DAE), convolutional DAE, and the LSTM-based DAE. The power injection measurements and the line current sensor measurements are considered as the input measurement data for topology identification. The simulations have been carried out on IEEE 13-node and IEEE 37-node distribution test systems. The corresponding results indicate that the model can fill the incomplete data with more accurate values and its classification results prove that the model performance is effective in identifying the correct topology. •A temporal convolutional DAE is developed for reconstruction of incomplete data.•Further, the proposed model is utilized for accurate topology identification (TI).•The model performance is compared with simple DAE, CNN-DAE, and LSTMDAE.•The results show that the model can fill the lost data with more accurate values.•The classification results prove that the model performance is effective in TI.
ArticleNumber 109464
Author Raghuvamsi, Y.
Teeparthi, Kiran
Kosana, Vishalteja
Author_xml – sequence: 1
  givenname: Y.
  surname: Raghuvamsi
  fullname: Raghuvamsi, Y.
  email: raghuvamsi.sclr@nitandhra.ac.in
– sequence: 2
  givenname: Kiran
  orcidid: 0000-0001-6925-1957
  surname: Teeparthi
  fullname: Teeparthi, Kiran
  email: kiran.t39@nitandhra.ac.in
– sequence: 3
  givenname: Vishalteja
  surname: Kosana
  fullname: Kosana, Vishalteja
  email: kosanavishal@gmail.com
BookMark eNqFkMtOwzAQRb0oEm3hD1j4B1Ls2EkaFkioPKVKbGBtufakTNTElccF9e9JW1YsYDWakc7VnTNhoz70wNiVFDMpZHndzrCFLdAsF7kaTrUu9YiNhdR5JkpZnLMJUSuEqGqdjxncQx-QsF9zu0sBehc8RL6yBJ6nsA2bsN5z9NAnbNDZhKHn2HOPlCKudsed9pSgI_6F6YN3SMe4DiztInQDSRfsrLEbgsufOWXvjw9vi-ds-fr0srhbZk4VecokCJBKw9CzsnPh80IJK5u5rnPRFJWrtKrLpq6c8tLbWq-Eaopy7p0sSgV1qabs5pTrYiCK0BiH6dg5RYsbI4U5SDKtOUkyB0nmJGmA9S94G7Gzcf8fdnvCYHjsEyEacjh4BI8RXDI-4N8B37lIifo
CitedBy_id crossref_primary_10_3390_en18174747
crossref_primary_10_1016_j_uncres_2025_100201
crossref_primary_10_1016_j_measurement_2025_117741
crossref_primary_10_1016_j_rineng_2025_105900
crossref_primary_10_1007_s11227_025_07877_5
crossref_primary_10_3390_en16247933
Cites_doi 10.1016/j.neucom.2020.06.001
10.1109/MELCON.2018.8379086
10.1109/TPWRS.2019.2919157
10.1049/iet-gtd.2018.6195
10.1016/j.ijepes.2020.106441
10.1016/j.apenergy.2016.06.046
10.1109/TPWRS.2009.2016599
10.1109/TSG.2015.2429640
10.1109/TSG.2015.2421304
10.1109/ISGTEurope.2016.7856295
10.1109/TSG.2017.2758600
10.1109/TSG.2017.2680542
10.1109/ICASSP.2019.8683634
10.3390/en10101668
10.1109/ACCESS.2020.2976500
10.1109/TPWRS.2021.3076671
10.1109/TPWRS.2017.2779129
10.1109/TPWRS.2015.2394454
10.1109/TPWRS.2019.2922671
10.1109/TSG.2019.2933006
10.1109/TPWRS.2005.852086
10.1109/TPWRS.2009.2016457
10.1016/j.epsr.2015.12.029
10.1109/TCNS.2019.2901714
10.1109/ACCESS.2017.2740968
10.1109/TPWRS.2002.800943
ContentType Journal Article
Copyright 2023 The Authors
Copyright_xml – notice: 2023 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.ijepes.2023.109464
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_ijepes_2023_109464
S0142061523005215
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXKI
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABTAH
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
ADVLN
AEBSH
AECPX
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AHZHX
AI.
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
GROUPED_DOAJ
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY7
M41
MO0
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSR
SST
SSV
SSZ
T5K
VH1
WUQ
ZMT
ZY4
~02
~G-
9DU
AATTM
AAYWO
AAYXX
ABWVN
ACLOT
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c352t-1e0e134e0617a80d2530a1f84920f57c74396f97c3d1da94b03f568dc1563e963
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001071904400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0142-0615
IngestDate Tue Nov 18 22:16:48 EST 2025
Sat Nov 29 03:56:22 EST 2025
Wed Dec 04 16:48:36 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Huber-loss function
Missing data
Denoising autoencoder
Line current sensors
Temporal convolutional network (TCN)
Topology identification
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c352t-1e0e134e0617a80d2530a1f84920f57c74396f97c3d1da94b03f568dc1563e963
ORCID 0000-0001-6925-1957
OpenAccessLink https://dx.doi.org/10.1016/j.ijepes.2023.109464
ParticipantIDs crossref_citationtrail_10_1016_j_ijepes_2023_109464
crossref_primary_10_1016_j_ijepes_2023_109464
elsevier_sciencedirect_doi_10_1016_j_ijepes_2023_109464
PublicationCentury 2000
PublicationDate December 2023
2023-12-00
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: December 2023
PublicationDecade 2020
PublicationTitle International journal of electrical power & energy systems
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – sequence: 0
  name: Elsevier Ltd
References Lindsey overhead sensor, [Online]. Available
Pappu, Bhatt, Pasumarthy, Rajeswaran (b13) 2018; 9
Li (b29) 1996; 11
Alimardani, Therrien, Atanackovic, Jatskevich, Vaahedi (b30) 2015; 6
Abur, Gomez-Exposito (b5) 2004
Gotti, Amaris, Larrea (b2) 2021; 36
Cavraro, Kekatos (b14) 2019; 6
Hayes B, Escalera A, Prodanovic M. Event-triggered topology identification for state estimation in active distribution networks. In: 2016 IEEE PES innovative smart grid technologies conference Europe (ISGT-Europe). 2016, p. 1–6.
Farajollahi, Shahsavari, Mohsenian-Rad (b4) 2020; 11
Duan, Stewart (b18) 2019; 13
da Silva, Simões Costa, Clements, Andreoli (b3) 2016; 133
Luan, Peng, Maras, Lo, Harapnuk (b8) 2015; 6
Cavraro, Arghandeh (b12) 2018; 33
Al-Wakeel, Wu, Jenkins (b21) 2017; 194
Zhao, Liu, Zhao, Zhang, Xu, Xiang, Liu (b1) 2021; 125
Bai, Kolter, Koltun (b27) 2018
Ryu, Kim, Kim (b24) 2020; 8
Korres, Katsikas (b6) 2002; 17
Singh, Pal, Vinter (b25) 2009; 24
Ren, Xu (b23) 2019; 34
Tian, Wu, Zhang (b9) 2016; 31
Kim, Park, Lee, Joo, Choi (b20) 2017; 10
.
Mestav, Luengo-Rozas, Tong (b16) 2019; 34
Dai, Song, Sheng, Jiang (b22) 2017; 5
Cavraro, Kekatos, Veeramachaneni (b11) 2019; 10
Guo, Yuan (b26) 2020; 410
Oliveira R, Bessa R, Iranda VM. Identifying topology in power networks in the absence of breaker status sensor signals. In: 2018 19th IEEE mediterranean electrotechnical conference. MELECON, 2018, p. 160–5.
Sevlian, Rajagopal (b15) 2015
Pandey A, Wang D. TCNN: Temporal Convolutional Neural Network for Real-time Speech Enhancement in the Time Domain. In: ICASSP 2019 - 2019 IEEE international conference on acoustics, speech and signal processing. ICASSP, 2019, p. 6875–9.
Singh, Pandey, Chauhan (b7) 2005; 20
Korres (10.1016/j.ijepes.2023.109464_b6) 2002; 17
Singh (10.1016/j.ijepes.2023.109464_b25) 2009; 24
Dai (10.1016/j.ijepes.2023.109464_b22) 2017; 5
Abur (10.1016/j.ijepes.2023.109464_b5) 2004
Tian (10.1016/j.ijepes.2023.109464_b9) 2016; 31
Cavraro (10.1016/j.ijepes.2023.109464_b11) 2019; 10
da Silva (10.1016/j.ijepes.2023.109464_b3) 2016; 133
Mestav (10.1016/j.ijepes.2023.109464_b16) 2019; 34
Kim (10.1016/j.ijepes.2023.109464_b20) 2017; 10
10.1016/j.ijepes.2023.109464_b28
Guo (10.1016/j.ijepes.2023.109464_b26) 2020; 410
Farajollahi (10.1016/j.ijepes.2023.109464_b4) 2020; 11
Singh (10.1016/j.ijepes.2023.109464_b7) 2005; 20
Alimardani (10.1016/j.ijepes.2023.109464_b30) 2015; 6
Cavraro (10.1016/j.ijepes.2023.109464_b14) 2019; 6
Bai (10.1016/j.ijepes.2023.109464_b27) 2018
Cavraro (10.1016/j.ijepes.2023.109464_b12) 2018; 33
10.1016/j.ijepes.2023.109464_b10
Gotti (10.1016/j.ijepes.2023.109464_b2) 2021; 36
Li (10.1016/j.ijepes.2023.109464_b29) 1996; 11
10.1016/j.ijepes.2023.109464_b17
Ryu (10.1016/j.ijepes.2023.109464_b24) 2020; 8
Pappu (10.1016/j.ijepes.2023.109464_b13) 2018; 9
10.1016/j.ijepes.2023.109464_b19
Sevlian (10.1016/j.ijepes.2023.109464_b15) 2015
Luan (10.1016/j.ijepes.2023.109464_b8) 2015; 6
Al-Wakeel (10.1016/j.ijepes.2023.109464_b21) 2017; 194
Ren (10.1016/j.ijepes.2023.109464_b23) 2019; 34
Zhao (10.1016/j.ijepes.2023.109464_b1) 2021; 125
Duan (10.1016/j.ijepes.2023.109464_b18) 2019; 13
References_xml – volume: 6
  start-page: 2919
  year: 2015
  end-page: 2928
  ident: b30
  article-title: Distribution system state estimation based on nonsynchronized smart meters
  publication-title: IEEE Trans Smart Grid
– volume: 410
  start-page: 387
  year: 2020
  end-page: 393
  ident: b26
  article-title: Short-term traffic speed forecasting based on graph attention temporal convolutional networks
  publication-title: Neurocomputing
– volume: 9
  start-page: 5113
  year: 2018
  end-page: 5122
  ident: b13
  article-title: Identifying topology of low voltage distribution networks based on smart meter data
  publication-title: IEEE Trans Smart Grid
– volume: 10
  start-page: 1668
  year: 2017
  ident: b20
  article-title: Learning-based adaptive imputation method with kNN algorithm for missing power data
  publication-title: Energies
– year: 2015
  ident: b15
  article-title: Distribution system topology detection using consumer load and line flow measurements
– volume: 13
  year: 2019
  ident: b18
  article-title: Deep learning based power distribution network switch action identification leveraging dynamic features of distributed energy resources
  publication-title: IET Gener Transm Distrib
– volume: 133
  start-page: 338
  year: 2016
  end-page: 346
  ident: b3
  article-title: Simultaneous estimation of state variables and network topology for power system real-time modeling
  publication-title: Electr Power Syst Res
– volume: 34
  start-page: 5044
  year: 2019
  end-page: 5052
  ident: b23
  article-title: A fully data-driven method based on generative adversarial networks for power system dynamic security assessment with missing data
  publication-title: IEEE Trans Power Syst
– reference: Lindsey overhead sensor, [Online]. Available:
– volume: 34
  start-page: 4910
  year: 2019
  end-page: 4920
  ident: b16
  article-title: Bayesian state estimation for unobservable distribution systems via deep learning
  publication-title: IEEE Trans Power Syst
– volume: 33
  start-page: 3500
  year: 2018
  end-page: 3509
  ident: b12
  article-title: Power distribution network topology detection with time-series signature verification method
  publication-title: IEEE Trans Power Syst
– volume: 17
  start-page: 818
  year: 2002
  end-page: 825
  ident: b6
  article-title: Identification of circuit breaker statuses in WLS state estimator
  publication-title: IEEE Trans Power Syst
– volume: 194
  start-page: 333
  year: 2017
  end-page: 342
  ident: b21
  article-title: K-means based load estimation of domestic smart meter measurements
  publication-title: Appl Energy
– volume: 8
  start-page: 40656
  year: 2020
  end-page: 40666
  ident: b24
  article-title: Denoising autoencoder-based missing value imputation for smart meters
  publication-title: IEEE Access
– volume: 24
  start-page: 668
  year: 2009
  end-page: 675
  ident: b25
  article-title: Measurement placement in distribution system state estimation
  publication-title: IEEE Trans Power Syst
– volume: 20
  start-page: 1570
  year: 2005
  end-page: 1579
  ident: b7
  article-title: Topology identification, bad data processing, and state estimation using fuzzy pattern matching
  publication-title: IEEE Trans Power Syst
– volume: 11
  start-page: 1159
  year: 2020
  end-page: 1170
  ident: b4
  article-title: Topology identification in distribution systems using line current sensors: An MILP approach
  publication-title: IEEE Trans Smart Grid
– volume: 6
  start-page: 980
  year: 2019
  end-page: 992
  ident: b14
  article-title: Inverter probing for power distribution network topology processing
  publication-title: IEEE Trans Control Netw Syst
– volume: 31
  start-page: 823
  year: 2016
  end-page: 824
  ident: b9
  article-title: A mixed integer quadratic programming model for topology identification in distribution network
  publication-title: IEEE Trans Power Syst
– volume: 5
  start-page: 22863
  year: 2017
  end-page: 22870
  ident: b22
  article-title: Cleaning method for status monitoring data of power equipment based on stacked denoising autoencoders
  publication-title: IEEE Access
– year: 2004
  ident: b5
  article-title: Power system state estimation: theory and implementation, Vol. 24
– volume: 125
  year: 2021
  ident: b1
  article-title: Robust PCA-deep belief network surrogate model for distribution system topology identification with DERs
  publication-title: Int J Electr Power Energy Syst
– volume: 10
  start-page: 1058
  year: 2019
  end-page: 1067
  ident: b11
  article-title: Voltage analytics for power distribution network topology verification
  publication-title: IEEE Trans Smart Grid
– reference: .
– reference: Oliveira R, Bessa R, Iranda VM. Identifying topology in power networks in the absence of breaker status sensor signals. In: 2018 19th IEEE mediterranean electrotechnical conference. MELECON, 2018, p. 160–5.
– reference: Pandey A, Wang D. TCNN: Temporal Convolutional Neural Network for Real-time Speech Enhancement in the Time Domain. In: ICASSP 2019 - 2019 IEEE international conference on acoustics, speech and signal processing. ICASSP, 2019, p. 6875–9.
– volume: 36
  start-page: 5824
  year: 2021
  end-page: 5833
  ident: b2
  article-title: A deep neural network approach for online topology identification in state estimation
  publication-title: IEEE Trans Power Syst
– reference: Hayes B, Escalera A, Prodanovic M. Event-triggered topology identification for state estimation in active distribution networks. In: 2016 IEEE PES innovative smart grid technologies conference Europe (ISGT-Europe). 2016, p. 1–6.
– volume: 6
  start-page: 1964
  year: 2015
  end-page: 1971
  ident: b8
  article-title: Smart meter data analytics for distribution network connectivity verification
  publication-title: IEEE Trans Smart Grid
– year: 2018
  ident: b27
  article-title: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling
– volume: 11
  start-page: 911
  year: 1996
  end-page: 916
  ident: b29
  article-title: State estimation for power distribution system and measurement impacts
  publication-title: IEEE Trans Power Syst
– volume: 410
  start-page: 387
  year: 2020
  ident: 10.1016/j.ijepes.2023.109464_b26
  article-title: Short-term traffic speed forecasting based on graph attention temporal convolutional networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.06.001
– ident: 10.1016/j.ijepes.2023.109464_b17
  doi: 10.1109/MELCON.2018.8379086
– volume: 34
  start-page: 4910
  issue: 6
  year: 2019
  ident: 10.1016/j.ijepes.2023.109464_b16
  article-title: Bayesian state estimation for unobservable distribution systems via deep learning
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2019.2919157
– year: 2018
  ident: 10.1016/j.ijepes.2023.109464_b27
– volume: 13
  year: 2019
  ident: 10.1016/j.ijepes.2023.109464_b18
  article-title: Deep learning based power distribution network switch action identification leveraging dynamic features of distributed energy resources
  publication-title: IET Gener Transm Distrib
  doi: 10.1049/iet-gtd.2018.6195
– volume: 125
  year: 2021
  ident: 10.1016/j.ijepes.2023.109464_b1
  article-title: Robust PCA-deep belief network surrogate model for distribution system topology identification with DERs
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2020.106441
– volume: 194
  start-page: 333
  year: 2017
  ident: 10.1016/j.ijepes.2023.109464_b21
  article-title: K-means based load estimation of domestic smart meter measurements
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.06.046
– volume: 11
  start-page: 911
  issue: 2
  year: 1996
  ident: 10.1016/j.ijepes.2023.109464_b29
  article-title: State estimation for power distribution system and measurement impacts
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2009.2016599
– volume: 6
  start-page: 2919
  issue: 6
  year: 2015
  ident: 10.1016/j.ijepes.2023.109464_b30
  article-title: Distribution system state estimation based on nonsynchronized smart meters
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2015.2429640
– volume: 6
  start-page: 1964
  issue: 4
  year: 2015
  ident: 10.1016/j.ijepes.2023.109464_b8
  article-title: Smart meter data analytics for distribution network connectivity verification
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2015.2421304
– ident: 10.1016/j.ijepes.2023.109464_b10
  doi: 10.1109/ISGTEurope.2016.7856295
– volume: 10
  start-page: 1058
  issue: 1
  year: 2019
  ident: 10.1016/j.ijepes.2023.109464_b11
  article-title: Voltage analytics for power distribution network topology verification
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2017.2758600
– volume: 9
  start-page: 5113
  issue: 5
  year: 2018
  ident: 10.1016/j.ijepes.2023.109464_b13
  article-title: Identifying topology of low voltage distribution networks based on smart meter data
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2017.2680542
– ident: 10.1016/j.ijepes.2023.109464_b19
– ident: 10.1016/j.ijepes.2023.109464_b28
  doi: 10.1109/ICASSP.2019.8683634
– volume: 10
  start-page: 1668
  issue: 10
  year: 2017
  ident: 10.1016/j.ijepes.2023.109464_b20
  article-title: Learning-based adaptive imputation method with kNN algorithm for missing power data
  publication-title: Energies
  doi: 10.3390/en10101668
– volume: 8
  start-page: 40656
  year: 2020
  ident: 10.1016/j.ijepes.2023.109464_b24
  article-title: Denoising autoencoder-based missing value imputation for smart meters
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2976500
– year: 2015
  ident: 10.1016/j.ijepes.2023.109464_b15
– volume: 36
  start-page: 5824
  issue: 6
  year: 2021
  ident: 10.1016/j.ijepes.2023.109464_b2
  article-title: A deep neural network approach for online topology identification in state estimation
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2021.3076671
– volume: 33
  start-page: 3500
  issue: 4
  year: 2018
  ident: 10.1016/j.ijepes.2023.109464_b12
  article-title: Power distribution network topology detection with time-series signature verification method
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2017.2779129
– volume: 31
  start-page: 823
  issue: 1
  year: 2016
  ident: 10.1016/j.ijepes.2023.109464_b9
  article-title: A mixed integer quadratic programming model for topology identification in distribution network
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2015.2394454
– volume: 34
  start-page: 5044
  issue: 6
  year: 2019
  ident: 10.1016/j.ijepes.2023.109464_b23
  article-title: A fully data-driven method based on generative adversarial networks for power system dynamic security assessment with missing data
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2019.2922671
– year: 2004
  ident: 10.1016/j.ijepes.2023.109464_b5
– volume: 11
  start-page: 1159
  issue: 2
  year: 2020
  ident: 10.1016/j.ijepes.2023.109464_b4
  article-title: Topology identification in distribution systems using line current sensors: An MILP approach
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2019.2933006
– volume: 20
  start-page: 1570
  issue: 3
  year: 2005
  ident: 10.1016/j.ijepes.2023.109464_b7
  article-title: Topology identification, bad data processing, and state estimation using fuzzy pattern matching
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2005.852086
– volume: 24
  start-page: 668
  issue: 2
  year: 2009
  ident: 10.1016/j.ijepes.2023.109464_b25
  article-title: Measurement placement in distribution system state estimation
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2009.2016457
– volume: 133
  start-page: 338
  year: 2016
  ident: 10.1016/j.ijepes.2023.109464_b3
  article-title: Simultaneous estimation of state variables and network topology for power system real-time modeling
  publication-title: Electr Power Syst Res
  doi: 10.1016/j.epsr.2015.12.029
– volume: 6
  start-page: 980
  issue: 3
  year: 2019
  ident: 10.1016/j.ijepes.2023.109464_b14
  article-title: Inverter probing for power distribution network topology processing
  publication-title: IEEE Trans Control Netw Syst
  doi: 10.1109/TCNS.2019.2901714
– volume: 5
  start-page: 22863
  year: 2017
  ident: 10.1016/j.ijepes.2023.109464_b22
  article-title: Cleaning method for status monitoring data of power equipment based on stacked denoising autoencoders
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2740968
– volume: 17
  start-page: 818
  issue: 3
  year: 2002
  ident: 10.1016/j.ijepes.2023.109464_b6
  article-title: Identification of circuit breaker statuses in WLS state estimator
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2002.800943
SSID ssj0007942
Score 2.4300683
Snippet In distribution systems, the loss of existing real measurements and the stochastic penetration levels of renewable energy sources (RES) are the major issues...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 109464
SubjectTerms Denoising autoencoder
Huber-loss function
Line current sensors
Missing data
Temporal convolutional network (TCN)
Topology identification
Title Denoising autoencoder based topology identification in distribution systems with missing measurements
URI https://dx.doi.org/10.1016/j.ijepes.2023.109464
Volume 154
WOSCitedRecordID wos001071904400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0142-0615
  databaseCode: AIEXJ
  dateStart: 19950201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0007942
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZWWw5wQDxFKSAfuKZKbCexj1Up4iFVHApaTpHXdmhW22y0ya564b_jsZ1stkW8JC5RFMVO5PnkmUy--Qah14QnMZdMRjlPRcRkySIZKxZpwecZUYIqPnfNJvLzcz6biU-Tyfe-Fma7zOuaX1-L5r-a2l6zxobS2b8w9zCpvWDPrdHt0ZrdHv_I8G9MvapcBkBuuhXoVIJcBHgrbQPNxmsuVTqwhGRPdtSgoBuaXwV951D5ZpHgprvapRPbcUy7n1QcSVH4FjsOBQ00Y3MwM77YsB0ppbvfTN8uN1t51TpywdfjIaFgrLtcd5eec1Ctd1j-uGqlr2f7Ag2kl51ZyHEKg9AbdJChtmZHZPKpTgJ9J9K9vdorTt_a930KYnFcLUxjQIWdUBDKYl4h_YaiNhDaCMxMQKufgETBAclTwafo4OT92ezD4MrtZkU8B9a_Sl976QiCt5_189hmFK9cPED3w4cGPvEAeYgmpn6E7o3kJx8jM0AFj6CCHVRwDxW8DxVc1XgMFRwMiQEqOEAFj6HyBH1-e3Zx-i4KbTciZaPxLkpMbBLKDAS3kseapDSWScmZIHGZ5go-YbNS5IrqREvB5jEt04xrlaQZNXZDf4qm9ao2zxDOTFZSolmqNahgZnLOs5KV1slaFyupOkS0X7BCBU16aI2yLHry4aLwy1zAMhd-mQ9RNIxqvCbLb-7Pe1sUIa708WJh4fPLkc__eeQRurtD-gs07dYb8xLdUduuatevAs5-AARsplg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Denoising+autoencoder+based+topology+identification+in+distribution+systems+with+missing+measurements&rft.jtitle=International+journal+of+electrical+power+%26+energy+systems&rft.au=Raghuvamsi%2C+Y.&rft.au=Teeparthi%2C+Kiran&rft.au=Kosana%2C+Vishalteja&rft.date=2023-12-01&rft.pub=Elsevier+Ltd&rft.issn=0142-0615&rft.volume=154&rft_id=info:doi/10.1016%2Fj.ijepes.2023.109464&rft.externalDocID=S0142061523005215
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-0615&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-0615&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-0615&client=summon