Denoising autoencoder based topology identification in distribution systems with missing measurements
In distribution systems, the loss of existing real measurements and the stochastic penetration levels of renewable energy sources (RES) are the major issues while identifying the correct topology. The frequent switching and control actions of RES can lead to many topology changes. The loss of existi...
Gespeichert in:
| Veröffentlicht in: | International journal of electrical power & energy systems Jg. 154; S. 109464 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
01.12.2023
|
| Schlagworte: | |
| ISSN: | 0142-0615 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In distribution systems, the loss of existing real measurements and the stochastic penetration levels of renewable energy sources (RES) are the major issues while identifying the correct topology. The frequent switching and control actions of RES can lead to many topology changes. The loss of existing measurements from the physical meters due to failures in meters or communication aggravates the topology identification process and also it brings the convergence issues in state estimation algorithm. In this work, a deep learning approach is utilized to address the issue of incomplete measurement data and to provide accurate topology identification. A temporal convolutional denoising autoencoder (TCDAE) is developed for dimensionality reduction, reconstruction of incomplete data, and accurate topology identification. The model performance is compared with other traditional deep learning approaches such as simple denoising autoencoder (DAE), convolutional DAE, and the LSTM-based DAE. The power injection measurements and the line current sensor measurements are considered as the input measurement data for topology identification. The simulations have been carried out on IEEE 13-node and IEEE 37-node distribution test systems. The corresponding results indicate that the model can fill the incomplete data with more accurate values and its classification results prove that the model performance is effective in identifying the correct topology.
•A temporal convolutional DAE is developed for reconstruction of incomplete data.•Further, the proposed model is utilized for accurate topology identification (TI).•The model performance is compared with simple DAE, CNN-DAE, and LSTMDAE.•The results show that the model can fill the lost data with more accurate values.•The classification results prove that the model performance is effective in TI. |
|---|---|
| AbstractList | In distribution systems, the loss of existing real measurements and the stochastic penetration levels of renewable energy sources (RES) are the major issues while identifying the correct topology. The frequent switching and control actions of RES can lead to many topology changes. The loss of existing measurements from the physical meters due to failures in meters or communication aggravates the topology identification process and also it brings the convergence issues in state estimation algorithm. In this work, a deep learning approach is utilized to address the issue of incomplete measurement data and to provide accurate topology identification. A temporal convolutional denoising autoencoder (TCDAE) is developed for dimensionality reduction, reconstruction of incomplete data, and accurate topology identification. The model performance is compared with other traditional deep learning approaches such as simple denoising autoencoder (DAE), convolutional DAE, and the LSTM-based DAE. The power injection measurements and the line current sensor measurements are considered as the input measurement data for topology identification. The simulations have been carried out on IEEE 13-node and IEEE 37-node distribution test systems. The corresponding results indicate that the model can fill the incomplete data with more accurate values and its classification results prove that the model performance is effective in identifying the correct topology.
•A temporal convolutional DAE is developed for reconstruction of incomplete data.•Further, the proposed model is utilized for accurate topology identification (TI).•The model performance is compared with simple DAE, CNN-DAE, and LSTMDAE.•The results show that the model can fill the lost data with more accurate values.•The classification results prove that the model performance is effective in TI. |
| ArticleNumber | 109464 |
| Author | Raghuvamsi, Y. Teeparthi, Kiran Kosana, Vishalteja |
| Author_xml | – sequence: 1 givenname: Y. surname: Raghuvamsi fullname: Raghuvamsi, Y. email: raghuvamsi.sclr@nitandhra.ac.in – sequence: 2 givenname: Kiran orcidid: 0000-0001-6925-1957 surname: Teeparthi fullname: Teeparthi, Kiran email: kiran.t39@nitandhra.ac.in – sequence: 3 givenname: Vishalteja surname: Kosana fullname: Kosana, Vishalteja email: kosanavishal@gmail.com |
| BookMark | eNqFkMtOwzAQRb0oEm3hD1j4B1Ls2EkaFkioPKVKbGBtufakTNTElccF9e9JW1YsYDWakc7VnTNhoz70wNiVFDMpZHndzrCFLdAsF7kaTrUu9YiNhdR5JkpZnLMJUSuEqGqdjxncQx-QsF9zu0sBehc8RL6yBJ6nsA2bsN5z9NAnbNDZhKHn2HOPlCKudsed9pSgI_6F6YN3SMe4DiztInQDSRfsrLEbgsufOWXvjw9vi-ds-fr0srhbZk4VecokCJBKw9CzsnPh80IJK5u5rnPRFJWrtKrLpq6c8tLbWq-Eaopy7p0sSgV1qabs5pTrYiCK0BiH6dg5RYsbI4U5SDKtOUkyB0nmJGmA9S94G7Gzcf8fdnvCYHjsEyEacjh4BI8RXDI-4N8B37lIifo |
| CitedBy_id | crossref_primary_10_3390_en18174747 crossref_primary_10_1016_j_uncres_2025_100201 crossref_primary_10_1016_j_measurement_2025_117741 crossref_primary_10_1016_j_rineng_2025_105900 crossref_primary_10_1007_s11227_025_07877_5 crossref_primary_10_3390_en16247933 |
| Cites_doi | 10.1016/j.neucom.2020.06.001 10.1109/MELCON.2018.8379086 10.1109/TPWRS.2019.2919157 10.1049/iet-gtd.2018.6195 10.1016/j.ijepes.2020.106441 10.1016/j.apenergy.2016.06.046 10.1109/TPWRS.2009.2016599 10.1109/TSG.2015.2429640 10.1109/TSG.2015.2421304 10.1109/ISGTEurope.2016.7856295 10.1109/TSG.2017.2758600 10.1109/TSG.2017.2680542 10.1109/ICASSP.2019.8683634 10.3390/en10101668 10.1109/ACCESS.2020.2976500 10.1109/TPWRS.2021.3076671 10.1109/TPWRS.2017.2779129 10.1109/TPWRS.2015.2394454 10.1109/TPWRS.2019.2922671 10.1109/TSG.2019.2933006 10.1109/TPWRS.2005.852086 10.1109/TPWRS.2009.2016457 10.1016/j.epsr.2015.12.029 10.1109/TCNS.2019.2901714 10.1109/ACCESS.2017.2740968 10.1109/TPWRS.2002.800943 |
| ContentType | Journal Article |
| Copyright | 2023 The Authors |
| Copyright_xml | – notice: 2023 The Authors |
| DBID | 6I. AAFTH AAYXX CITATION |
| DOI | 10.1016/j.ijepes.2023.109464 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_ijepes_2023_109464 S0142061523005215 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXKI AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABTAH ABXDB ACDAQ ACGFS ACNNM ACRLP ACRPL ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH ADVLN AEBSH AECPX AEKER AENEX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AHZHX AI. AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ GROUPED_DOAJ HVGLF HZ~ IHE J1W JARJE JJJVA K-O KOM LY6 LY7 M41 MO0 O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SDP SES SET SEW SPC SPCBC SSR SST SSV SSZ T5K VH1 WUQ ZMT ZY4 ~02 ~G- 9DU AATTM AAYWO AAYXX ABWVN ACLOT ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c352t-1e0e134e0617a80d2530a1f84920f57c74396f97c3d1da94b03f568dc1563e963 |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001071904400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0142-0615 |
| IngestDate | Tue Nov 18 22:16:48 EST 2025 Sat Nov 29 03:56:22 EST 2025 Wed Dec 04 16:48:36 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Huber-loss function Missing data Denoising autoencoder Line current sensors Temporal convolutional network (TCN) Topology identification |
| Language | English |
| License | This is an open access article under the CC BY license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c352t-1e0e134e0617a80d2530a1f84920f57c74396f97c3d1da94b03f568dc1563e963 |
| ORCID | 0000-0001-6925-1957 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.ijepes.2023.109464 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_ijepes_2023_109464 crossref_primary_10_1016_j_ijepes_2023_109464 elsevier_sciencedirect_doi_10_1016_j_ijepes_2023_109464 |
| PublicationCentury | 2000 |
| PublicationDate | December 2023 2023-12-00 |
| PublicationDateYYYYMMDD | 2023-12-01 |
| PublicationDate_xml | – month: 12 year: 2023 text: December 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | International journal of electrical power & energy systems |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – sequence: 0 name: Elsevier Ltd |
| References | Lindsey overhead sensor, [Online]. Available Pappu, Bhatt, Pasumarthy, Rajeswaran (b13) 2018; 9 Li (b29) 1996; 11 Alimardani, Therrien, Atanackovic, Jatskevich, Vaahedi (b30) 2015; 6 Abur, Gomez-Exposito (b5) 2004 Gotti, Amaris, Larrea (b2) 2021; 36 Cavraro, Kekatos (b14) 2019; 6 Hayes B, Escalera A, Prodanovic M. Event-triggered topology identification for state estimation in active distribution networks. In: 2016 IEEE PES innovative smart grid technologies conference Europe (ISGT-Europe). 2016, p. 1–6. Farajollahi, Shahsavari, Mohsenian-Rad (b4) 2020; 11 Duan, Stewart (b18) 2019; 13 da Silva, Simões Costa, Clements, Andreoli (b3) 2016; 133 Luan, Peng, Maras, Lo, Harapnuk (b8) 2015; 6 Cavraro, Arghandeh (b12) 2018; 33 Al-Wakeel, Wu, Jenkins (b21) 2017; 194 Zhao, Liu, Zhao, Zhang, Xu, Xiang, Liu (b1) 2021; 125 Bai, Kolter, Koltun (b27) 2018 Ryu, Kim, Kim (b24) 2020; 8 Korres, Katsikas (b6) 2002; 17 Singh, Pal, Vinter (b25) 2009; 24 Ren, Xu (b23) 2019; 34 Tian, Wu, Zhang (b9) 2016; 31 Kim, Park, Lee, Joo, Choi (b20) 2017; 10 . Mestav, Luengo-Rozas, Tong (b16) 2019; 34 Dai, Song, Sheng, Jiang (b22) 2017; 5 Cavraro, Kekatos, Veeramachaneni (b11) 2019; 10 Guo, Yuan (b26) 2020; 410 Oliveira R, Bessa R, Iranda VM. Identifying topology in power networks in the absence of breaker status sensor signals. In: 2018 19th IEEE mediterranean electrotechnical conference. MELECON, 2018, p. 160–5. Sevlian, Rajagopal (b15) 2015 Pandey A, Wang D. TCNN: Temporal Convolutional Neural Network for Real-time Speech Enhancement in the Time Domain. In: ICASSP 2019 - 2019 IEEE international conference on acoustics, speech and signal processing. ICASSP, 2019, p. 6875–9. Singh, Pandey, Chauhan (b7) 2005; 20 Korres (10.1016/j.ijepes.2023.109464_b6) 2002; 17 Singh (10.1016/j.ijepes.2023.109464_b25) 2009; 24 Dai (10.1016/j.ijepes.2023.109464_b22) 2017; 5 Abur (10.1016/j.ijepes.2023.109464_b5) 2004 Tian (10.1016/j.ijepes.2023.109464_b9) 2016; 31 Cavraro (10.1016/j.ijepes.2023.109464_b11) 2019; 10 da Silva (10.1016/j.ijepes.2023.109464_b3) 2016; 133 Mestav (10.1016/j.ijepes.2023.109464_b16) 2019; 34 Kim (10.1016/j.ijepes.2023.109464_b20) 2017; 10 10.1016/j.ijepes.2023.109464_b28 Guo (10.1016/j.ijepes.2023.109464_b26) 2020; 410 Farajollahi (10.1016/j.ijepes.2023.109464_b4) 2020; 11 Singh (10.1016/j.ijepes.2023.109464_b7) 2005; 20 Alimardani (10.1016/j.ijepes.2023.109464_b30) 2015; 6 Cavraro (10.1016/j.ijepes.2023.109464_b14) 2019; 6 Bai (10.1016/j.ijepes.2023.109464_b27) 2018 Cavraro (10.1016/j.ijepes.2023.109464_b12) 2018; 33 10.1016/j.ijepes.2023.109464_b10 Gotti (10.1016/j.ijepes.2023.109464_b2) 2021; 36 Li (10.1016/j.ijepes.2023.109464_b29) 1996; 11 10.1016/j.ijepes.2023.109464_b17 Ryu (10.1016/j.ijepes.2023.109464_b24) 2020; 8 Pappu (10.1016/j.ijepes.2023.109464_b13) 2018; 9 10.1016/j.ijepes.2023.109464_b19 Sevlian (10.1016/j.ijepes.2023.109464_b15) 2015 Luan (10.1016/j.ijepes.2023.109464_b8) 2015; 6 Al-Wakeel (10.1016/j.ijepes.2023.109464_b21) 2017; 194 Ren (10.1016/j.ijepes.2023.109464_b23) 2019; 34 Zhao (10.1016/j.ijepes.2023.109464_b1) 2021; 125 Duan (10.1016/j.ijepes.2023.109464_b18) 2019; 13 |
| References_xml | – volume: 6 start-page: 2919 year: 2015 end-page: 2928 ident: b30 article-title: Distribution system state estimation based on nonsynchronized smart meters publication-title: IEEE Trans Smart Grid – volume: 410 start-page: 387 year: 2020 end-page: 393 ident: b26 article-title: Short-term traffic speed forecasting based on graph attention temporal convolutional networks publication-title: Neurocomputing – volume: 9 start-page: 5113 year: 2018 end-page: 5122 ident: b13 article-title: Identifying topology of low voltage distribution networks based on smart meter data publication-title: IEEE Trans Smart Grid – volume: 10 start-page: 1668 year: 2017 ident: b20 article-title: Learning-based adaptive imputation method with kNN algorithm for missing power data publication-title: Energies – year: 2015 ident: b15 article-title: Distribution system topology detection using consumer load and line flow measurements – volume: 13 year: 2019 ident: b18 article-title: Deep learning based power distribution network switch action identification leveraging dynamic features of distributed energy resources publication-title: IET Gener Transm Distrib – volume: 133 start-page: 338 year: 2016 end-page: 346 ident: b3 article-title: Simultaneous estimation of state variables and network topology for power system real-time modeling publication-title: Electr Power Syst Res – volume: 34 start-page: 5044 year: 2019 end-page: 5052 ident: b23 article-title: A fully data-driven method based on generative adversarial networks for power system dynamic security assessment with missing data publication-title: IEEE Trans Power Syst – reference: Lindsey overhead sensor, [Online]. Available: – volume: 34 start-page: 4910 year: 2019 end-page: 4920 ident: b16 article-title: Bayesian state estimation for unobservable distribution systems via deep learning publication-title: IEEE Trans Power Syst – volume: 33 start-page: 3500 year: 2018 end-page: 3509 ident: b12 article-title: Power distribution network topology detection with time-series signature verification method publication-title: IEEE Trans Power Syst – volume: 17 start-page: 818 year: 2002 end-page: 825 ident: b6 article-title: Identification of circuit breaker statuses in WLS state estimator publication-title: IEEE Trans Power Syst – volume: 194 start-page: 333 year: 2017 end-page: 342 ident: b21 article-title: K-means based load estimation of domestic smart meter measurements publication-title: Appl Energy – volume: 8 start-page: 40656 year: 2020 end-page: 40666 ident: b24 article-title: Denoising autoencoder-based missing value imputation for smart meters publication-title: IEEE Access – volume: 24 start-page: 668 year: 2009 end-page: 675 ident: b25 article-title: Measurement placement in distribution system state estimation publication-title: IEEE Trans Power Syst – volume: 20 start-page: 1570 year: 2005 end-page: 1579 ident: b7 article-title: Topology identification, bad data processing, and state estimation using fuzzy pattern matching publication-title: IEEE Trans Power Syst – volume: 11 start-page: 1159 year: 2020 end-page: 1170 ident: b4 article-title: Topology identification in distribution systems using line current sensors: An MILP approach publication-title: IEEE Trans Smart Grid – volume: 6 start-page: 980 year: 2019 end-page: 992 ident: b14 article-title: Inverter probing for power distribution network topology processing publication-title: IEEE Trans Control Netw Syst – volume: 31 start-page: 823 year: 2016 end-page: 824 ident: b9 article-title: A mixed integer quadratic programming model for topology identification in distribution network publication-title: IEEE Trans Power Syst – volume: 5 start-page: 22863 year: 2017 end-page: 22870 ident: b22 article-title: Cleaning method for status monitoring data of power equipment based on stacked denoising autoencoders publication-title: IEEE Access – year: 2004 ident: b5 article-title: Power system state estimation: theory and implementation, Vol. 24 – volume: 125 year: 2021 ident: b1 article-title: Robust PCA-deep belief network surrogate model for distribution system topology identification with DERs publication-title: Int J Electr Power Energy Syst – volume: 10 start-page: 1058 year: 2019 end-page: 1067 ident: b11 article-title: Voltage analytics for power distribution network topology verification publication-title: IEEE Trans Smart Grid – reference: . – reference: Oliveira R, Bessa R, Iranda VM. Identifying topology in power networks in the absence of breaker status sensor signals. In: 2018 19th IEEE mediterranean electrotechnical conference. MELECON, 2018, p. 160–5. – reference: Pandey A, Wang D. TCNN: Temporal Convolutional Neural Network for Real-time Speech Enhancement in the Time Domain. In: ICASSP 2019 - 2019 IEEE international conference on acoustics, speech and signal processing. ICASSP, 2019, p. 6875–9. – volume: 36 start-page: 5824 year: 2021 end-page: 5833 ident: b2 article-title: A deep neural network approach for online topology identification in state estimation publication-title: IEEE Trans Power Syst – reference: Hayes B, Escalera A, Prodanovic M. Event-triggered topology identification for state estimation in active distribution networks. In: 2016 IEEE PES innovative smart grid technologies conference Europe (ISGT-Europe). 2016, p. 1–6. – volume: 6 start-page: 1964 year: 2015 end-page: 1971 ident: b8 article-title: Smart meter data analytics for distribution network connectivity verification publication-title: IEEE Trans Smart Grid – year: 2018 ident: b27 article-title: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling – volume: 11 start-page: 911 year: 1996 end-page: 916 ident: b29 article-title: State estimation for power distribution system and measurement impacts publication-title: IEEE Trans Power Syst – volume: 410 start-page: 387 year: 2020 ident: 10.1016/j.ijepes.2023.109464_b26 article-title: Short-term traffic speed forecasting based on graph attention temporal convolutional networks publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.06.001 – ident: 10.1016/j.ijepes.2023.109464_b17 doi: 10.1109/MELCON.2018.8379086 – volume: 34 start-page: 4910 issue: 6 year: 2019 ident: 10.1016/j.ijepes.2023.109464_b16 article-title: Bayesian state estimation for unobservable distribution systems via deep learning publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2019.2919157 – year: 2018 ident: 10.1016/j.ijepes.2023.109464_b27 – volume: 13 year: 2019 ident: 10.1016/j.ijepes.2023.109464_b18 article-title: Deep learning based power distribution network switch action identification leveraging dynamic features of distributed energy resources publication-title: IET Gener Transm Distrib doi: 10.1049/iet-gtd.2018.6195 – volume: 125 year: 2021 ident: 10.1016/j.ijepes.2023.109464_b1 article-title: Robust PCA-deep belief network surrogate model for distribution system topology identification with DERs publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2020.106441 – volume: 194 start-page: 333 year: 2017 ident: 10.1016/j.ijepes.2023.109464_b21 article-title: K-means based load estimation of domestic smart meter measurements publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.06.046 – volume: 11 start-page: 911 issue: 2 year: 1996 ident: 10.1016/j.ijepes.2023.109464_b29 article-title: State estimation for power distribution system and measurement impacts publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2009.2016599 – volume: 6 start-page: 2919 issue: 6 year: 2015 ident: 10.1016/j.ijepes.2023.109464_b30 article-title: Distribution system state estimation based on nonsynchronized smart meters publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2015.2429640 – volume: 6 start-page: 1964 issue: 4 year: 2015 ident: 10.1016/j.ijepes.2023.109464_b8 article-title: Smart meter data analytics for distribution network connectivity verification publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2015.2421304 – ident: 10.1016/j.ijepes.2023.109464_b10 doi: 10.1109/ISGTEurope.2016.7856295 – volume: 10 start-page: 1058 issue: 1 year: 2019 ident: 10.1016/j.ijepes.2023.109464_b11 article-title: Voltage analytics for power distribution network topology verification publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2017.2758600 – volume: 9 start-page: 5113 issue: 5 year: 2018 ident: 10.1016/j.ijepes.2023.109464_b13 article-title: Identifying topology of low voltage distribution networks based on smart meter data publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2017.2680542 – ident: 10.1016/j.ijepes.2023.109464_b19 – ident: 10.1016/j.ijepes.2023.109464_b28 doi: 10.1109/ICASSP.2019.8683634 – volume: 10 start-page: 1668 issue: 10 year: 2017 ident: 10.1016/j.ijepes.2023.109464_b20 article-title: Learning-based adaptive imputation method with kNN algorithm for missing power data publication-title: Energies doi: 10.3390/en10101668 – volume: 8 start-page: 40656 year: 2020 ident: 10.1016/j.ijepes.2023.109464_b24 article-title: Denoising autoencoder-based missing value imputation for smart meters publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2976500 – year: 2015 ident: 10.1016/j.ijepes.2023.109464_b15 – volume: 36 start-page: 5824 issue: 6 year: 2021 ident: 10.1016/j.ijepes.2023.109464_b2 article-title: A deep neural network approach for online topology identification in state estimation publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2021.3076671 – volume: 33 start-page: 3500 issue: 4 year: 2018 ident: 10.1016/j.ijepes.2023.109464_b12 article-title: Power distribution network topology detection with time-series signature verification method publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2017.2779129 – volume: 31 start-page: 823 issue: 1 year: 2016 ident: 10.1016/j.ijepes.2023.109464_b9 article-title: A mixed integer quadratic programming model for topology identification in distribution network publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2015.2394454 – volume: 34 start-page: 5044 issue: 6 year: 2019 ident: 10.1016/j.ijepes.2023.109464_b23 article-title: A fully data-driven method based on generative adversarial networks for power system dynamic security assessment with missing data publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2019.2922671 – year: 2004 ident: 10.1016/j.ijepes.2023.109464_b5 – volume: 11 start-page: 1159 issue: 2 year: 2020 ident: 10.1016/j.ijepes.2023.109464_b4 article-title: Topology identification in distribution systems using line current sensors: An MILP approach publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2019.2933006 – volume: 20 start-page: 1570 issue: 3 year: 2005 ident: 10.1016/j.ijepes.2023.109464_b7 article-title: Topology identification, bad data processing, and state estimation using fuzzy pattern matching publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2005.852086 – volume: 24 start-page: 668 issue: 2 year: 2009 ident: 10.1016/j.ijepes.2023.109464_b25 article-title: Measurement placement in distribution system state estimation publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2009.2016457 – volume: 133 start-page: 338 year: 2016 ident: 10.1016/j.ijepes.2023.109464_b3 article-title: Simultaneous estimation of state variables and network topology for power system real-time modeling publication-title: Electr Power Syst Res doi: 10.1016/j.epsr.2015.12.029 – volume: 6 start-page: 980 issue: 3 year: 2019 ident: 10.1016/j.ijepes.2023.109464_b14 article-title: Inverter probing for power distribution network topology processing publication-title: IEEE Trans Control Netw Syst doi: 10.1109/TCNS.2019.2901714 – volume: 5 start-page: 22863 year: 2017 ident: 10.1016/j.ijepes.2023.109464_b22 article-title: Cleaning method for status monitoring data of power equipment based on stacked denoising autoencoders publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2740968 – volume: 17 start-page: 818 issue: 3 year: 2002 ident: 10.1016/j.ijepes.2023.109464_b6 article-title: Identification of circuit breaker statuses in WLS state estimator publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2002.800943 |
| SSID | ssj0007942 |
| Score | 2.4300683 |
| Snippet | In distribution systems, the loss of existing real measurements and the stochastic penetration levels of renewable energy sources (RES) are the major issues... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 109464 |
| SubjectTerms | Denoising autoencoder Huber-loss function Line current sensors Missing data Temporal convolutional network (TCN) Topology identification |
| Title | Denoising autoencoder based topology identification in distribution systems with missing measurements |
| URI | https://dx.doi.org/10.1016/j.ijepes.2023.109464 |
| Volume | 154 |
| WOSCitedRecordID | wos001071904400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0142-0615 databaseCode: AIEXJ dateStart: 19950201 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0007942 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZWWw5wQDxFKSAfuKZKbCexj1Up4iFVHApaTpHXdmhW22y0ya564b_jsZ1stkW8JC5RFMVO5PnkmUy--Qah14QnMZdMRjlPRcRkySIZKxZpwecZUYIqPnfNJvLzcz6biU-Tyfe-Fma7zOuaX1-L5r-a2l6zxobS2b8w9zCpvWDPrdHt0ZrdHv_I8G9MvapcBkBuuhXoVIJcBHgrbQPNxmsuVTqwhGRPdtSgoBuaXwV951D5ZpHgprvapRPbcUy7n1QcSVH4FjsOBQ00Y3MwM77YsB0ppbvfTN8uN1t51TpywdfjIaFgrLtcd5eec1Ctd1j-uGqlr2f7Ag2kl51ZyHEKg9AbdJChtmZHZPKpTgJ9J9K9vdorTt_a930KYnFcLUxjQIWdUBDKYl4h_YaiNhDaCMxMQKufgETBAclTwafo4OT92ezD4MrtZkU8B9a_Sl976QiCt5_189hmFK9cPED3w4cGPvEAeYgmpn6E7o3kJx8jM0AFj6CCHVRwDxW8DxVc1XgMFRwMiQEqOEAFj6HyBH1-e3Zx-i4KbTciZaPxLkpMbBLKDAS3kseapDSWScmZIHGZ5go-YbNS5IrqREvB5jEt04xrlaQZNXZDf4qm9ao2zxDOTFZSolmqNahgZnLOs5KV1slaFyupOkS0X7BCBU16aI2yLHry4aLwy1zAMhd-mQ9RNIxqvCbLb-7Pe1sUIa708WJh4fPLkc__eeQRurtD-gs07dYb8xLdUduuatevAs5-AARsplg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Denoising+autoencoder+based+topology+identification+in+distribution+systems+with+missing+measurements&rft.jtitle=International+journal+of+electrical+power+%26+energy+systems&rft.au=Raghuvamsi%2C+Y.&rft.au=Teeparthi%2C+Kiran&rft.au=Kosana%2C+Vishalteja&rft.date=2023-12-01&rft.pub=Elsevier+Ltd&rft.issn=0142-0615&rft.volume=154&rft_id=info:doi/10.1016%2Fj.ijepes.2023.109464&rft.externalDocID=S0142061523005215 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-0615&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-0615&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-0615&client=summon |