Source-Free Progressive Graph Learning for Open-Set Domain Adaptation

Open-set domain adaptation (OSDA) aims to transfer knowledge from a label-rich source domain to a label-scarce target domain while addressing disturbances from irrelevant target classes not present in the source data. However, most OSDA approaches are limited due to the lack of essential theoretical...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on pattern analysis and machine intelligence Ročník 45; číslo 9; s. 11240 - 11255
Hlavní autoři: Luo, Yadan, Wang, Zijian, Chen, Zhuoxiao, Huang, Zi, Baktashmotlagh, Mahsa
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.09.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0162-8828, 1939-3539, 2160-9292, 1939-3539
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Open-set domain adaptation (OSDA) aims to transfer knowledge from a label-rich source domain to a label-scarce target domain while addressing disturbances from irrelevant target classes not present in the source data. However, most OSDA approaches are limited due to the lack of essential theoretical analysis of generalization bound, reliance on the coexistence of source and target data during adaptation, and failure to accurately estimate model predictions' uncertainty. To address these limitations, the Progressive Graph Learning (PGL) framework is proposed. PGL decomposes the target hypothesis space into shared and unknown subspaces and progressively pseudo-labels the most confident known samples from the target domain for hypothesis adaptation. PGL guarantees a tight upper bound of the target error by integrating a graph neural network with episodic training and leveraging adversarial learning to close the gap between the source and target distributions. The proposed approach also tackles a more realistic source-free open-set domain adaptation (SF-OSDA) setting that makes no assumptions about the coexistence of source and target domains. In a two-stage framework, the SF-PGL model' uniformly selects the most confident target instances from each category at a fixed ratio, and the confidence thresholds in each class weigh the classification loss in the adaptation step. The proposed methods are evaluated on benchmark image classification and action recognition datasets, where they demonstrate superiority and flexibility in recognizing both shared and unknown categories. Additionally, balanced pseudo-labeling plays a significant role in improving calibration, making the trained model less prone to over- or under-confident predictions on the target data.
AbstractList Open-set domain adaptation (OSDA) aims to transfer knowledge from a label-rich source domain to a label-scarce target domain while addressing disturbances from irrelevant target classes not present in the source data. However, most OSDA approaches are limited due to the lack of essential theoretical analysis of generalization bound, reliance on the coexistence of source and target data during adaptation, and failure to accurately estimate model predictions' uncertainty. To address these limitations, the Progressive Graph Learning (PGL) framework is proposed. PGL decomposes the target hypothesis space into shared and unknown subspaces and progressively pseudo-labels the most confident known samples from the target domain for hypothesis adaptation. PGL guarantees a tight upper bound of the target error by integrating a graph neural network with episodic training and leveraging adversarial learning to close the gap between the source and target distributions. The proposed approach also tackles a more realistic source-free open-set domain adaptation (SF-OSDA) setting that makes no assumptions about the coexistence of source and target domains. In a two-stage framework, the SF-PGL model' uniformly selects the most confident target instances from each category at a fixed ratio, and the confidence thresholds in each class weigh the classification loss in the adaptation step. The proposed methods are evaluated on benchmark image classification and action recognition datasets, where they demonstrate superiority and flexibility in recognizing both shared and unknown categories. Additionally, balanced pseudo-labeling plays a significant role in improving calibration, making the trained model less prone to over- or under-confident predictions on the target data.
Open-set domain adaptation (OSDA) aims to transfer knowledge from a label-rich source domain to a label-scarce target domain while addressing disturbances from irrelevant target classes not present in the source data. However, most OSDA approaches are limited due to the lack of essential theoretical analysis of generalization bound, reliance on the coexistence of source and target data during adaptation, and failure to accurately estimate model predictions' uncertainty. To address these limitations, the Progressive Graph Learning (PGL) framework is proposed. PGL decomposes the target hypothesis space into shared and unknown subspaces and progressively pseudo-labels the most confident known samples from the target domain for hypothesis adaptation. PGL guarantees a tight upper bound of the target error by integrating a graph neural network with episodic training and leveraging adversarial learning to close the gap between the source and target distributions. The proposed approach also tackles a more realistic source-free open-set domain adaptation (SF-OSDA) setting that makes no assumptions about the coexistence of source and target domains. In a two-stage framework, the SF-PGL model' uniformly selects the most confident target instances from each category at a fixed ratio, and the confidence thresholds in each class weigh the classification loss in the adaptation step. The proposed methods are evaluated on benchmark image classification and action recognition datasets, where they demonstrate superiority and flexibility in recognizing both shared and unknown categories. Additionally, balanced pseudo-labeling plays a significant role in improving calibration, making the trained model less prone to over- or under-confident predictions on the target data.Open-set domain adaptation (OSDA) aims to transfer knowledge from a label-rich source domain to a label-scarce target domain while addressing disturbances from irrelevant target classes not present in the source data. However, most OSDA approaches are limited due to the lack of essential theoretical analysis of generalization bound, reliance on the coexistence of source and target data during adaptation, and failure to accurately estimate model predictions' uncertainty. To address these limitations, the Progressive Graph Learning (PGL) framework is proposed. PGL decomposes the target hypothesis space into shared and unknown subspaces and progressively pseudo-labels the most confident known samples from the target domain for hypothesis adaptation. PGL guarantees a tight upper bound of the target error by integrating a graph neural network with episodic training and leveraging adversarial learning to close the gap between the source and target distributions. The proposed approach also tackles a more realistic source-free open-set domain adaptation (SF-OSDA) setting that makes no assumptions about the coexistence of source and target domains. In a two-stage framework, the SF-PGL model' uniformly selects the most confident target instances from each category at a fixed ratio, and the confidence thresholds in each class weigh the classification loss in the adaptation step. The proposed methods are evaluated on benchmark image classification and action recognition datasets, where they demonstrate superiority and flexibility in recognizing both shared and unknown categories. Additionally, balanced pseudo-labeling plays a significant role in improving calibration, making the trained model less prone to over- or under-confident predictions on the target data.
Author Luo, Yadan
Chen, Zhuoxiao
Huang, Zi
Wang, Zijian
Baktashmotlagh, Mahsa
Author_xml – sequence: 1
  givenname: Yadan
  orcidid: 0000-0001-6272-2971
  surname: Luo
  fullname: Luo, Yadan
  email: y.luo@uq.edu.au
  organization: School of Information Technology and Electrical Engineering, The University of Queensland, St Lucia, QLD, Australia
– sequence: 2
  givenname: Zijian
  orcidid: 0000-0002-7190-9620
  surname: Wang
  fullname: Wang, Zijian
  email: zijian.wang@uq.edu.au
  organization: School of Information Technology and Electrical Engineering, The University of Queensland, St Lucia, QLD, Australia
– sequence: 3
  givenname: Zhuoxiao
  orcidid: 0000-0001-5247-0109
  surname: Chen
  fullname: Chen, Zhuoxiao
  email: zhuoxiao.chen@uq.edu.au
  organization: School of Information Technology and Electrical Engineering, The University of Queensland, St Lucia, QLD, Australia
– sequence: 4
  givenname: Zi
  orcidid: 0000-0002-9738-4949
  surname: Huang
  fullname: Huang, Zi
  email: helen.huang@uq.edu.au
  organization: School of Information Technology and Electrical Engineering, The University of Queensland, St Lucia, QLD, Australia
– sequence: 5
  givenname: Mahsa
  orcidid: 0000-0001-5255-8194
  surname: Baktashmotlagh
  fullname: Baktashmotlagh, Mahsa
  email: m.baktashmotlagh@uq.edu.au
  organization: School of Information Technology and Electrical Engineering, The University of Queensland, St Lucia, QLD, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37097801$$D View this record in MEDLINE/PubMed
BookMark eNp9kUFPwzAMhSMEYmPwBxBClbhw6XCSNkmP02ADaQgk4FxlrQuZtqQkHRL_no4OhHbgYl--Z_v5HZF96ywSckphSClkV8-Po_u7IQPGh5xJYErtkT6jAuKMZWyf9IEKFivFVI8chbAAoEkK_JD0uIRMKqB9cvPk1r7AeOIRo0fvXj2GYD4wmnpdv0Uz1N4a-xpVzkcPNdr4CZvo2q20sdGo1HWjG-PsMTmo9DLgybYPyMvk5nl8G88epnfj0SwueMqamJZagtaAbWEMqRaKCpyXSSYqSRVPkCcZykSUFAsBZapkAmnJqjlUNGEFH5DLbm7t3fsaQ5OvTChwudQW3TrkTIGAjTfeohc76KJ1atvrWiqRWSpFmrbU-ZZaz1dY5rU3K-0_858HtQDrgMK7EDxWvwiFfJNC_p1Cvkkh36bQitSOqDDdoxqvzfJ_6VknNYj4ZxcFmYHgX95AkoA
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1016_j_aei_2025_103220
crossref_primary_10_1109_TPAMI_2024_3370978
crossref_primary_10_1016_j_patcog_2024_110628
crossref_primary_10_1007_s11263_024_02213_5
crossref_primary_10_1007_s10489_025_06777_8
crossref_primary_10_1016_j_patcog_2025_111815
crossref_primary_10_1109_TMI_2024_3355645
crossref_primary_10_1016_j_knosys_2025_113576
crossref_primary_10_1109_TIP_2025_3534023
crossref_primary_10_1016_j_neunet_2024_106230
crossref_primary_10_1109_TCSVT_2024_3427428
crossref_primary_10_1016_j_eswa_2025_129633
crossref_primary_10_1016_j_neunet_2025_107633
Cites_doi 10.1109/CVPR.2016.90
10.1109/CVPR.2019.00049
10.1109/ICCV.2011.6126543
10.1109/TGRS.2022.3165025
10.1145/1102351.1102430
10.1109/ICCV.2019.00808
10.1109/ICCV.2013.274
10.1109/CVPR.2018.00392
10.1109/CVPR.2019.00283
10.1109/ICCV.2019.00642
10.1007/978-3-319-10578-9_26
10.1109/TNNLS.2020.3017213
10.1023/A:1019956318069
10.1145/3394171.3413662
10.1109/TCYB.2018.2820174
10.1109/ICCV.2019.00370
10.1109/CVPR.2019.00310
10.1109/CVPR.2019.00010
10.1145/1553374.1553380
10.1145/3394171.3413897
10.1109/CVPR42600.2020.01388
10.1109/CVPR.2018.00851
10.1109/TKDE.2009.191
10.1109/CVPR.2017.572
10.1609/aaai.v35i9.16977
10.1007/978-3-030-01228-1_10
10.1007/978-3-642-15552-9_29
10.1109/ICCV.2019.00153
10.1007/s10994-016-5610-8
10.1109/TPAMI.2018.2880750
10.1007/978-3-319-46493-0_36
10.1109/ICCV.2013.100
10.1109/CVPR.2014.318
10.1007/978-3-030-58517-4_25
10.1609/aaai.v34i04.5942
10.1016/j.patcog.2018.03.005
10.1109/ICCV.2017.88
10.1109/WACV48630.2021.00066
10.1109/CVPR.2019.00943
10.1109/CVPR.2017.316
10.1109/CVPR.2019.00304
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TPAMI.2023.3270288
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2160-9292
1939-3539
EndPage 11255
ExternalDocumentID 37097801
10_1109_TPAMI_2023_3270288
10107906
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Australian Research Council
  grantid: CE200100025
  funderid: 10.13039/501100000923
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
~02
AAYXX
CITATION
5VS
9M8
AAYOK
ABFSI
ADRHT
AETEA
AETIX
AGSQL
AI.
AIBXA
ALLEH
FA8
H~9
IBMZZ
ICLAB
IFJZH
NPM
RIG
RNI
RZB
VH1
XJT
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c352t-1da70aa0e0aa22e1a6816ebd496f71834e349e746d1ec60d587405d2fb0f142c3
IEDL.DBID RIE
ISICitedReferencesCount 26
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001045832200041&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0162-8828
1939-3539
IngestDate Sun Sep 28 07:56:37 EDT 2025
Sun Nov 30 03:50:48 EST 2025
Thu Apr 03 07:04:19 EDT 2025
Sat Nov 29 02:58:23 EST 2025
Tue Nov 18 22:30:52 EST 2025
Wed Aug 27 02:46:11 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-1da70aa0e0aa22e1a6816ebd496f71834e349e746d1ec60d587405d2fb0f142c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6272-2971
0000-0001-5247-0109
0000-0002-7190-9620
0000-0001-5255-8194
0000-0002-9738-4949
PMID 37097801
PQID 2847957655
PQPubID 85458
PageCount 16
ParticipantIDs crossref_citationtrail_10_1109_TPAMI_2023_3270288
proquest_miscellaneous_2806070973
pubmed_primary_37097801
ieee_primary_10107906
crossref_primary_10_1109_TPAMI_2023_3270288
proquest_journals_2847957655
PublicationCentury 2000
PublicationDate 2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
simonyan (ref84) 2015
ref14
snell (ref68) 2017
acar (ref47) 2021
ref55
baktashmotlagh (ref20) 2019
ref10
peng (ref70) 2017
long (ref11) 2017
ref19
ref18
rusu (ref50) 2019
ben-david (ref15) 2006
oreshkin (ref57) 2018
finn (ref48) 2017
ref45
ravi (ref52) 2017
lin (ref71) 2014
long (ref77) 2016
ref41
ref85
ref43
zhang (ref17) 2019
mansour (ref16) 2009
gretton (ref66) 2006
vinyals (ref42) 2016
ref9
ref3
chenluo (ref34) 2021
ref6
peng (ref72) 2018
ref82
ref81
ref40
ref83
hospedales (ref44) 2022; 44
ganin (ref8) 2016; 17
johnson (ref58) 2017
rajeswaran (ref51) 2019
ref80
baktashmotlagh (ref4) 2016; 17
ref35
ref79
ref78
luo (ref28) 2020
snell (ref53) 2017
ref31
ref75
ref30
ref74
ref33
ref32
ref76
zhao (ref23) 2019
finn (ref49) 2018
finn (ref46) 2019
ref2
ref1
satorras (ref54) 2018
ref39
guo (ref24) 2017
long (ref7) 2015
yang (ref61) 2020
park (ref25) 2020
kundu (ref36) 2020
ref69
liang (ref38) 2020
ref64
ref22
ref21
ref65
brockschmidt (ref63) 2020
wang (ref26) 2020
ref27
ref29
tzeng (ref5) 2014
soomro (ref73) 2012
zhang (ref56) 2018
vinyals (ref67) 2016
ref60
kim (ref59) 2011
kundu (ref37) 2020
ref62
References_xml – ident: ref76
  doi: 10.1109/CVPR.2016.90
– year: 2018
  ident: ref72
  article-title: Syn2Real: A new benchmark for synthetic-to-real visual domain adaptation
– start-page: 4080
  year: 2017
  ident: ref68
  article-title: Prototypical networks for few-shot learning
  publication-title: Proc Adv Neural Inf Process Syst
– start-page: 7404
  year: 2019
  ident: ref17
  article-title: Bridging theory and algorithm for domain adaptation
  publication-title: Proc Int Conf Mach Learn
– ident: ref55
  doi: 10.1109/CVPR.2019.00049
– ident: ref74
  doi: 10.1109/ICCV.2011.6126543
– ident: ref64
  doi: 10.1109/TGRS.2022.3165025
– ident: ref85
  doi: 10.1145/1102351.1102430
– ident: ref19
  doi: 10.1109/ICCV.2019.00808
– start-page: 1920
  year: 2019
  ident: ref46
  article-title: Online meta-learning
  publication-title: Proc Int Conf Mach Learn
– ident: ref6
  doi: 10.1109/ICCV.2013.274
– year: 2014
  ident: ref5
  article-title: Deep domain confusion: Maximizing for domain invariance
– start-page: 7523
  year: 2019
  ident: ref23
  article-title: On learning invariant representations for domain adaptation
  publication-title: Proc Int Conf Mach Learn
– year: 2009
  ident: ref16
  article-title: Domain adaptation: Learning bounds and algorithms
  publication-title: Proc Conf Learn Theory
– volume: 17
  start-page: 59:1
  year: 2016
  ident: ref8
  article-title: Domain-adversarial training of neural networks
  publication-title: J Mach Learn Res
– start-page: 97
  year: 2015
  ident: ref7
  article-title: Learning transferable features with deep adaptation networks
  publication-title: Proc Int Conf Mach Learn
– ident: ref78
  doi: 10.1109/CVPR.2018.00392
– start-page: 513
  year: 2006
  ident: ref66
  article-title: A kernel method for the two-sample-problem
  publication-title: Proc Adv Neural Inf Process Syst
– start-page: 9537
  year: 2018
  ident: ref49
  article-title: Probabilistic model-agnostic meta-learning
  publication-title: Proc Adv Neural Inf Process Syst
– year: 2012
  ident: ref73
  article-title: UCF101: A dataset of 101 human actions classes from videos in the wild
– ident: ref35
  doi: 10.1109/CVPR.2019.00283
– ident: ref1
  doi: 10.1109/ICCV.2019.00642
– ident: ref32
  doi: 10.1007/978-3-319-10578-9_26
– ident: ref65
  doi: 10.1109/TNNLS.2020.3017213
– ident: ref43
  doi: 10.1023/A:1019956318069
– ident: ref14
  doi: 10.1145/3394171.3413662
– start-page: 137
  year: 2006
  ident: ref15
  article-title: Analysis of representations for domain adaptation
  publication-title: Proc Adv Neural Inf Process Syst
– start-page: 3219
  year: 2020
  ident: ref25
  article-title: Calibrated prediction with covariate shift via unsupervised domain adaptation
  publication-title: Proc Int Conf Artif Intell Statist
– ident: ref10
  doi: 10.1109/TCYB.2018.2820174
– ident: ref41
  doi: 10.1109/ICCV.2019.00370
– ident: ref81
  doi: 10.1109/CVPR.2019.00310
– start-page: 1321
  year: 2017
  ident: ref24
  article-title: On calibration of modern neural networks
  publication-title: Proc 34th Int Conf Mach Learn
– ident: ref62
  doi: 10.1109/CVPR.2019.00010
– ident: ref27
  doi: 10.1145/1553374.1553380
– ident: ref13
  doi: 10.1145/3394171.3413897
– start-page: 4543
  year: 2020
  ident: ref37
  article-title: Universal source-free domain adaptation
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– ident: ref82
  doi: 10.1109/CVPR42600.2020.01388
– start-page: 136
  year: 2016
  ident: ref77
  article-title: Unsupervised domain adaptation with residual transfer networks
  publication-title: Proc Adv Neural Inf Process Syst
– start-page: 1144
  year: 2020
  ident: ref63
  article-title: GNN-Film: Graph neural networks with feature-wise linear modulation
  publication-title: Proc Int Conf Mach Learn
– ident: ref80
  doi: 10.1109/CVPR.2018.00851
– start-page: 3630
  year: 2016
  ident: ref67
  article-title: Matching networks for one shot learning
  publication-title: Proc Adv Neural Inf Process Syst
– start-page: 2208
  year: 2017
  ident: ref11
  article-title: Deep transfer learning with joint adaptation networks
  publication-title: Proc Int Conf Mach Learn
– year: 2019
  ident: ref50
  article-title: Meta-learning with latent embedding optimization
  publication-title: Proc Int Conf Learn Representations
– ident: ref31
  doi: 10.1109/TKDE.2009.191
– ident: ref69
  doi: 10.1109/CVPR.2017.572
– ident: ref22
  doi: 10.1609/aaai.v35i9.16977
– start-page: 2371
  year: 2018
  ident: ref56
  article-title: MetaGAN: An adversarial approach to few-shot learning
  publication-title: Proc Adv Neural Inf Process Syst
– start-page: 12373
  year: 2020
  ident: ref36
  article-title: Towards inheritable models for open-set domain adaptation
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– ident: ref18
  doi: 10.1007/978-3-030-01228-1_10
– start-page: 32
  year: 2021
  ident: ref47
  article-title: Memory efficient online meta learning
  publication-title: Proc Int Conf Mach Learn
– year: 2015
  ident: ref84
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: Proc Int Conf Learn Representations
– ident: ref75
  doi: 10.1007/978-3-642-15552-9_29
– start-page: 6028
  year: 2020
  ident: ref38
  article-title: Do we really need to access the source data? source hypothesis transfer for unsupervised domain adaptation
  publication-title: Proc Int Conf Mach Learn
– ident: ref40
  doi: 10.1109/ICCV.2019.00153
– ident: ref83
  doi: 10.1007/s10994-016-5610-8
– year: 2017
  ident: ref70
  article-title: VisDA: The visual domain adaptation challenge
– start-page: 1530
  year: 2011
  ident: ref59
  article-title: Higher-order correlation clustering for image segmentation
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref30
  doi: 10.1109/TPAMI.2018.2880750
– year: 2018
  ident: ref54
  article-title: Few-shot learning with graph neural networks
  publication-title: Proc Int Conf Learn Representations
– year: 2017
  ident: ref52
  article-title: Optimization as a model for few-shot learning
  publication-title: Proc Int Conf Learn Representations
– ident: ref12
  doi: 10.1007/978-3-319-46493-0_36
– start-page: 593
  year: 2020
  ident: ref61
  article-title: NENN: Incorporate node and edge features in graph neural networks
  publication-title: Proc 12th Asian Conf Mach Learn
– start-page: 19212
  year: 2020
  ident: ref26
  article-title: Transferable calibration with lower bias and variance in domain adaptation
  publication-title: Proc Adv Neural Inf Process Syst
– start-page: 1126
  year: 2017
  ident: ref48
  article-title: Model-agnostic meta-learning for fast adaptation of deep networks
  publication-title: Proc Int Conf Mach Learn
– ident: ref2
  doi: 10.1109/ICCV.2013.100
– year: 2019
  ident: ref20
  article-title: Learning factorized representations for open-set domain adaptation
  publication-title: Proc Int Conf Learn Representations
– ident: ref3
  doi: 10.1109/CVPR.2014.318
– ident: ref33
  doi: 10.1007/978-3-030-58517-4_25
– ident: ref45
  doi: 10.1609/aaai.v34i04.5942
– start-page: 4077
  year: 2017
  ident: ref53
  article-title: Prototypical networks for few-shot learning
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref79
  doi: 10.1016/j.patcog.2018.03.005
– start-page: 740
  year: 2014
  ident: ref71
  article-title: Microsoft COCO: Common objects in context
  publication-title: Proc Eur Conf Comput Vis
– ident: ref29
  doi: 10.1109/ICCV.2017.88
– volume: 17
  start-page: 108:1
  year: 2016
  ident: ref4
  article-title: Distribution-matching embedding for visual domain adaptation
  publication-title: J Mach Learn Res
– volume: 44
  start-page: 5149
  year: 2022
  ident: ref44
  article-title: Meta-learning in neural networks: A survey
  publication-title: IEEE Trans Pattern Anal Mach Intell
– start-page: 20:1
  year: 2021
  ident: ref34
  article-title: Conditional extreme value theory for open set video domain adaptation
  publication-title: Proc ACM Multimedia Asia
– start-page: 3630
  year: 2016
  ident: ref42
  article-title: Matching networks for one shot learning
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref39
  doi: 10.1109/WACV48630.2021.00066
– ident: ref60
  doi: 10.1109/CVPR.2019.00943
– year: 2017
  ident: ref58
  article-title: Learning graphical state transitions
  publication-title: Proc Int Conf Learn Representations
– ident: ref9
  doi: 10.1109/CVPR.2017.316
– ident: ref21
  doi: 10.1109/CVPR.2019.00304
– start-page: 6468
  year: 2020
  ident: ref28
  article-title: Progressive graph learning for open-set domain adaptation
  publication-title: Proc Int Conf Mach Learn
– start-page: 113
  year: 2019
  ident: ref51
  article-title: Meta-learning with implicit gradients
  publication-title: Proc Adv Neural Inf Process Syst
– start-page: 719
  year: 2018
  ident: ref57
  article-title: TADAM: Task dependent adaptive metric for improved few-shot learning
  publication-title: Proc Adv Neural Inf Process Syst
SSID ssj0014503
Score 2.5967898
Snippet Open-set domain adaptation (OSDA) aims to transfer knowledge from a label-rich source domain to a label-scarce target domain while addressing disturbances from...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 11240
SubjectTerms Action recognition
Adaptation
Adaptation models
domain adaptation
Graph neural networks
Hypotheses
Image classification
Knowledge management
Labels
Machine learning
open-set domain adaptation
Predictive models
Semantics
source-free domain adaptation
Subspaces
Task analysis
Training
Uncertainty
Upper bounds
Title Source-Free Progressive Graph Learning for Open-Set Domain Adaptation
URI https://ieeexplore.ieee.org/document/10107906
https://www.ncbi.nlm.nih.gov/pubmed/37097801
https://www.proquest.com/docview/2847957655
https://www.proquest.com/docview/2806070973
Volume 45
WOSCitedRecordID wos001045832200041&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2160-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014503
  issn: 0162-8828
  databaseCode: RIE
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5RxKE9sEAphJdcqbcqWydxkvVxRVlAomglttXeIieeVEgli_bB72fGcVZcthKXKFKcxMrMxN94Hh_AtzqK80hXaViTeMlBUSrUdVmGqrImIQeili6C_-cuv78fTKd67IvVXS0MIrrkM-zzqYvl21m14q0ysnByVjQ32P6Q51lbrLUOGajU0SAThCETJz-iq5CR-sdkPPx122ei8H7C9VcDZulLci5h8GQw3YLkGFY2g0236Ix675zuHux6dCmGrTrswxY2B9DrmBuEN-QD-PSmDeFnuHpwO_jhaI4oxpywxbmxLyiuuZu18C1Y_wrCt4ITUMIHXIqfsyfz2IihNc9tNP8Qfo-uJpc3oadXCCtCXcswsiaXxkikQxxjZLJBlGFplc5qWrEShYnSmKvMRlhl0qbM3pfauC5lHam4Sr7AdjNr8BgE0j_VInkepSY8k5WGQBlBC0RlSyRMFUDUfeOi8r3HmQLjX-F8EKkLJ6KCRVR4EQXwfX3Pc9t547-jD1kAb0a23z6As06WhbfORcFLsiZHK00D-Lq-THbFwRLT4GzFY2QmWUWSAI5aHVg_vFOdkw0vPYWPPLc2Fe0MtpfzFZ7DTvWyfFzML0h5p4MLp7yvhLPljg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED8hhrTtYTAGW8aXJ-1tSnESJ6kfK0YBUapKFMRb5MSXqdKWotLy9-_OcSpemLSXKFKcxMrdxb_zffwAvtdRnEe6SsOaxEsOilKhrssyVJU1CTkQtXQR_PtRPh73Hx70xBeru1oYRHTJZ9jjUxfLt_NqxVtlZOHkrGhusP0mVSqWbbnWOmigUkeETCCGjJw8ia5GRurT6WRwc9VjqvBewhVYfebpS3IuYvB0MN2S5DhWXoebbtkZbv_nhHfgg8eXYtAqxEfYwGYXtjvuBuFNeRfev2hE-AnOb90efjhcIIoJp2xxduwzigvuZy18E9ZfghCu4BSU8BaX4uf8j5k1YmDNYxvP34O74fn07DL0BAthRbhrGUbW5NIYiXSIY4xM1o8yLK3SWU1rVqIwURpzldkIq0zalPn7UhvXpawjFVfJPmw28wa_gED6q1ok36PUhGiy0hAsI3CBqGyJhKoCiLpvXFS--ziTYPwunBcideFEVLCICi-iAH6s73lse2_8c_QeC-DFyPbbB3DYybLw9vlU8KKsydVK0wC-rS-TZXG4xDQ4X_EYmUlWkSSAz60OrB_eqc7XV156Am8vpzejYnQ1vj6AdzzPNjHtEDaXixUewVb1vJw9LY6dCv8FNWTn7Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Source-Free+Progressive+Graph+Learning+for+Open-Set+Domain+Adaptation&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Luo%2C+Yadan&rft.au=Wang%2C+Zijian&rft.au=Chen%2C+Zhuoxiao&rft.au=Huang%2C+Zi&rft.date=2023-09-01&rft.issn=1939-3539&rft.eissn=1939-3539&rft.volume=45&rft.issue=9&rft.spage=11240&rft_id=info:doi/10.1109%2FTPAMI.2023.3270288&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon