5 GHz Band n79 wideband microacoustic filter using thin lithium niobate membrane
Microacoustic resonators made on suspended continuous membranes of LiNbO3 were recently shown to have very strong coupling and low losses at ≥5 GHz, suitable for high-performance filter design. Employing these simple resonator structures, the authors have designed, fabricated, and measured a 4.7 GHz...
Uložené v:
| Vydané v: | Electronics letters Ročník 55; číslo 17; s. 942 - 944 |
|---|---|
| Hlavní autori: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
The Institution of Engineering and Technology
22.08.2019
|
| Predmet: | |
| ISSN: | 0013-5194, 1350-911X, 1350-911X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Microacoustic resonators made on suspended continuous membranes of LiNbO3 were recently shown to have very strong coupling and low losses at ≥5 GHz, suitable for high-performance filter design. Employing these simple resonator structures, the authors have designed, fabricated, and measured a 4.7 GHz bandpass ladder-type filter having 1 dB mid-band loss and 600 MHz bandwidth to address the 5G Band n79 requirements. The filter is fabricated on a monolithic substrate using standard i-line optical lithography and standard semiconductor processing methods for membrane release, starting with commercially available ion-sliced wafers having 400 nm thickness crystalline LiNbO3 layers. The filter is well-matched to a 50 Ω network and does not require external matching elements. Through accurate resonator engineering using our finite element method software filter design environment, the passband is spurious-free, and the filter provides better-than 30 dB rejection to the adjacent WiFi frequencies. This filter demonstrates the performance and scalable technology required for high-volume manufacturing of microacoustic filters >3.5 GHz. |
|---|---|
| AbstractList | Microacoustic resonators made on suspended continuous membranes of LiNbO 3 were recently shown to have very strong coupling and low losses at ≥5 GHz, suitable for high‐performance filter design. Employing these simple resonator structures, the authors have designed, fabricated, and measured a 4.7 GHz bandpass ladder‐type filter having 1 dB mid‐band loss and 600 MHz bandwidth to address the 5G Band n79 requirements. The filter is fabricated on a monolithic substrate using standard i‐line optical lithography and standard semiconductor processing methods for membrane release, starting with commercially available ion‐sliced wafers having 400 nm thickness crystalline LiNbO 3 layers. The filter is well‐matched to a 50 Ω network and does not require external matching elements. Through accurate resonator engineering using our finite element method software filter design environment, the passband is spurious‐free, and the filter provides better‐than 30 dB rejection to the adjacent WiFi frequencies. This filter demonstrates the performance and scalable technology required for high‐volume manufacturing of microacoustic filters >3.5 GHz. Microacoustic resonators made on suspended continuous membranes of LiNbO3 were recently shown to have very strong coupling and low losses at ≥5 GHz, suitable for high‐performance filter design. Employing these simple resonator structures, the authors have designed, fabricated, and measured a 4.7 GHz bandpass ladder‐type filter having 1 dB mid‐band loss and 600 MHz bandwidth to address the 5G Band n79 requirements. The filter is fabricated on a monolithic substrate using standard i‐line optical lithography and standard semiconductor processing methods for membrane release, starting with commercially available ion‐sliced wafers having 400 nm thickness crystalline LiNbO3 layers. The filter is well‐matched to a 50 Ω network and does not require external matching elements. Through accurate resonator engineering using our finite element method software filter design environment, the passband is spurious‐free, and the filter provides better‐than 30 dB rejection to the adjacent WiFi frequencies. This filter demonstrates the performance and scalable technology required for high‐volume manufacturing of microacoustic filters >3.5 GHz. Microacoustic resonators made on suspended continuous membranes of LiNbO3 were recently shown to have very strong coupling and low losses at ≥5 GHz, suitable for high-performance filter design. Employing these simple resonator structures, the authors have designed, fabricated, and measured a 4.7 GHz bandpass ladder-type filter having 1 dB mid-band loss and 600 MHz bandwidth to address the 5G Band n79 requirements. The filter is fabricated on a monolithic substrate using standard i-line optical lithography and standard semiconductor processing methods for membrane release, starting with commercially available ion-sliced wafers having 400 nm thickness crystalline LiNbO3 layers. The filter is well-matched to a 50 Ω network and does not require external matching elements. Through accurate resonator engineering using our finite element method software filter design environment, the passband is spurious-free, and the filter provides better-than 30 dB rejection to the adjacent WiFi frequencies. This filter demonstrates the performance and scalable technology required for high-volume manufacturing of microacoustic filters >3.5 GHz. |
| Author | Turner, P.J Hammond, R.B Yantchev, V Dyer, G Plessky, V Garcia, B Villanueva, L.G Yandrapalli, S |
| Author_xml | – sequence: 1 givenname: P.J surname: Turner fullname: Turner, P.J email: pturner@resonant.com organization: Resonant Inc., Santa Barbara, CA, USA – sequence: 2 givenname: B surname: Garcia fullname: Garcia, B organization: Resonant Inc., Santa Barbara, CA, USA – sequence: 3 givenname: V orcidid: 0000-0002-2696-1649 surname: Yantchev fullname: Yantchev, V organization: Resonant Inc., Santa Barbara, CA, USA – sequence: 4 givenname: G surname: Dyer fullname: Dyer, G organization: Resonant Inc., Santa Barbara, CA, USA – sequence: 5 givenname: S surname: Yandrapalli fullname: Yandrapalli, S organization: Resonant Inc. and GVR Trade SA, Gorgier, Switzerland – sequence: 6 givenname: L.G surname: Villanueva fullname: Villanueva, L.G organization: ANEMS Laboratory, EPFL, Lausanne, Switzerland – sequence: 7 givenname: R.B surname: Hammond fullname: Hammond, R.B organization: Resonant Inc., Santa Barbara, CA, USA – sequence: 8 givenname: V surname: Plessky fullname: Plessky, V organization: Resonant Inc. and GVR Trade SA, Gorgier, Switzerland |
| BookMark | eNp9kEFLwzAUx4NMcM7d_AA5erAzL23S5ujGNoWBgh68hSRNNNKmkraM-eltmSdRT38e_H_vPX7naBKaYBG6BLIAkokbWy0oAbEAzooTNIWUkUQAvEzQlBBIEwYiO0PztvWaQAYZJxlM0SPD27tPvFShxCEXeO9Lq8eh9iY2yjR923mDna86G3Hf-vCKuzcfcOWH6GscfKNVZ3Ftax1VsBfo1KmqtfPvnKGnzfp5dZfsHrb3q9tdYlJGecKFEyTXzgmhbKayQhccBOVQ5pyUrjDAdF5aJxQx2lqTOlNSqjg1BctdOkP0uHV4sm2jddL4TnW-CV1UvpJA5ChF2kqOUuQoZYCuf0Af0dcqHv6qs2N97yt7-Lcr17sdXW4IZzkfuKsj520n35s-hsHD7ye-AESbgns |
| CitedBy_id | crossref_primary_10_1016_j_optmat_2020_110363 crossref_primary_10_1109_LED_2024_3394710 crossref_primary_10_3390_mi15121416 crossref_primary_10_1109_LMWT_2024_3368354 crossref_primary_10_1063_5_0087735 crossref_primary_10_1109_JSEN_2020_3039052 crossref_primary_10_1109_MMM_2023_3332286 crossref_primary_10_1109_TMTT_2023_3305078 crossref_primary_10_3390_mi14071341 crossref_primary_10_1063_5_0094364 crossref_primary_10_1109_JMEMS_2022_3143354 crossref_primary_10_1109_TUFFC_2023_3277342 crossref_primary_10_1016_j_mejo_2023_106007 crossref_primary_10_35848_1347_4065_ad1d1c crossref_primary_10_1002_mop_33735 crossref_primary_10_1109_JSEN_2024_3361911 crossref_primary_10_1109_TMTT_2021_3079497 crossref_primary_10_1049_ell2_12261 crossref_primary_10_1007_s10854_022_08957_5 crossref_primary_10_1016_j_mee_2024_112195 crossref_primary_10_1109_JMEMS_2023_3314666 crossref_primary_10_1002_jnm_2898 crossref_primary_10_1038_s41598_023_38363_8 crossref_primary_10_1063_1_5143550 crossref_primary_10_1088_1361_6439_ad7d15 crossref_primary_10_1016_j_cplett_2022_139929 crossref_primary_10_1109_JMEMS_2020_2982775 crossref_primary_10_35848_1347_4065_ad1e03 crossref_primary_10_1038_s41378_025_00980_w crossref_primary_10_3390_mi12091039 crossref_primary_10_1109_JMEMS_2025_3540960 crossref_primary_10_1109_TMTT_2024_3383476 crossref_primary_10_1109_TMTT_2020_3022942 crossref_primary_10_1016_j_pquantelec_2025_100565 crossref_primary_10_1088_1361_6439_ac288f crossref_primary_10_1109_JMEMS_2020_3007590 crossref_primary_10_3390_s20174978 crossref_primary_10_3390_mi13030439 crossref_primary_10_1109_TUFFC_2020_3049084 crossref_primary_10_1109_JMEMS_2025_3577619 crossref_primary_10_1109_TMTT_2020_3027694 crossref_primary_10_1007_s44275_024_00005_0 |
| Cites_doi | 10.1109/TSM.2017.2757879 10.1049/el.2018.7297 10.1109/TUFFC.2017.2690905 |
| ContentType | Journal Article |
| Copyright | The Institution of Engineering and Technology 2020 The Institution of Engineering and Technology |
| Copyright_xml | – notice: The Institution of Engineering and Technology – notice: 2020 The Institution of Engineering and Technology |
| DBID | AAYXX CITATION |
| DOI | 10.1049/el.2019.1658 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1350-911X |
| EndPage | 944 |
| ExternalDocumentID | 10_1049_el_2019_1658 ELL2BF06576 |
| Genre | rapidPublication |
| GroupedDBID | 0R 24P 29G 4IJ 5GY 6IK 8VB AAJGR ABPTK ABZEH ACGFS ACIWK AENEX ALMA_UNASSIGNED_HOLDINGS BFFAM CS3 DU5 ESX F5P HZ IFIPE IPLJI JAVBF KBT LAI LOTEE LXI LXO LXU M43 MS NADUK NXXTH O9- OCL P2P QWB RIE RNS RUI TN5 U5U UNMZH UNR WH7 X ZL0 ZZ -4A -~X .DC 0R~ 0ZK 1OC 2QL 3EH 4.4 8FE 8FG 96U AAHHS AAHJG ABJCF ABQXS ACCFJ ACCMX ACESK ACGFO ACXQS ADEYR ADIYS ADZOD AEEZP AEGXH AEQDE AFAZI AFKRA AI. AIAGR AIWBW AJBDE ALUQN ARAPS AVUZU BBWZM BENPR BGLVJ CCPQU EBS EJD ELQJU F8P GOZPB GROUPED_DOAJ GRPMH HCIFZ HZ~ IAO IFBGX ITC K1G K7- L6V M7S MCNEO MS~ OK1 P0- P62 PTHSS R4Z RIG VH1 ~ZZ AAMMB AAYXX AEFGJ AFFHD AGXDD AIDQK AIDYY CITATION IDLOA PHGZM PHGZT PQGLB WIN |
| ID | FETCH-LOGICAL-c3526-69f907bff99ae4a48b8619261d760df8c15b7def9a0cbeec3fcd22a62c857f3 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 80 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000481883600012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0013-5194 1350-911X |
| IngestDate | Tue Nov 18 22:25:57 EST 2025 Wed Oct 29 21:24:28 EDT 2025 Wed Jan 22 16:59:07 EST 2025 Tue Jan 05 21:44:20 EST 2021 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 17 |
| Keywords | acoustic resonator filters microwave resonators microacoustic resonators lithium niobate membrane semiconductor processing methods frequency 4.7 GHz ladder-type filter resonator engineering LiNbO3 lithium compounds wideband microacoustic filter finite element analysis bandwidth 600.0 MHz i-line optical lithography band-pass filters finite element method software filter design microwave filters resonator structures |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3526-69f907bff99ae4a48b8619261d760df8c15b7def9a0cbeec3fcd22a62c857f3 |
| Notes | S. Yandrapalli: Also with ANEMS Laboratory, EPFL, Lausanne, Switzerland |
| ORCID | 0000-0002-2696-1649 |
| OpenAccessLink | http://infoscience.epfl.ch/record/270095 |
| PageCount | 3 |
| ParticipantIDs | iet_journals_10_1049_el_2019_1658 wiley_primary_10_1049_el_2019_1658_ELL2BF06576 crossref_citationtrail_10_1049_el_2019_1658 crossref_primary_10_1049_el_2019_1658 |
| ProviderPackageCode | RUI |
| PublicationCentury | 2000 |
| PublicationDate | 2019-08-22 |
| PublicationDateYYYYMMDD | 2019-08-22 |
| PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-22 day: 22 |
| PublicationDecade | 2010 |
| PublicationTitle | Electronics letters |
| PublicationYear | 2019 |
| Publisher | The Institution of Engineering and Technology |
| Publisher_xml | – name: The Institution of Engineering and Technology |
| References | Plessky, V.; Yandrapalli, S.; Turner, P.J. (C3) 2018; 55 Ruppel, C. (C1) 2017; 67 Mahon, S. (C2) 2017; 30 2018; 55 2017; 30 2017 2016 2017; 67 e_1_2_6_3_1 e_1_2_6_2_1 e_1_2_6_4_1 Plessky V. (e_1_2_6_6_1) 2017 Koskela J. (e_1_2_6_5_1) 2016 e_1_2_6_7_1 |
| References_xml | – volume: 55 start-page: 98 issue: 2 year: 2018 end-page: 100 ident: C3 article-title: 5 GHz laterally-excited bulk-wave resonators (XBARs) based on thin platelets of lithium niobate publication-title: Electron. Lett. – volume: 30 start-page: 494 issue: 4 year: 2017 end-page: 499 ident: C2 article-title: The 5G effect on RF filter technologies publication-title: Trans. Semicond. Manuf. – volume: 67 start-page: 1390 issue: 9 year: 2017 end-page: 400 ident: C1 article-title: Acoustic wave filter technology – a review publication-title: Trans. Ultrason. Ferroelectr. Freq. Control – volume: 30 start-page: 494 issue: 4 year: 2017 end-page: 499 article-title: The 5G effect on RF filter technologies publication-title: Trans. Semicond. Manuf. – start-page: 1 year: 2016 end-page: 4 – start-page: 1 year: 2017 end-page: 5 – volume: 67 start-page: 1390 issue: 9 year: 2017 end-page: 400 article-title: Acoustic wave filter technology – a review publication-title: Trans. Ultrason. Ferroelectr. Freq. Control – volume: 55 start-page: 98 issue: 2 year: 2018 end-page: 100 article-title: 5 GHz laterally‐excited bulk‐wave resonators (XBARs) based on thin platelets of lithium niobate publication-title: Electron. Lett. – start-page: 1 volume-title: FEM modeling of an entire 5‐IDT CRF/DMS filter year: 2017 ident: e_1_2_6_6_1 – ident: e_1_2_6_7_1 – ident: e_1_2_6_3_1 doi: 10.1109/TSM.2017.2757879 – ident: e_1_2_6_4_1 doi: 10.1049/el.2018.7297 – start-page: 1 volume-title: Hierarchical cascading in 2D FEM simulation of finite SAW devices with periodic block structure year: 2016 ident: e_1_2_6_5_1 – ident: e_1_2_6_2_1 doi: 10.1109/TUFFC.2017.2690905 |
| SSID | ssib014146041 ssj0012997 |
| Score | 2.5650642 |
| Snippet | Microacoustic resonators made on suspended continuous membranes of LiNbO3 were recently shown to have very strong coupling and low losses at ≥5 GHz, suitable... Microacoustic resonators made on suspended continuous membranes of LiNbO3 were recently shown to have very strong coupling and low losses at ≥5 GHz, suitable... Microacoustic resonators made on suspended continuous membranes of LiNbO 3 were recently shown to have very strong coupling and low losses at ≥5 GHz, suitable... |
| SourceID | crossref wiley iet |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 942 |
| SubjectTerms | acoustic resonator filters bandwidth 600.0 MHz band‐pass filters finite element analysis finite element method software filter design frequency 4.7 GHz i‐line optical lithography ladder‐type filter LiNbO3 lithium compounds lithium niobate membrane microacoustic resonators microwave filters microwave resonators Microwave technology resonator engineering resonator structures semiconductor processing methods wideband microacoustic filter |
| Title | 5 GHz Band n79 wideband microacoustic filter using thin lithium niobate membrane |
| URI | http://digital-library.theiet.org/content/journals/10.1049/el.2019.1658 https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fel.2019.1658 |
| Volume | 55 |
| WOSCitedRecordID | wos000481883600012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1350-911X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012997 issn: 0013-5194 databaseCode: WIN dateStart: 20130101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1350-911X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012997 issn: 0013-5194 databaseCode: 24P dateStart: 20130101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6uetCDb_FNBD1JtY80TY4qrgrLsqLg3kqaTtzCbhWtCv4af4u_zExbl93DCuKl0DIpYSYz-ZJJ5iPkIGKguSeUI5RSDhOKO5LbNQ9WVlEsUFy7SUk2EbXbotuVnXrDDe_CVPUhhhtu6BllvEYHV0nFQmJBLRoREweePPbsHNogM54XCKRu8FlnmEWwobYkVwlCF526Wx98t-1PRluPTUmNDIpxoFrONM3F__ZxiSzUGJOeVoNimUxBvkLmRyoPrpKb8Ovz8uqDnqk8pXkk6XuWQoIvAzyhZ8NkyfJFTYbZdIqn4x9o0ctyamF7L3sd0DyzkaAAOoCB7WEOa-S2eXF3fuXU7AqOxpr4DpfGLowTY6RUwBQTicDFFPfSiLupEdoLkygFI5WrEwAdGJ36vuK-FmFkgnUynT_msEGoqy0mUqFwUwYMVCK1D9xGEpYyASYwm-ToR72xrguPI_9FPy4T4EzG0I9RTTGqaZMcDqWfqoIbE-T2raXi2uNeJshU1vn1R_FFq-WfNS0Ui_jWXxtskzn8jpvMvr9DpovnV9gls_qtyF6e98rRaJ_31-1vxI_fiw |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA66CurBt_g2gp6k2keaJkcV1xXXRVFwbyVNJ1pwq7hVwV_jb_GXmWnrogcF8ViYlDDJTOaRfB8hWxEDzT2hHKGUcphQ3JHc5jyIrKJYoLh2k5JsIup0RLcrz2ueU3wLU-FDDApuaBmlv0YDx4J0lXAyBMkE7Bx4ctezh-gwGWE21kDuhuuTzqCNYH1tya4ShC5adbe--W7H730d_e1MGs6g-B6plkdNc-rfk5wmk3WUSferbTFDhiCfJRNfsAfnyEX4_nbceqUHKk9pHkn6kqWQ4EcP7-hZR1nyfFGTYT-d4v34G1rcZjm1gftt9tSjeWZ9QQG0Bz07xRzmyWXz6Oqw5dT8Co5GVHyHS2NT48QYKRUwxUQiMJ3iXhpxNzVCe2ESpWCkcnUCoAOjU99X3NcijEywQBr5fQ6LhLraRkUqFG7KgIFKpPaBW1_CUibABGaJ7HzqN9Y19DgyYNzFZQucyRjuYlRTjGpaItsD6YcKcuMHuU27VHFtc_0fZKrl-fVH8VG77R80bTAW8eW_DtggY62rs3bcPumcrpBxlMGSs--vkkbx-ARrZFQ_F1n_cb3cmh9wGeLU |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwELfWgiZ4GIOBVsaGJ7EnlC1_HMd-pKyl06qqCB76Fjn2mUVqs6rLQOLT8Fn2yeZLQtU-dNK0x0jnyDrfX9_5d4R8ShhoHgjlCaWUx4TinuQu50FkFcUixbWfVcMmktFITCZy3Mw5xbcwNT7E8sINNaOy16jgMDe2TjgZgmQCVg4CeRo4J9oiz1icBCjWIRsvywjO1lbTVaLYR62eNJ3vbv3Z6uo1n9TKoVyPVCtX03_15E3ukp0myqRfarF4TbageENermAP7pHv8d2_b4O_tKsKQ4tE0j-5gQw_Ztij5wxlNeeL2hzr6RT743_R8iovqAvcr_LbGS1yZwtKoDOYuS0W8Jb86Pd-fh14zXwFTyMqvseldalxZq2UCphiIhOYTvHAJNw3VuggzhIDVipfZwA6stqEoeKhFnFio3ekXVwXsE-or11UpGLhGwYMVCZ1CNzZEmaYABvZDvn8n7-pbqDHcQLGNK1K4EymME2RTSmyqUNOltTzGnJjA92xO6q00bmbDTT18Tz4o7Q3HIbdvgvGEv7-sQs-ku3xeT8dXowuD8gLJMEb5zD8QNrl4hYOyXP9u8xvFkeVZN4DsM7h6w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=5+GHz+Band+n79+wideband+microacoustic+filter+using+thin+lithium+niobate+membrane&rft.jtitle=Electronics+letters&rft.au=Turner%2C+P.J&rft.au=Garcia%2C+B&rft.au=Yantchev%2C+V&rft.au=Dyer%2C+G&rft.date=2019-08-22&rft.pub=The+Institution+of+Engineering+and+Technology&rft.issn=0013-5194&rft.eissn=1350-911X&rft.volume=55&rft.issue=17&rft.spage=942&rft.epage=944&rft_id=info:doi/10.1049%2Fel.2019.1658&rft.externalDocID=10_1049_el_2019_1658 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-5194&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-5194&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-5194&client=summon |