5 GHz Band n79 wideband microacoustic filter using thin lithium niobate membrane

Microacoustic resonators made on suspended continuous membranes of LiNbO3 were recently shown to have very strong coupling and low losses at ≥5 GHz, suitable for high-performance filter design. Employing these simple resonator structures, the authors have designed, fabricated, and measured a 4.7 GHz...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Electronics letters Ročník 55; číslo 17; s. 942 - 944
Hlavní autori: Turner, P.J, Garcia, B, Yantchev, V, Dyer, G, Yandrapalli, S, Villanueva, L.G, Hammond, R.B, Plessky, V
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: The Institution of Engineering and Technology 22.08.2019
Predmet:
ISSN:0013-5194, 1350-911X, 1350-911X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Microacoustic resonators made on suspended continuous membranes of LiNbO3 were recently shown to have very strong coupling and low losses at ≥5 GHz, suitable for high-performance filter design. Employing these simple resonator structures, the authors have designed, fabricated, and measured a 4.7 GHz bandpass ladder-type filter having 1 dB mid-band loss and 600 MHz bandwidth to address the 5G Band n79 requirements. The filter is fabricated on a monolithic substrate using standard i-line optical lithography and standard semiconductor processing methods for membrane release, starting with commercially available ion-sliced wafers having 400 nm thickness crystalline LiNbO3 layers. The filter is well-matched to a 50 Ω network and does not require external matching elements. Through accurate resonator engineering using our finite element method software filter design environment, the passband is spurious-free, and the filter provides better-than 30 dB rejection to the adjacent WiFi frequencies. This filter demonstrates the performance and scalable technology required for high-volume manufacturing of microacoustic filters >3.5 GHz.
AbstractList Microacoustic resonators made on suspended continuous membranes of LiNbO 3 were recently shown to have very strong coupling and low losses at ≥5 GHz, suitable for high‐performance filter design. Employing these simple resonator structures, the authors have designed, fabricated, and measured a 4.7 GHz bandpass ladder‐type filter having 1 dB mid‐band loss and 600 MHz bandwidth to address the 5G Band n79 requirements. The filter is fabricated on a monolithic substrate using standard i‐line optical lithography and standard semiconductor processing methods for membrane release, starting with commercially available ion‐sliced wafers having 400 nm thickness crystalline LiNbO 3 layers. The filter is well‐matched to a 50 Ω network and does not require external matching elements. Through accurate resonator engineering using our finite element method software filter design environment, the passband is spurious‐free, and the filter provides better‐than 30 dB rejection to the adjacent WiFi frequencies. This filter demonstrates the performance and scalable technology required for high‐volume manufacturing of microacoustic filters >3.5 GHz.
Microacoustic resonators made on suspended continuous membranes of LiNbO3 were recently shown to have very strong coupling and low losses at ≥5 GHz, suitable for high‐performance filter design. Employing these simple resonator structures, the authors have designed, fabricated, and measured a 4.7 GHz bandpass ladder‐type filter having 1 dB mid‐band loss and 600 MHz bandwidth to address the 5G Band n79 requirements. The filter is fabricated on a monolithic substrate using standard i‐line optical lithography and standard semiconductor processing methods for membrane release, starting with commercially available ion‐sliced wafers having 400 nm thickness crystalline LiNbO3 layers. The filter is well‐matched to a 50 Ω network and does not require external matching elements. Through accurate resonator engineering using our finite element method software filter design environment, the passband is spurious‐free, and the filter provides better‐than 30 dB rejection to the adjacent WiFi frequencies. This filter demonstrates the performance and scalable technology required for high‐volume manufacturing of microacoustic filters >3.5 GHz.
Microacoustic resonators made on suspended continuous membranes of LiNbO3 were recently shown to have very strong coupling and low losses at ≥5 GHz, suitable for high-performance filter design. Employing these simple resonator structures, the authors have designed, fabricated, and measured a 4.7 GHz bandpass ladder-type filter having 1 dB mid-band loss and 600 MHz bandwidth to address the 5G Band n79 requirements. The filter is fabricated on a monolithic substrate using standard i-line optical lithography and standard semiconductor processing methods for membrane release, starting with commercially available ion-sliced wafers having 400 nm thickness crystalline LiNbO3 layers. The filter is well-matched to a 50 Ω network and does not require external matching elements. Through accurate resonator engineering using our finite element method software filter design environment, the passband is spurious-free, and the filter provides better-than 30 dB rejection to the adjacent WiFi frequencies. This filter demonstrates the performance and scalable technology required for high-volume manufacturing of microacoustic filters >3.5 GHz.
Author Turner, P.J
Hammond, R.B
Yantchev, V
Dyer, G
Plessky, V
Garcia, B
Villanueva, L.G
Yandrapalli, S
Author_xml – sequence: 1
  givenname: P.J
  surname: Turner
  fullname: Turner, P.J
  email: pturner@resonant.com
  organization: Resonant Inc., Santa Barbara, CA, USA
– sequence: 2
  givenname: B
  surname: Garcia
  fullname: Garcia, B
  organization: Resonant Inc., Santa Barbara, CA, USA
– sequence: 3
  givenname: V
  orcidid: 0000-0002-2696-1649
  surname: Yantchev
  fullname: Yantchev, V
  organization: Resonant Inc., Santa Barbara, CA, USA
– sequence: 4
  givenname: G
  surname: Dyer
  fullname: Dyer, G
  organization: Resonant Inc., Santa Barbara, CA, USA
– sequence: 5
  givenname: S
  surname: Yandrapalli
  fullname: Yandrapalli, S
  organization: Resonant Inc. and GVR Trade SA, Gorgier, Switzerland
– sequence: 6
  givenname: L.G
  surname: Villanueva
  fullname: Villanueva, L.G
  organization: ANEMS Laboratory, EPFL, Lausanne, Switzerland
– sequence: 7
  givenname: R.B
  surname: Hammond
  fullname: Hammond, R.B
  organization: Resonant Inc., Santa Barbara, CA, USA
– sequence: 8
  givenname: V
  surname: Plessky
  fullname: Plessky, V
  organization: Resonant Inc. and GVR Trade SA, Gorgier, Switzerland
BookMark eNp9kEFLwzAUx4NMcM7d_AA5erAzL23S5ujGNoWBgh68hSRNNNKmkraM-eltmSdRT38e_H_vPX7naBKaYBG6BLIAkokbWy0oAbEAzooTNIWUkUQAvEzQlBBIEwYiO0PztvWaQAYZJxlM0SPD27tPvFShxCEXeO9Lq8eh9iY2yjR923mDna86G3Hf-vCKuzcfcOWH6GscfKNVZ3Ftax1VsBfo1KmqtfPvnKGnzfp5dZfsHrb3q9tdYlJGecKFEyTXzgmhbKayQhccBOVQ5pyUrjDAdF5aJxQx2lqTOlNSqjg1BctdOkP0uHV4sm2jddL4TnW-CV1UvpJA5ChF2kqOUuQoZYCuf0Af0dcqHv6qs2N97yt7-Lcr17sdXW4IZzkfuKsj520n35s-hsHD7ye-AESbgns
CitedBy_id crossref_primary_10_1016_j_optmat_2020_110363
crossref_primary_10_1109_LED_2024_3394710
crossref_primary_10_3390_mi15121416
crossref_primary_10_1109_LMWT_2024_3368354
crossref_primary_10_1063_5_0087735
crossref_primary_10_1109_JSEN_2020_3039052
crossref_primary_10_1109_MMM_2023_3332286
crossref_primary_10_1109_TMTT_2023_3305078
crossref_primary_10_3390_mi14071341
crossref_primary_10_1063_5_0094364
crossref_primary_10_1109_JMEMS_2022_3143354
crossref_primary_10_1109_TUFFC_2023_3277342
crossref_primary_10_1016_j_mejo_2023_106007
crossref_primary_10_35848_1347_4065_ad1d1c
crossref_primary_10_1002_mop_33735
crossref_primary_10_1109_JSEN_2024_3361911
crossref_primary_10_1109_TMTT_2021_3079497
crossref_primary_10_1049_ell2_12261
crossref_primary_10_1007_s10854_022_08957_5
crossref_primary_10_1016_j_mee_2024_112195
crossref_primary_10_1109_JMEMS_2023_3314666
crossref_primary_10_1002_jnm_2898
crossref_primary_10_1038_s41598_023_38363_8
crossref_primary_10_1063_1_5143550
crossref_primary_10_1088_1361_6439_ad7d15
crossref_primary_10_1016_j_cplett_2022_139929
crossref_primary_10_1109_JMEMS_2020_2982775
crossref_primary_10_35848_1347_4065_ad1e03
crossref_primary_10_1038_s41378_025_00980_w
crossref_primary_10_3390_mi12091039
crossref_primary_10_1109_JMEMS_2025_3540960
crossref_primary_10_1109_TMTT_2024_3383476
crossref_primary_10_1109_TMTT_2020_3022942
crossref_primary_10_1016_j_pquantelec_2025_100565
crossref_primary_10_1088_1361_6439_ac288f
crossref_primary_10_1109_JMEMS_2020_3007590
crossref_primary_10_3390_s20174978
crossref_primary_10_3390_mi13030439
crossref_primary_10_1109_TUFFC_2020_3049084
crossref_primary_10_1109_JMEMS_2025_3577619
crossref_primary_10_1109_TMTT_2020_3027694
crossref_primary_10_1007_s44275_024_00005_0
Cites_doi 10.1109/TSM.2017.2757879
10.1049/el.2018.7297
10.1109/TUFFC.2017.2690905
ContentType Journal Article
Copyright The Institution of Engineering and Technology
2020 The Institution of Engineering and Technology
Copyright_xml – notice: The Institution of Engineering and Technology
– notice: 2020 The Institution of Engineering and Technology
DBID AAYXX
CITATION
DOI 10.1049/el.2019.1658
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1350-911X
EndPage 944
ExternalDocumentID 10_1049_el_2019_1658
ELL2BF06576
Genre rapidPublication
GroupedDBID 0R
24P
29G
4IJ
5GY
6IK
8VB
AAJGR
ABPTK
ABZEH
ACGFS
ACIWK
AENEX
ALMA_UNASSIGNED_HOLDINGS
BFFAM
CS3
DU5
ESX
F5P
HZ
IFIPE
IPLJI
JAVBF
KBT
LAI
LOTEE
LXI
LXO
LXU
M43
MS
NADUK
NXXTH
O9-
OCL
P2P
QWB
RIE
RNS
RUI
TN5
U5U
UNMZH
UNR
WH7
X
ZL0
ZZ
-4A
-~X
.DC
0R~
0ZK
1OC
2QL
3EH
4.4
8FE
8FG
96U
AAHHS
AAHJG
ABJCF
ABQXS
ACCFJ
ACCMX
ACESK
ACGFO
ACXQS
ADEYR
ADIYS
ADZOD
AEEZP
AEGXH
AEQDE
AFAZI
AFKRA
AI.
AIAGR
AIWBW
AJBDE
ALUQN
ARAPS
AVUZU
BBWZM
BENPR
BGLVJ
CCPQU
EBS
EJD
ELQJU
F8P
GOZPB
GROUPED_DOAJ
GRPMH
HCIFZ
HZ~
IAO
IFBGX
ITC
K1G
K7-
L6V
M7S
MCNEO
MS~
OK1
P0-
P62
PTHSS
R4Z
RIG
VH1
~ZZ
AAMMB
AAYXX
AEFGJ
AFFHD
AGXDD
AIDQK
AIDYY
CITATION
IDLOA
PHGZM
PHGZT
PQGLB
WIN
ID FETCH-LOGICAL-c3526-69f907bff99ae4a48b8619261d760df8c15b7def9a0cbeec3fcd22a62c857f3
IEDL.DBID 24P
ISICitedReferencesCount 80
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000481883600012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0013-5194
1350-911X
IngestDate Tue Nov 18 22:25:57 EST 2025
Wed Oct 29 21:24:28 EDT 2025
Wed Jan 22 16:59:07 EST 2025
Tue Jan 05 21:44:20 EST 2021
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Keywords acoustic resonator filters
microwave resonators
microacoustic resonators
lithium niobate membrane
semiconductor processing methods
frequency 4.7 GHz
ladder-type filter
resonator engineering
LiNbO3
lithium compounds
wideband microacoustic filter
finite element analysis
bandwidth 600.0 MHz
i-line optical lithography
band-pass filters
finite element method software filter design
microwave filters
resonator structures
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3526-69f907bff99ae4a48b8619261d760df8c15b7def9a0cbeec3fcd22a62c857f3
Notes S. Yandrapalli: Also with ANEMS Laboratory, EPFL, Lausanne, Switzerland
ORCID 0000-0002-2696-1649
OpenAccessLink http://infoscience.epfl.ch/record/270095
PageCount 3
ParticipantIDs iet_journals_10_1049_el_2019_1658
wiley_primary_10_1049_el_2019_1658_ELL2BF06576
crossref_citationtrail_10_1049_el_2019_1658
crossref_primary_10_1049_el_2019_1658
ProviderPackageCode RUI
PublicationCentury 2000
PublicationDate 2019-08-22
PublicationDateYYYYMMDD 2019-08-22
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-22
  day: 22
PublicationDecade 2010
PublicationTitle Electronics letters
PublicationYear 2019
Publisher The Institution of Engineering and Technology
Publisher_xml – name: The Institution of Engineering and Technology
References Plessky, V.; Yandrapalli, S.; Turner, P.J. (C3) 2018; 55
Ruppel, C. (C1) 2017; 67
Mahon, S. (C2) 2017; 30
2018; 55
2017; 30
2017
2016
2017; 67
e_1_2_6_3_1
e_1_2_6_2_1
e_1_2_6_4_1
Plessky V. (e_1_2_6_6_1) 2017
Koskela J. (e_1_2_6_5_1) 2016
e_1_2_6_7_1
References_xml – volume: 55
  start-page: 98
  issue: 2
  year: 2018
  end-page: 100
  ident: C3
  article-title: 5 GHz laterally-excited bulk-wave resonators (XBARs) based on thin platelets of lithium niobate
  publication-title: Electron. Lett.
– volume: 30
  start-page: 494
  issue: 4
  year: 2017
  end-page: 499
  ident: C2
  article-title: The 5G effect on RF filter technologies
  publication-title: Trans. Semicond. Manuf.
– volume: 67
  start-page: 1390
  issue: 9
  year: 2017
  end-page: 400
  ident: C1
  article-title: Acoustic wave filter technology – a review
  publication-title: Trans. Ultrason. Ferroelectr. Freq. Control
– volume: 30
  start-page: 494
  issue: 4
  year: 2017
  end-page: 499
  article-title: The 5G effect on RF filter technologies
  publication-title: Trans. Semicond. Manuf.
– start-page: 1
  year: 2016
  end-page: 4
– start-page: 1
  year: 2017
  end-page: 5
– volume: 67
  start-page: 1390
  issue: 9
  year: 2017
  end-page: 400
  article-title: Acoustic wave filter technology – a review
  publication-title: Trans. Ultrason. Ferroelectr. Freq. Control
– volume: 55
  start-page: 98
  issue: 2
  year: 2018
  end-page: 100
  article-title: 5 GHz laterally‐excited bulk‐wave resonators (XBARs) based on thin platelets of lithium niobate
  publication-title: Electron. Lett.
– start-page: 1
  volume-title: FEM modeling of an entire 5‐IDT CRF/DMS filter
  year: 2017
  ident: e_1_2_6_6_1
– ident: e_1_2_6_7_1
– ident: e_1_2_6_3_1
  doi: 10.1109/TSM.2017.2757879
– ident: e_1_2_6_4_1
  doi: 10.1049/el.2018.7297
– start-page: 1
  volume-title: Hierarchical cascading in 2D FEM simulation of finite SAW devices with periodic block structure
  year: 2016
  ident: e_1_2_6_5_1
– ident: e_1_2_6_2_1
  doi: 10.1109/TUFFC.2017.2690905
SSID ssib014146041
ssj0012997
Score 2.5650642
Snippet Microacoustic resonators made on suspended continuous membranes of LiNbO3 were recently shown to have very strong coupling and low losses at ≥5 GHz, suitable...
Microacoustic resonators made on suspended continuous membranes of LiNbO3 were recently shown to have very strong coupling and low losses at ≥5 GHz, suitable...
Microacoustic resonators made on suspended continuous membranes of LiNbO 3 were recently shown to have very strong coupling and low losses at ≥5 GHz, suitable...
SourceID crossref
wiley
iet
SourceType Enrichment Source
Index Database
Publisher
StartPage 942
SubjectTerms acoustic resonator filters
bandwidth 600.0 MHz
band‐pass filters
finite element analysis
finite element method software filter design
frequency 4.7 GHz
i‐line optical lithography
ladder‐type filter
LiNbO3
lithium compounds
lithium niobate membrane
microacoustic resonators
microwave filters
microwave resonators
Microwave technology
resonator engineering
resonator structures
semiconductor processing methods
wideband microacoustic filter
Title 5 GHz Band n79 wideband microacoustic filter using thin lithium niobate membrane
URI http://digital-library.theiet.org/content/journals/10.1049/el.2019.1658
https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fel.2019.1658
Volume 55
WOSCitedRecordID wos000481883600012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1350-911X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012997
  issn: 0013-5194
  databaseCode: WIN
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1350-911X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012997
  issn: 0013-5194
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6uetCDb_FNBD1JtY80TY4qrgrLsqLg3kqaTtzCbhWtCv4af4u_zExbl93DCuKl0DIpYSYz-ZJJ5iPkIGKguSeUI5RSDhOKO5LbNQ9WVlEsUFy7SUk2EbXbotuVnXrDDe_CVPUhhhtu6BllvEYHV0nFQmJBLRoREweePPbsHNogM54XCKRu8FlnmEWwobYkVwlCF526Wx98t-1PRluPTUmNDIpxoFrONM3F__ZxiSzUGJOeVoNimUxBvkLmRyoPrpKb8Ovz8uqDnqk8pXkk6XuWQoIvAzyhZ8NkyfJFTYbZdIqn4x9o0ctyamF7L3sd0DyzkaAAOoCB7WEOa-S2eXF3fuXU7AqOxpr4DpfGLowTY6RUwBQTicDFFPfSiLupEdoLkygFI5WrEwAdGJ36vuK-FmFkgnUynT_msEGoqy0mUqFwUwYMVCK1D9xGEpYyASYwm-ToR72xrguPI_9FPy4T4EzG0I9RTTGqaZMcDqWfqoIbE-T2raXi2uNeJshU1vn1R_FFq-WfNS0Ui_jWXxtskzn8jpvMvr9DpovnV9gls_qtyF6e98rRaJ_31-1vxI_fiw
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA66CurBt_g2gp6k2keaJkcV1xXXRVFwbyVNJ1pwq7hVwV_jb_GXmWnrogcF8ViYlDDJTOaRfB8hWxEDzT2hHKGUcphQ3JHc5jyIrKJYoLh2k5JsIup0RLcrz2ueU3wLU-FDDApuaBmlv0YDx4J0lXAyBMkE7Bx4ctezh-gwGWE21kDuhuuTzqCNYH1tya4ShC5adbe--W7H730d_e1MGs6g-B6plkdNc-rfk5wmk3WUSferbTFDhiCfJRNfsAfnyEX4_nbceqUHKk9pHkn6kqWQ4EcP7-hZR1nyfFGTYT-d4v34G1rcZjm1gftt9tSjeWZ9QQG0Bz07xRzmyWXz6Oqw5dT8Co5GVHyHS2NT48QYKRUwxUQiMJ3iXhpxNzVCe2ESpWCkcnUCoAOjU99X3NcijEywQBr5fQ6LhLraRkUqFG7KgIFKpPaBW1_CUibABGaJ7HzqN9Y19DgyYNzFZQucyRjuYlRTjGpaItsD6YcKcuMHuU27VHFtc_0fZKrl-fVH8VG77R80bTAW8eW_DtggY62rs3bcPumcrpBxlMGSs--vkkbx-ARrZFQ_F1n_cb3cmh9wGeLU
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwELfWgiZ4GIOBVsaGJ7EnlC1_HMd-pKyl06qqCB76Fjn2mUVqs6rLQOLT8Fn2yeZLQtU-dNK0x0jnyDrfX9_5d4R8ShhoHgjlCaWUx4TinuQu50FkFcUixbWfVcMmktFITCZy3Mw5xbcwNT7E8sINNaOy16jgMDe2TjgZgmQCVg4CeRo4J9oiz1icBCjWIRsvywjO1lbTVaLYR62eNJ3vbv3Z6uo1n9TKoVyPVCtX03_15E3ukp0myqRfarF4TbageENermAP7pHv8d2_b4O_tKsKQ4tE0j-5gQw_Ztij5wxlNeeL2hzr6RT743_R8iovqAvcr_LbGS1yZwtKoDOYuS0W8Jb86Pd-fh14zXwFTyMqvseldalxZq2UCphiIhOYTvHAJNw3VuggzhIDVipfZwA6stqEoeKhFnFio3ekXVwXsE-or11UpGLhGwYMVCZ1CNzZEmaYABvZDvn8n7-pbqDHcQLGNK1K4EymME2RTSmyqUNOltTzGnJjA92xO6q00bmbDTT18Tz4o7Q3HIbdvgvGEv7-sQs-ku3xeT8dXowuD8gLJMEb5zD8QNrl4hYOyXP9u8xvFkeVZN4DsM7h6w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=5+GHz+Band+n79+wideband+microacoustic+filter+using+thin+lithium+niobate+membrane&rft.jtitle=Electronics+letters&rft.au=Turner%2C+P.J&rft.au=Garcia%2C+B&rft.au=Yantchev%2C+V&rft.au=Dyer%2C+G&rft.date=2019-08-22&rft.pub=The+Institution+of+Engineering+and+Technology&rft.issn=0013-5194&rft.eissn=1350-911X&rft.volume=55&rft.issue=17&rft.spage=942&rft.epage=944&rft_id=info:doi/10.1049%2Fel.2019.1658&rft.externalDocID=10_1049_el_2019_1658
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-5194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-5194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-5194&client=summon