Music genre classification and music recommendation by using deep learning
Today, music is a very important and perhaps inseparable part of people's daily life. There are many genres of music and these genres are different from each other, resulting in people to have different preferences of music. As a result, it is an important and up-to-date issue to classify music...
Uložené v:
| Vydané v: | Electronics letters Ročník 56; číslo 12; s. 627 - 629 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
The Institution of Engineering and Technology
11.06.2020
|
| Predmet: | |
| ISSN: | 0013-5194, 1350-911X, 1350-911X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Today, music is a very important and perhaps inseparable part of people's daily life. There are many genres of music and these genres are different from each other, resulting in people to have different preferences of music. As a result, it is an important and up-to-date issue to classify music and to recommend people new music in music listening applications and platforms. Classifying music by their genre is one of the most useful techniques used to solve this problem. There are a number of approaches for music classification and recommendation. One approach is based on the acoustic characteristics of music. In this study, a music genre classification system and music recommendation engine, which focuses on extracting representative features that have been obtained by a novel deep neural network model, have been proposed. Acoustic features extracted from these networks have been utilised for music genre classification and music recommendation on a data set. |
|---|---|
| AbstractList | Today, music is a very important and perhaps inseparable part of people's daily life. There are many genres of music and these genres are different from each other, resulting in people to have different preferences of music. As a result, it is an important and up‐to‐date issue to classify music and to recommend people new music in music listening applications and platforms. Classifying music by their genre is one of the most useful techniques used to solve this problem. There are a number of approaches for music classification and recommendation. One approach is based on the acoustic characteristics of music. In this study, a music genre classification system and music recommendation engine, which focuses on extracting representative features that have been obtained by a novel deep neural network model, have been proposed. Acoustic features extracted from these networks have been utilised for music genre classification and music recommendation on a data set. |
| Author | Elbir, A Aydin, N |
| Author_xml | – sequence: 1 givenname: A surname: Elbir fullname: Elbir, A email: aelbir@yildiz.edu.tr organization: Department of Computer Engineering, Yildiz Technical University, Istanbul, Turkey – sequence: 2 givenname: N surname: Aydin fullname: Aydin, N organization: Department of Computer Engineering, Yildiz Technical University, Istanbul, Turkey |
| BookMark | eNp9UMtOwzAQtFCRKKU3PiBHDqTsxnYeR6haHgriAhI3y7GdyihxKicV6t_jNpwQcFrtzsyOZs7JxHXOEHKJsEBgxY1pFglgsWAJJCdkipRDXCC-T8gUAGnMsWBnZN73tgJkyFJgOCVPz7veqmhjnDeRamSAa6vkYDsXSaej9gh7o7q2NU6PQLWPwtltIm3MNmqM9C5sF-S0lk1v5t9zRt7Wq9flQ1y-3D8ub8tYUZ5gzGjFQKcF5RI41jrT3OSGca0ogs45y1KmkQOlRYpZDiEPggwozStQaUZn5Hr8q3zX997UYuttK_1eIIhDFcI04lCFOFQR6MkPurLDMcfgpW3-EvFR9Gkbs__XQKzKMrlbQxbSBN3VqLNmEB_dzrvQxO8WX_Vcf0M |
| CitedBy_id | crossref_primary_10_1155_2022_4520953 crossref_primary_10_1016_j_ipm_2022_103256 crossref_primary_10_1155_2022_1559726 crossref_primary_10_3390_app13169425 crossref_primary_10_1016_j_entcom_2024_100645 crossref_primary_10_1016_j_entcom_2025_100929 crossref_primary_10_1016_j_entcom_2024_100704 crossref_primary_10_1371_journal_pone_0284560 crossref_primary_10_1108_DTA_07_2022_0267 crossref_primary_10_1155_2021_8678853 crossref_primary_10_3389_fnbot_2023_1267561 crossref_primary_10_1155_2022_2376888 crossref_primary_10_1525_mp_2025_2329148 crossref_primary_10_3390_app14146330 crossref_primary_10_2478_amns_2025_0345 crossref_primary_10_1007_s42979_023_02318_7 crossref_primary_10_1109_ACCESS_2025_3527512 crossref_primary_10_1155_2022_1268303 crossref_primary_10_1016_j_heliyon_2024_e24892 crossref_primary_10_1007_s11042_024_19243_3 crossref_primary_10_4018_IJCINI_386839 crossref_primary_10_7759_s44389_025_04209_9 crossref_primary_10_1016_j_entcom_2023_100612 crossref_primary_10_1007_s00521_024_10771_5 crossref_primary_10_1016_j_entcom_2022_100518 crossref_primary_10_3390_app13085010 crossref_primary_10_1038_s41598_025_98766_7 crossref_primary_10_1016_j_jmsy_2025_01_007 crossref_primary_10_12677_aam_2025_148379 crossref_primary_10_1016_j_eswa_2022_116879 crossref_primary_10_3390_app14020855 crossref_primary_10_1007_s00521_023_08294_6 crossref_primary_10_3390_s23073679 crossref_primary_10_1155_2022_4524811 crossref_primary_10_3233_JIFS_219021 crossref_primary_10_2478_amns_2024_1128 crossref_primary_10_2478_amns_2024_3309 crossref_primary_10_1016_j_eswa_2023_122098 crossref_primary_10_1016_j_iswa_2022_200115 crossref_primary_10_1007_s00034_024_02696_0 crossref_primary_10_1016_j_eswa_2024_124473 crossref_primary_10_1038_s41598_024_83577_z crossref_primary_10_1186_s40537_023_00789_2 |
| Cites_doi | 10.1109/TSA.2002.800560 10.1109/TASL.2007.909434 10.1049/iet-spr.2018.5158 |
| ContentType | Journal Article |
| Copyright | The Institution of Engineering and Technology 2020 The Institution of Engineering and Technology |
| Copyright_xml | – notice: The Institution of Engineering and Technology – notice: 2020 The Institution of Engineering and Technology |
| DBID | AAYXX CITATION |
| DOI | 10.1049/el.2019.4202 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Music |
| EISSN | 1350-911X |
| EndPage | 629 |
| ExternalDocumentID | 10_1049_el_2019_4202 ELL2BF07051 |
| Genre | rapidPublication |
| GrantInformation_xml | – fundername: Türkiye Bilimsel ve Teknolojik Araştirma Kurumu grantid: Project no: 5180069 – fundername: Türkiye Bilimsel ve Teknolojik Araştirma Kurumu funderid: Project no: 5180069 |
| GroupedDBID | 0R 24P 29G 4IJ 5GY 6IK 8VB AAJGR ABPTK ABZEH ACGFS ACIWK AENEX ALMA_UNASSIGNED_HOLDINGS BFFAM CS3 DU5 ESX F5P HZ IFIPE IPLJI JAVBF KBT LAI LOTEE LXI LXO LXU M43 MS NADUK NXXTH O9- OCL P2P QWB RIE RNS RUI TN5 U5U UNMZH UNR WH7 X ZL0 ZZ -4A -~X .DC 0R~ 0ZK 1OC 2QL 3EH 4.4 8FE 8FG 96U AAHHS AAHJG ABJCF ABQXS ACCFJ ACCMX ACESK ACGFO ACXQS ADEYR ADIYS ADZOD AEEZP AEGXH AEQDE AFAZI AFKRA AI. AIAGR AIWBW AJBDE ALUQN ARAPS AVUZU BBWZM BENPR BGLVJ CCPQU EBS EJD ELQJU F8P GOZPB GROUPED_DOAJ GRPMH HCIFZ HZ~ IAO IFBGX ITC K1G K7- L6V M7S MCNEO MS~ OK1 P0- P62 PTHSS R4Z RIG VH1 ~ZZ AAMMB AAYXX AEFGJ AFFHD AGXDD AIDQK AIDYY CITATION IDLOA PHGZM PHGZT PQGLB WIN |
| ID | FETCH-LOGICAL-c3521-43b40d6935a051fd7d5e8e45dc310d854764d1503396178042010adc338b0c673 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 53 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000541086800019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0013-5194 1350-911X |
| IngestDate | Wed Oct 29 21:19:38 EDT 2025 Tue Nov 18 22:00:25 EST 2025 Wed Jan 22 16:59:10 EST 2025 Tue Jan 05 21:50:46 EST 2021 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Keywords | pattern classification music acoustic characteristics deep learning recommender systems music music genre classification system feature extraction music recommendation deep neural network model music listening applications acoustic features extraction learning (artificial intelligence) neural nets |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3521-43b40d6935a051fd7d5e8e45dc310d854764d1503396178042010adc338b0c673 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/el.2019.4202 |
| PageCount | 3 |
| ParticipantIDs | crossref_primary_10_1049_el_2019_4202 iet_journals_10_1049_el_2019_4202 wiley_primary_10_1049_el_2019_4202_ELL2BF07051 crossref_citationtrail_10_1049_el_2019_4202 |
| ProviderPackageCode | RUI |
| PublicationCentury | 2000 |
| PublicationDate | 2020-06-11 |
| PublicationDateYYYYMMDD | 2020-06-11 |
| PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-11 day: 11 |
| PublicationDecade | 2020 |
| PublicationTitle | Electronics letters |
| PublicationYear | 2020 |
| Publisher | The Institution of Engineering and Technology |
| Publisher_xml | – name: The Institution of Engineering and Technology |
| References | Holzapfel, A.; Stylianou, Y. (C4) 2008; 16 Tzanetakis, G.; Cook, P. (C1) 2002; 10 Shin, S.-H.; Yun, H.-W.; Jang, W.-J. (C5) 2019; 13 2018 2019; 13 2003 2002; 10 2008; 16 e_1_2_7_6_1 Li T. (e_1_2_7_4_1) 2003 e_1_2_7_5_1 Li T. (e_1_2_7_3_1) 2003 e_1_2_7_2_1 Elbir A. (e_1_2_7_7_1) 2018 |
| References_xml | – volume: 16 start-page: 424 issue: 2 year: 2008 end-page: 434 ident: C4 article-title: Musical genre classification using nonnegative matrix factorization-based features publication-title: IEEE Trans. Audio Speech Lang. Process. – volume: 13 start-page: 230 issue: 2 year: 2019 end-page: 234 ident: C5 article-title: Extraction of acoustic features based on auditory spike code and its application to music genre classification publication-title: IET Signal Process. – volume: 10 start-page: 293 issue: 3 year: 2002 end-page: 302 ident: C1 article-title: Musical genre classification of audio signal publication-title: IEEE Trans. Speech Audio Process. – volume: 16 start-page: 424 issue: 2 year: 2008 end-page: 434 article-title: Musical genre classification using nonnegative matrix factorization‐based features publication-title: IEEE Trans. Audio Speech Lang. Process. – start-page: 1 year: 2018 end-page: 5 – start-page: 282 year: 2003 end-page: 289 – volume: 13 start-page: 230 issue: 2 year: 2019 end-page: 234 article-title: Extraction of acoustic features based on auditory spike code and its application to music genre classification publication-title: IET Signal Process. – volume: 10 start-page: 293 issue: 3 year: 2002 end-page: 302 article-title: Musical genre classification of audio signal publication-title: IEEE Trans. Speech Audio Process. – year: 2003 – ident: e_1_2_7_2_1 doi: 10.1109/TSA.2002.800560 – start-page: 282 volume-title: A comparative study on content‐based music genre classification year: 2003 ident: e_1_2_7_4_1 – ident: e_1_2_7_5_1 doi: 10.1109/TASL.2007.909434 – ident: e_1_2_7_6_1 doi: 10.1049/iet-spr.2018.5158 – start-page: 1 volume-title: Music genre classification and recommendation by using machine learning and deep learning year: 2018 ident: e_1_2_7_7_1 – volume-title: Factors in automatic musical genre classification of audio signals year: 2003 ident: e_1_2_7_3_1 |
| SSID | ssib014146041 ssj0012997 |
| Score | 2.5960264 |
| Snippet | Today, music is a very important and perhaps inseparable part of people's daily life. There are many genres of music and these genres are different from each... |
| SourceID | crossref wiley iet |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 627 |
| SubjectTerms | acoustic features extraction deep learning deep neural network model feature extraction learning (artificial intelligence) music music acoustic characteristics music genre classification system music listening applications music recommendation neural nets pattern classification recommender systems Signal processing |
| Title | Music genre classification and music recommendation by using deep learning |
| URI | http://digital-library.theiet.org/content/journals/10.1049/el.2019.4202 https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fel.2019.4202 |
| Volume | 56 |
| WOSCitedRecordID | wos000541086800019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1350-911X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012997 issn: 0013-5194 databaseCode: WIN dateStart: 20130101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1350-911X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012997 issn: 0013-5194 databaseCode: 24P dateStart: 20130101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA7aetCDj6pYX0TQk6zuI9ndHFVaVErpQbG3JZukpdCupa2C_96ZbCztoYJ42T1ksizzykwmmY-QS258o0CVPFxOIUERxpNKSk9BxqLABHtCaAs2kbTbabcrOm7DDe_ClP0h5htuaBnWX6OBy7xEIYGgFoWIhYNA3LAQe0lWgyBKEbohZJ15FQFcrQVXibiPRt11B99h_u3i7KUlaX1gZsuBql1pmjv__cddsu1iTHpXKsUeWTNFjWwtdB6skarFd94nz_ZNrRZRhZE0Hh2y0qKy0HRkhzFrHo2Mw1-i-RfF4_J9qo0ZU4c70T8gr83Gy8Oj5-AVPAVRF2SOUc58HYuIS7DMnk40N6lhXCsI-XTKWRIzHWCZU-A9QrBuyN0kjEZp7qs4iQ5JpXgvzBGhORDh1SspFIQL4BO4DnWcJzG4WnAiaZ1c_3A4U673OEJgDDNbA2ciM8MMOZUhp-rkak49LnturKC7AGFlzuimK2hKAf36oazRaoX3TVBZHhz_dcIJ2QwxB0c8o-CUVGaTD3NGNtTnbDCdnFuFhOfbU_sb9ZDb0w |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT8IwEG8UTNQHP1AjftZEn8wUWLutj2ogoHPxASNvzdYWQgKTAJr433vXTQIPmBif9tDrsrT3u97trvcj5JKbilGgSg4epxCgCOPEKo4dBRGLAgh2hdCWbMKPoqDTES85zynehcn6Q8x-uCEyrL1GgOMP6SzgZNgk02DmoCpuWA2bSRYZ-BrI3fDWimZpBLC1ll3F5RVEdSevfIf5t_OzF86k1b6ZLnqq9qhpbP_7I3fIVu5l0rtMLXbJiklLZHOu92CJFC3D8x55tE9q9Ygq9KWxeMjuF41TTYd2GOPm4dDkDEw0-aJYMN-j2pgRzZknevvktVFvPzSdnGDBUeB3QezoJqyiPeHyGLDZ1b7mJjCMawVOnw448z2mq5joFHiTEPAN0VsMo26QVJTnuwekkL6n5pDQBITw8lUsFDgMYBW4rmkv8T0wtmBGgjK5_lliqfLu40iCMZA2C86ENAOJKyVxpcrkaiY9yrpuLJG7gN2SOewmS2SyHfr1RbIehrX7Bigtrx79dcI5WW-2n0MZtqKnY7KBMllB7wkpTMcf5pSsqc9pfzI-s9r5DZAr3yQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI5gQwgOPAaI8QwSnFChj6RtjjxW8ZimHUDaLWqTbJq0lWkbSPx77LRM4zAkxKmHOFUV-3PsOvFHyDk3rlFgSg5up5CgCOOkKk0dBRmLAgh2hdCWbCJqteJOR7RLnlO8C1P0h5j9cENkWH-NADcj3S0SToZNMg1WDjxxxXxsJlllPPLQrH3WnpURwNdadpWAu4jqTnnyHeZfz8_-sSct9830Z6Rqt5pk898fuUU2yiiT3hRmsU2WTF4j63O9B2ukahmed8iTfVJrR1RhLI2Hh6y-aJprOrTDmDcPh6ZkYKLZJ8UD8z2qjRnRknmit0tek8bL3YNTEiw4CuIuyB2DjLk6FAFPAZtdHWluYsO4VhD06ZizKGTaw0KnwJuEgG_I3lIYDeLMVWEU7JFK_pabfUIzEMLLV6lQEDCAV-Da12EWheBswY3EdXL5vcRSld3HkQRjIG0VnAlpBhJXSuJK1cnFTHpUdN1YIHcG2pIl7CYLZAoN_foi2Wg2_dsEjJZ7B3-dcEpW2_eJbD62ng_Jmo8JOZIbeUekMh2_m2Oyoj6m_cn4xBrnF9Kk3jM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Music+genre+classification+and+music+recommendation+by+using+deep+learning&rft.jtitle=Electronics+letters&rft.au=Elbir%2C+A.&rft.au=Aydin%2C+N.&rft.date=2020-06-11&rft.issn=0013-5194&rft.eissn=1350-911X&rft.volume=56&rft.issue=12&rft.spage=627&rft.epage=629&rft_id=info:doi/10.1049%2Fel.2019.4202&rft.externalDBID=n%2Fa&rft.externalDocID=10_1049_el_2019_4202 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-5194&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-5194&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-5194&client=summon |