Music genre classification and music recommendation by using deep learning

Today, music is a very important and perhaps inseparable part of people's daily life. There are many genres of music and these genres are different from each other, resulting in people to have different preferences of music. As a result, it is an important and up-to-date issue to classify music...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Electronics letters Ročník 56; číslo 12; s. 627 - 629
Hlavní autori: Elbir, A, Aydin, N
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: The Institution of Engineering and Technology 11.06.2020
Predmet:
ISSN:0013-5194, 1350-911X, 1350-911X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Today, music is a very important and perhaps inseparable part of people's daily life. There are many genres of music and these genres are different from each other, resulting in people to have different preferences of music. As a result, it is an important and up-to-date issue to classify music and to recommend people new music in music listening applications and platforms. Classifying music by their genre is one of the most useful techniques used to solve this problem. There are a number of approaches for music classification and recommendation. One approach is based on the acoustic characteristics of music. In this study, a music genre classification system and music recommendation engine, which focuses on extracting representative features that have been obtained by a novel deep neural network model, have been proposed. Acoustic features extracted from these networks have been utilised for music genre classification and music recommendation on a data set.
AbstractList Today, music is a very important and perhaps inseparable part of people's daily life. There are many genres of music and these genres are different from each other, resulting in people to have different preferences of music. As a result, it is an important and up‐to‐date issue to classify music and to recommend people new music in music listening applications and platforms. Classifying music by their genre is one of the most useful techniques used to solve this problem. There are a number of approaches for music classification and recommendation. One approach is based on the acoustic characteristics of music. In this study, a music genre classification system and music recommendation engine, which focuses on extracting representative features that have been obtained by a novel deep neural network model, have been proposed. Acoustic features extracted from these networks have been utilised for music genre classification and music recommendation on a data set.
Author Elbir, A
Aydin, N
Author_xml – sequence: 1
  givenname: A
  surname: Elbir
  fullname: Elbir, A
  email: aelbir@yildiz.edu.tr
  organization: Department of Computer Engineering, Yildiz Technical University, Istanbul, Turkey
– sequence: 2
  givenname: N
  surname: Aydin
  fullname: Aydin, N
  organization: Department of Computer Engineering, Yildiz Technical University, Istanbul, Turkey
BookMark eNp9UMtOwzAQtFCRKKU3PiBHDqTsxnYeR6haHgriAhI3y7GdyihxKicV6t_jNpwQcFrtzsyOZs7JxHXOEHKJsEBgxY1pFglgsWAJJCdkipRDXCC-T8gUAGnMsWBnZN73tgJkyFJgOCVPz7veqmhjnDeRamSAa6vkYDsXSaej9gh7o7q2NU6PQLWPwtltIm3MNmqM9C5sF-S0lk1v5t9zRt7Wq9flQ1y-3D8ub8tYUZ5gzGjFQKcF5RI41jrT3OSGca0ogs45y1KmkQOlRYpZDiEPggwozStQaUZn5Hr8q3zX997UYuttK_1eIIhDFcI04lCFOFQR6MkPurLDMcfgpW3-EvFR9Gkbs__XQKzKMrlbQxbSBN3VqLNmEB_dzrvQxO8WX_Vcf0M
CitedBy_id crossref_primary_10_1155_2022_4520953
crossref_primary_10_1016_j_ipm_2022_103256
crossref_primary_10_1155_2022_1559726
crossref_primary_10_3390_app13169425
crossref_primary_10_1016_j_entcom_2024_100645
crossref_primary_10_1016_j_entcom_2025_100929
crossref_primary_10_1016_j_entcom_2024_100704
crossref_primary_10_1371_journal_pone_0284560
crossref_primary_10_1108_DTA_07_2022_0267
crossref_primary_10_1155_2021_8678853
crossref_primary_10_3389_fnbot_2023_1267561
crossref_primary_10_1155_2022_2376888
crossref_primary_10_1525_mp_2025_2329148
crossref_primary_10_3390_app14146330
crossref_primary_10_2478_amns_2025_0345
crossref_primary_10_1007_s42979_023_02318_7
crossref_primary_10_1109_ACCESS_2025_3527512
crossref_primary_10_1155_2022_1268303
crossref_primary_10_1016_j_heliyon_2024_e24892
crossref_primary_10_1007_s11042_024_19243_3
crossref_primary_10_4018_IJCINI_386839
crossref_primary_10_7759_s44389_025_04209_9
crossref_primary_10_1016_j_entcom_2023_100612
crossref_primary_10_1007_s00521_024_10771_5
crossref_primary_10_1016_j_entcom_2022_100518
crossref_primary_10_3390_app13085010
crossref_primary_10_1038_s41598_025_98766_7
crossref_primary_10_1016_j_jmsy_2025_01_007
crossref_primary_10_12677_aam_2025_148379
crossref_primary_10_1016_j_eswa_2022_116879
crossref_primary_10_3390_app14020855
crossref_primary_10_1007_s00521_023_08294_6
crossref_primary_10_3390_s23073679
crossref_primary_10_1155_2022_4524811
crossref_primary_10_3233_JIFS_219021
crossref_primary_10_2478_amns_2024_1128
crossref_primary_10_2478_amns_2024_3309
crossref_primary_10_1016_j_eswa_2023_122098
crossref_primary_10_1016_j_iswa_2022_200115
crossref_primary_10_1007_s00034_024_02696_0
crossref_primary_10_1016_j_eswa_2024_124473
crossref_primary_10_1038_s41598_024_83577_z
crossref_primary_10_1186_s40537_023_00789_2
Cites_doi 10.1109/TSA.2002.800560
10.1109/TASL.2007.909434
10.1049/iet-spr.2018.5158
ContentType Journal Article
Copyright The Institution of Engineering and Technology
2020 The Institution of Engineering and Technology
Copyright_xml – notice: The Institution of Engineering and Technology
– notice: 2020 The Institution of Engineering and Technology
DBID AAYXX
CITATION
DOI 10.1049/el.2019.4202
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Music
EISSN 1350-911X
EndPage 629
ExternalDocumentID 10_1049_el_2019_4202
ELL2BF07051
Genre rapidPublication
GrantInformation_xml – fundername: Türkiye Bilimsel ve Teknolojik Araştirma Kurumu
  grantid: Project no: 5180069
– fundername: Türkiye Bilimsel ve Teknolojik Araştirma Kurumu
  funderid: Project no: 5180069
GroupedDBID 0R
24P
29G
4IJ
5GY
6IK
8VB
AAJGR
ABPTK
ABZEH
ACGFS
ACIWK
AENEX
ALMA_UNASSIGNED_HOLDINGS
BFFAM
CS3
DU5
ESX
F5P
HZ
IFIPE
IPLJI
JAVBF
KBT
LAI
LOTEE
LXI
LXO
LXU
M43
MS
NADUK
NXXTH
O9-
OCL
P2P
QWB
RIE
RNS
RUI
TN5
U5U
UNMZH
UNR
WH7
X
ZL0
ZZ
-4A
-~X
.DC
0R~
0ZK
1OC
2QL
3EH
4.4
8FE
8FG
96U
AAHHS
AAHJG
ABJCF
ABQXS
ACCFJ
ACCMX
ACESK
ACGFO
ACXQS
ADEYR
ADIYS
ADZOD
AEEZP
AEGXH
AEQDE
AFAZI
AFKRA
AI.
AIAGR
AIWBW
AJBDE
ALUQN
ARAPS
AVUZU
BBWZM
BENPR
BGLVJ
CCPQU
EBS
EJD
ELQJU
F8P
GOZPB
GROUPED_DOAJ
GRPMH
HCIFZ
HZ~
IAO
IFBGX
ITC
K1G
K7-
L6V
M7S
MCNEO
MS~
OK1
P0-
P62
PTHSS
R4Z
RIG
VH1
~ZZ
AAMMB
AAYXX
AEFGJ
AFFHD
AGXDD
AIDQK
AIDYY
CITATION
IDLOA
PHGZM
PHGZT
PQGLB
WIN
ID FETCH-LOGICAL-c3521-43b40d6935a051fd7d5e8e45dc310d854764d1503396178042010adc338b0c673
IEDL.DBID 24P
ISICitedReferencesCount 53
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000541086800019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0013-5194
1350-911X
IngestDate Wed Oct 29 21:19:38 EDT 2025
Tue Nov 18 22:00:25 EST 2025
Wed Jan 22 16:59:10 EST 2025
Tue Jan 05 21:50:46 EST 2021
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords pattern classification
music acoustic characteristics
deep learning
recommender systems
music
music genre classification system
feature extraction
music recommendation
deep neural network model
music listening applications
acoustic features extraction
learning (artificial intelligence)
neural nets
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3521-43b40d6935a051fd7d5e8e45dc310d854764d1503396178042010adc338b0c673
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/el.2019.4202
PageCount 3
ParticipantIDs crossref_primary_10_1049_el_2019_4202
iet_journals_10_1049_el_2019_4202
wiley_primary_10_1049_el_2019_4202_ELL2BF07051
crossref_citationtrail_10_1049_el_2019_4202
ProviderPackageCode RUI
PublicationCentury 2000
PublicationDate 2020-06-11
PublicationDateYYYYMMDD 2020-06-11
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-11
  day: 11
PublicationDecade 2020
PublicationTitle Electronics letters
PublicationYear 2020
Publisher The Institution of Engineering and Technology
Publisher_xml – name: The Institution of Engineering and Technology
References Holzapfel, A.; Stylianou, Y. (C4) 2008; 16
Tzanetakis, G.; Cook, P. (C1) 2002; 10
Shin, S.-H.; Yun, H.-W.; Jang, W.-J. (C5) 2019; 13
2018
2019; 13
2003
2002; 10
2008; 16
e_1_2_7_6_1
Li T. (e_1_2_7_4_1) 2003
e_1_2_7_5_1
Li T. (e_1_2_7_3_1) 2003
e_1_2_7_2_1
Elbir A. (e_1_2_7_7_1) 2018
References_xml – volume: 16
  start-page: 424
  issue: 2
  year: 2008
  end-page: 434
  ident: C4
  article-title: Musical genre classification using nonnegative matrix factorization-based features
  publication-title: IEEE Trans. Audio Speech Lang. Process.
– volume: 13
  start-page: 230
  issue: 2
  year: 2019
  end-page: 234
  ident: C5
  article-title: Extraction of acoustic features based on auditory spike code and its application to music genre classification
  publication-title: IET Signal Process.
– volume: 10
  start-page: 293
  issue: 3
  year: 2002
  end-page: 302
  ident: C1
  article-title: Musical genre classification of audio signal
  publication-title: IEEE Trans. Speech Audio Process.
– volume: 16
  start-page: 424
  issue: 2
  year: 2008
  end-page: 434
  article-title: Musical genre classification using nonnegative matrix factorization‐based features
  publication-title: IEEE Trans. Audio Speech Lang. Process.
– start-page: 1
  year: 2018
  end-page: 5
– start-page: 282
  year: 2003
  end-page: 289
– volume: 13
  start-page: 230
  issue: 2
  year: 2019
  end-page: 234
  article-title: Extraction of acoustic features based on auditory spike code and its application to music genre classification
  publication-title: IET Signal Process.
– volume: 10
  start-page: 293
  issue: 3
  year: 2002
  end-page: 302
  article-title: Musical genre classification of audio signal
  publication-title: IEEE Trans. Speech Audio Process.
– year: 2003
– ident: e_1_2_7_2_1
  doi: 10.1109/TSA.2002.800560
– start-page: 282
  volume-title: A comparative study on content‐based music genre classification
  year: 2003
  ident: e_1_2_7_4_1
– ident: e_1_2_7_5_1
  doi: 10.1109/TASL.2007.909434
– ident: e_1_2_7_6_1
  doi: 10.1049/iet-spr.2018.5158
– start-page: 1
  volume-title: Music genre classification and recommendation by using machine learning and deep learning
  year: 2018
  ident: e_1_2_7_7_1
– volume-title: Factors in automatic musical genre classification of audio signals
  year: 2003
  ident: e_1_2_7_3_1
SSID ssib014146041
ssj0012997
Score 2.5960264
Snippet Today, music is a very important and perhaps inseparable part of people's daily life. There are many genres of music and these genres are different from each...
SourceID crossref
wiley
iet
SourceType Enrichment Source
Index Database
Publisher
StartPage 627
SubjectTerms acoustic features extraction
deep learning
deep neural network model
feature extraction
learning (artificial intelligence)
music
music acoustic characteristics
music genre classification system
music listening applications
music recommendation
neural nets
pattern classification
recommender systems
Signal processing
Title Music genre classification and music recommendation by using deep learning
URI http://digital-library.theiet.org/content/journals/10.1049/el.2019.4202
https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fel.2019.4202
Volume 56
WOSCitedRecordID wos000541086800019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1350-911X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012997
  issn: 0013-5194
  databaseCode: WIN
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1350-911X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012997
  issn: 0013-5194
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA7aetCDj6pYX0TQk6zuI9ndHFVaVErpQbG3JZukpdCupa2C_96ZbCztoYJ42T1ksizzykwmmY-QS258o0CVPFxOIUERxpNKSk9BxqLABHtCaAs2kbTbabcrOm7DDe_ClP0h5htuaBnWX6OBy7xEIYGgFoWIhYNA3LAQe0lWgyBKEbohZJ15FQFcrQVXibiPRt11B99h_u3i7KUlaX1gZsuBql1pmjv__cddsu1iTHpXKsUeWTNFjWwtdB6skarFd94nz_ZNrRZRhZE0Hh2y0qKy0HRkhzFrHo2Mw1-i-RfF4_J9qo0ZU4c70T8gr83Gy8Oj5-AVPAVRF2SOUc58HYuIS7DMnk40N6lhXCsI-XTKWRIzHWCZU-A9QrBuyN0kjEZp7qs4iQ5JpXgvzBGhORDh1SspFIQL4BO4DnWcJzG4WnAiaZ1c_3A4U673OEJgDDNbA2ciM8MMOZUhp-rkak49LnturKC7AGFlzuimK2hKAf36oazRaoX3TVBZHhz_dcIJ2QwxB0c8o-CUVGaTD3NGNtTnbDCdnFuFhOfbU_sb9ZDb0w
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT8IwEG8UTNQHP1AjftZEn8wUWLutj2ogoHPxASNvzdYWQgKTAJr433vXTQIPmBif9tDrsrT3u97trvcj5JKbilGgSg4epxCgCOPEKo4dBRGLAgh2hdCWbMKPoqDTES85zynehcn6Q8x-uCEyrL1GgOMP6SzgZNgk02DmoCpuWA2bSRYZ-BrI3fDWimZpBLC1ll3F5RVEdSevfIf5t_OzF86k1b6ZLnqq9qhpbP_7I3fIVu5l0rtMLXbJiklLZHOu92CJFC3D8x55tE9q9Ygq9KWxeMjuF41TTYd2GOPm4dDkDEw0-aJYMN-j2pgRzZknevvktVFvPzSdnGDBUeB3QezoJqyiPeHyGLDZ1b7mJjCMawVOnw448z2mq5joFHiTEPAN0VsMo26QVJTnuwekkL6n5pDQBITw8lUsFDgMYBW4rmkv8T0wtmBGgjK5_lliqfLu40iCMZA2C86ENAOJKyVxpcrkaiY9yrpuLJG7gN2SOewmS2SyHfr1RbIehrX7Bigtrx79dcI5WW-2n0MZtqKnY7KBMllB7wkpTMcf5pSsqc9pfzI-s9r5DZAr3yQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI5gQwgOPAaI8QwSnFChj6RtjjxW8ZimHUDaLWqTbJq0lWkbSPx77LRM4zAkxKmHOFUV-3PsOvFHyDk3rlFgSg5up5CgCOOkKk0dBRmLAgh2hdCWbCJqteJOR7RLnlO8C1P0h5j9cENkWH-NADcj3S0SToZNMg1WDjxxxXxsJlllPPLQrH3WnpURwNdadpWAu4jqTnnyHeZfz8_-sSct9830Z6Rqt5pk898fuUU2yiiT3hRmsU2WTF4j63O9B2ukahmed8iTfVJrR1RhLI2Hh6y-aJprOrTDmDcPh6ZkYKLZJ8UD8z2qjRnRknmit0tek8bL3YNTEiw4CuIuyB2DjLk6FAFPAZtdHWluYsO4VhD06ZizKGTaw0KnwJuEgG_I3lIYDeLMVWEU7JFK_pabfUIzEMLLV6lQEDCAV-Da12EWheBswY3EdXL5vcRSld3HkQRjIG0VnAlpBhJXSuJK1cnFTHpUdN1YIHcG2pIl7CYLZAoN_foi2Wg2_dsEjJZ7B3-dcEpW2_eJbD62ng_Jmo8JOZIbeUekMh2_m2Oyoj6m_cn4xBrnF9Kk3jM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Music+genre+classification+and+music+recommendation+by+using+deep+learning&rft.jtitle=Electronics+letters&rft.au=Elbir%2C+A.&rft.au=Aydin%2C+N.&rft.date=2020-06-11&rft.issn=0013-5194&rft.eissn=1350-911X&rft.volume=56&rft.issue=12&rft.spage=627&rft.epage=629&rft_id=info:doi/10.1049%2Fel.2019.4202&rft.externalDBID=n%2Fa&rft.externalDocID=10_1049_el_2019_4202
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-5194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-5194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-5194&client=summon