Hyperchaos in a second-order discrete memristor-based map model
This Letter presents a new second-order discrete map model, which is derived from a simple sampling switch-based memristor-capacitor circuit. The memristor-based map model has infinite unstable and critical stable fixed points, and exhibits chaotic and hyperchaotic behaviours via a period-doubling b...
Uloženo v:
| Vydáno v: | Electronics letters Ročník 56; číslo 15; s. 769 - 770 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
The Institution of Engineering and Technology
23.07.2020
|
| Témata: | |
| ISSN: | 0013-5194, 1350-911X, 1350-911X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This Letter presents a new second-order discrete map model, which is derived from a simple sampling switch-based memristor-capacitor circuit. The memristor-based map model has infinite unstable and critical stable fixed points, and exhibits chaotic and hyperchaotic behaviours via a period-doubling bifurcation scenario. These complex dynamical behaviours are confirmed by the phase portraits, iterative sequences and basins of attraction. |
|---|---|
| ISSN: | 0013-5194 1350-911X 1350-911X |
| DOI: | 10.1049/el.2020.1172 |