Semisupervised Text Classification by Variational Autoencoder

Semisupervised text classification has attracted much attention from the research community. In this paper, a novel model, the semisupervised sequential variational autoencoder (SSVAE), is proposed to tackle this problem. By treating the categorical label of unlabeled data as a discrete latent varia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems Jg. 31; H. 1; S. 295 - 308
Hauptverfasser: Xu, Weidi, Tan, Ying
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 01.01.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2162-237X, 2162-2388, 2162-2388
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!