Ordinal Constraint Binary Coding for Approximate Nearest Neighbor Search

Binary code learning, a.k.a. hashing, has been successfully applied to the approximate nearest neighbor search in large-scale image collections. The key challenge lies in reducing the quantization error from the original real-valued feature space to a discrete Hamming space. Recent advances in unsup...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on pattern analysis and machine intelligence Vol. 41; no. 4; pp. 941 - 955
Main Authors: Liu, Hong, Ji, Rongrong, Wang, Jingdong, Shen, Chunhua
Format: Journal Article
Language:English
Published: United States IEEE 01.04.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0162-8828, 1939-3539, 2160-9292, 1939-3539
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Binary code learning, a.k.a. hashing, has been successfully applied to the approximate nearest neighbor search in large-scale image collections. The key challenge lies in reducing the quantization error from the original real-valued feature space to a discrete Hamming space. Recent advances in unsupervised hashing advocate the preservation of ranking information, which is achieved by constraining the binary code learning to be correlated with pairwise similarity. However, few unsupervised methods consider the preservation of ordinal relations in the learning process, which serves as a more basic cue to learn optimal binary codes. In this paper, we propose a novel hashing scheme, termed Ordinal Constraint Hashing (OCH), which embeds the ordinal relation among data points to preserve ranking into binary codes. The core idea is to construct an ordinal graph via tensor product, and then train the hash function over this graph to preserve the permutation relations among data points in the Hamming space. Subsequently, an in-depth acceleration scheme, termed Ordinal Constraint Projection (OCP), is introduced, which approximates the <inline-formula><tex-math notation="LaTeX">n</tex-math> <inline-graphic xlink:href="ji-ieq1-2819978.gif"/> </inline-formula>-pair ordinal graph by <inline-formula><tex-math notation="LaTeX">L</tex-math> <inline-graphic xlink:href="ji-ieq2-2819978.gif"/> </inline-formula>-pair anchor-based ordinal graph, and reduce the corresponding complexity from <inline-formula><tex-math notation="LaTeX">O(n^4)</tex-math> <inline-graphic xlink:href="ji-ieq3-2819978.gif"/> </inline-formula> to <inline-formula><tex-math notation="LaTeX">O(L^3)</tex-math> <inline-graphic xlink:href="ji-ieq4-2819978.gif"/> </inline-formula> (<inline-formula><tex-math notation="LaTeX">L\ll n</tex-math> <inline-graphic xlink:href="ji-ieq5-2819978.gif"/> </inline-formula>). Finally, to make the optimization tractable, we further relax the discrete constrains and design a customized stochastic gradient decent algorithm on the Stiefel manifold. Experimental results on serval large-scale benchmarks demonstrate that the proposed OCH method can achieve superior performance over the state-of-the-art approaches.
AbstractList Binary code learning, a.k.a. hashing, has been successfully applied to the approximate nearest neighbor search in large-scale image collections. The key challenge lies in reducing the quantization error from the original real-valued feature space to a discrete Hamming space. Recent advances in unsupervised hashing advocate the preservation of ranking information, which is achieved by constraining the binary code learning to be correlated with pairwise similarity. However, few unsupervised methods consider the preservation of ordinal relations in the learning process, which serves as a more basic cue to learn optimal binary codes. In this paper, we propose a novel hashing scheme, termed Ordinal Constraint Hashing (OCH), which embeds the ordinal relation among data points to preserve ranking into binary codes. The core idea is to construct an ordinal graph via tensor product, and then train the hash function over this graph to preserve the permutation relations among data points in the Hamming space. Subsequently, an in-depth acceleration scheme, termed Ordinal Constraint Projection (OCP), is introduced, which approximates the n-pair ordinal graph by L-pair anchor-based ordinal graph, and reduce the corresponding complexity from O(n ) to O(L ) ( L << n). Finally, to make the optimization tractable, we further relax the discrete constrains and design a customized stochastic gradient decent algorithm on the Stiefel manifold. Experimental results on serval large-scale benchmarks demonstrate that the proposed OCH method can achieve superior performance over the state-of-the-art approaches.
Binary code learning, a.k.a. hashing, has been successfully applied to the approximate nearest neighbor search in large-scale image collections. The key challenge lies in reducing the quantization error from the original real-valued feature space to a discrete Hamming space. Recent advances in unsupervised hashing advocate the preservation of ranking information, which is achieved by constraining the binary code learning to be correlated with pairwise similarity. However, few unsupervised methods consider the preservation of ordinal relations in the learning process, which serves as a more basic cue to learn optimal binary codes. In this paper, we propose a novel hashing scheme, termed Ordinal Constraint Hashing (OCH), which embeds the ordinal relation among data points to preserve ranking into binary codes. The core idea is to construct an ordinal graph via tensor product, and then train the hash function over this graph to preserve the permutation relations among data points in the Hamming space. Subsequently, an in-depth acceleration scheme, termed Ordinal Constraint Projection (OCP), is introduced, which approximates the <inline-formula><tex-math notation="LaTeX">n</tex-math> <inline-graphic xlink:href="ji-ieq1-2819978.gif"/> </inline-formula>-pair ordinal graph by <inline-formula><tex-math notation="LaTeX">L</tex-math> <inline-graphic xlink:href="ji-ieq2-2819978.gif"/> </inline-formula>-pair anchor-based ordinal graph, and reduce the corresponding complexity from <inline-formula><tex-math notation="LaTeX">O(n^4)</tex-math> <inline-graphic xlink:href="ji-ieq3-2819978.gif"/> </inline-formula> to <inline-formula><tex-math notation="LaTeX">O(L^3)</tex-math> <inline-graphic xlink:href="ji-ieq4-2819978.gif"/> </inline-formula> (<inline-formula><tex-math notation="LaTeX">L\ll n</tex-math> <inline-graphic xlink:href="ji-ieq5-2819978.gif"/> </inline-formula>). Finally, to make the optimization tractable, we further relax the discrete constrains and design a customized stochastic gradient decent algorithm on the Stiefel manifold. Experimental results on serval large-scale benchmarks demonstrate that the proposed OCH method can achieve superior performance over the state-of-the-art approaches.
Binary code learning, a.k.a. hashing, has been successfully applied to the approximate nearest neighbor search in large-scale image collections. The key challenge lies in reducing the quantization error from the original real-valued feature space to a discrete Hamming space. Recent advances in unsupervised hashing advocate the preservation of ranking information, which is achieved by constraining the binary code learning to be correlated with pairwise similarity. However, few unsupervised methods consider the preservation of ordinal relations in the learning process, which serves as a more basic cue to learn optimal binary codes. In this paper, we propose a novel hashing scheme, termed Ordinal Constraint Hashing (OCH), which embeds the ordinal relation among data points to preserve ranking into binary codes. The core idea is to construct an ordinal graph via tensor product, and then train the hash function over this graph to preserve the permutation relations among data points in the Hamming space. Subsequently, an in-depth acceleration scheme, termed Ordinal Constraint Projection (OCP), is introduced, which approximates the n-pair ordinal graph by L-pair anchor-based ordinal graph, and reduce the corresponding complexity from O(n4) to O(L3) ( L << n). Finally, to make the optimization tractable, we further relax the discrete constrains and design a customized stochastic gradient decent algorithm on the Stiefel manifold. Experimental results on serval large-scale benchmarks demonstrate that the proposed OCH method can achieve superior performance over the state-of-the-art approaches.Binary code learning, a.k.a. hashing, has been successfully applied to the approximate nearest neighbor search in large-scale image collections. The key challenge lies in reducing the quantization error from the original real-valued feature space to a discrete Hamming space. Recent advances in unsupervised hashing advocate the preservation of ranking information, which is achieved by constraining the binary code learning to be correlated with pairwise similarity. However, few unsupervised methods consider the preservation of ordinal relations in the learning process, which serves as a more basic cue to learn optimal binary codes. In this paper, we propose a novel hashing scheme, termed Ordinal Constraint Hashing (OCH), which embeds the ordinal relation among data points to preserve ranking into binary codes. The core idea is to construct an ordinal graph via tensor product, and then train the hash function over this graph to preserve the permutation relations among data points in the Hamming space. Subsequently, an in-depth acceleration scheme, termed Ordinal Constraint Projection (OCP), is introduced, which approximates the n-pair ordinal graph by L-pair anchor-based ordinal graph, and reduce the corresponding complexity from O(n4) to O(L3) ( L << n). Finally, to make the optimization tractable, we further relax the discrete constrains and design a customized stochastic gradient decent algorithm on the Stiefel manifold. Experimental results on serval large-scale benchmarks demonstrate that the proposed OCH method can achieve superior performance over the state-of-the-art approaches.
Binary code learning, a.k.a. hashing, has been successfully applied to the approximate nearest neighbor search in large-scale image collections. The key challenge lies in reducing the quantization error from the original real-valued feature space to a discrete Hamming space. Recent advances in unsupervised hashing advocate the preservation of ranking information, which is achieved by constraining the binary code learning to be correlated with pairwise similarity. However, few unsupervised methods consider the preservation of ordinal relations in the learning process, which serves as a more basic cue to learn optimal binary codes. In this paper, we propose a novel hashing scheme, termed Ordinal Constraint Hashing (OCH), which embeds the ordinal relation among data points to preserve ranking into binary codes. The core idea is to construct an ordinal graph via tensor product, and then train the hash function over this graph to preserve the permutation relations among data points in the Hamming space. Subsequently, an in-depth acceleration scheme, termed Ordinal Constraint Projection (OCP), is introduced, which approximates the [Formula Omitted]-pair ordinal graph by [Formula Omitted]-pair anchor-based ordinal graph, and reduce the corresponding complexity from [Formula Omitted] to [Formula Omitted] ([Formula Omitted]). Finally, to make the optimization tractable, we further relax the discrete constrains and design a customized stochastic gradient decent algorithm on the Stiefel manifold. Experimental results on serval large-scale benchmarks demonstrate that the proposed OCH method can achieve superior performance over the state-of-the-art approaches.
Author Ji, Rongrong
Shen, Chunhua
Wang, Jingdong
Liu, Hong
Author_xml – sequence: 1
  givenname: Hong
  orcidid: 0000-0002-4295-2224
  surname: Liu
  fullname: Liu, Hong
  email: lynnliu0207@163.com
  organization: Fujian Key Laboratory of Sensing and Computing for Smart City, School of Information Science and Engineering, Xiamen University, Xiamen Shi, Fujian Sheng, China
– sequence: 2
  givenname: Rongrong
  orcidid: 0000-0001-9163-2932
  surname: Ji
  fullname: Ji, Rongrong
  email: rrji@xmu.edu.cn
  organization: Fujian Key Laboratory of Sensing and Computing for Smart City, School of Information Science and Engineering, Xiamen University, Xiamen Shi, Fujian Sheng, China
– sequence: 3
  givenname: Jingdong
  orcidid: 0000-0002-4888-4445
  surname: Wang
  fullname: Wang, Jingdong
  email: jingdw@microsoft.com
  organization: Microsoft Research Asia, Beijing, China
– sequence: 4
  givenname: Chunhua
  orcidid: 0000-0002-8648-8718
  surname: Shen
  fullname: Shen, Chunhua
  email: chunhua.shen@adelaide.edu.au
  organization: University of Adelaide, SA, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29994286$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9LAzEQxYMo2qpfQEEWvHjZmkm6cXKsxT-FagV7D-luoivb3ZpswX57p7b14MHTwJvfG2bmddl-3dSOsTPgPQCur6cvg6dRT3DAnkDQ-gb3WEeA4qkWWuyzDgclUkSBR6wb4wfn0M-4PGRHQmvdF6g67HESirK2VTJs6tgGW9ZtcktCWJFCnbfENyEZLBah-SrntnXJs7PBxZZq-fY-o-YrCfn7CTvwtorudFuP2fT-bjp8TMeTh9FwME5zmUGbeg1SKK-5QqUybgtlJViutLtRynsQGcwy73RfFhkH4TQK5720iJBL9PKYXW3G0kKfS9rDzMuYu6qytWuW0QgaLKXWoAm9_IN-NMtAtxIFiIoL7CNRF1tqOZu7wiwCnRlWZvciAnAD5KGJMThv8rK1bdnU63dVBrhZp2F-0jDrNMw2DbKKP9bd9H9N5xtT6Zz7NSB9LctQfgM4YJNo
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1002_cpe_6355
crossref_primary_10_1145_3558769
crossref_primary_10_1145_3532519
crossref_primary_10_1007_s13042_020_01145_z
crossref_primary_10_1109_TBDATA_2022_3233457
crossref_primary_10_1109_TCSVT_2019_2943902
crossref_primary_10_1109_TIP_2025_3594140
crossref_primary_10_1186_s13640_020_00497_4
crossref_primary_10_1109_TNNLS_2021_3071127
crossref_primary_10_1109_TNNLS_2020_3018790
crossref_primary_10_1109_TPAMI_2020_3042193
crossref_primary_10_1109_JIOT_2020_2992035
crossref_primary_10_1109_TCYB_2019_2955130
crossref_primary_10_1007_s11760_025_04030_w
crossref_primary_10_1016_j_patcog_2022_109194
crossref_primary_10_1109_TPAMI_2019_2944597
crossref_primary_10_1016_j_neucom_2019_10_073
crossref_primary_10_1109_TIP_2018_2889269
crossref_primary_10_1109_TIP_2020_3028170
crossref_primary_10_1109_TITS_2024_3351841
crossref_primary_10_1109_TNNLS_2022_3160597
crossref_primary_10_1109_TNNLS_2018_2869574
crossref_primary_10_1109_TKDE_2019_2935449
crossref_primary_10_1109_TSMC_2022_3233392
crossref_primary_10_1109_TIP_2023_3242777
crossref_primary_10_1109_TMM_2023_3296940
crossref_primary_10_1007_s10489_025_06563_6
crossref_primary_10_1109_TCSVT_2023_3281868
crossref_primary_10_1016_j_eswa_2023_120832
crossref_primary_10_1016_j_ins_2025_122532
crossref_primary_10_3390_electronics11142236
crossref_primary_10_1109_TKDE_2023_3289882
crossref_primary_10_1007_s11760_019_01523_3
crossref_primary_10_1016_j_neucom_2020_11_017
crossref_primary_10_1109_LSP_2019_2941368
crossref_primary_10_1109_TIP_2020_2981879
crossref_primary_10_3390_rs13234786
crossref_primary_10_1007_s00371_020_01993_4
crossref_primary_10_1007_s11280_022_01072_9
crossref_primary_10_1109_TNNLS_2021_3060830
Cites_doi 10.1145/997817.997857
10.1007/s10107-012-0584-1
10.1109/CVPR.2008.4587633
10.1109/TPAMI.2010.57
10.1109/ICCV.2015.223
10.1145/509961.509965
10.1109/TPAMI.2012.193
10.1145/1646396.1646452
10.1109/CVPR.2014.124
10.1109/JPROC.2015.2487976
10.1109/CVPR.2013.207
10.1023/A:1011139631724
10.1109/TMM.2017.2774009
10.1109/CVPR.2013.378
10.1109/ICCV.2013.377
10.1006/jagm.2000.1131
10.1109/TPAMI.2015.2404776
10.1109/TPAMI.2017.2699960
10.1109/TPAMI.2013.240
10.1109/CVPR.2015.7298598
10.1145/1015330.1015408
10.1109/TPAMI.2015.2408363
10.3150/15-BEJ792
10.1145/2502081.2502100
10.1109/TPAMI.2011.219
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TPAMI.2018.2819978
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2160-9292
1939-3539
EndPage 955
ExternalDocumentID 29994286
10_1109_TPAMI_2018_2819978
8326558
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Nature Science Foundation of China
  grantid: U1705262; 61772443; 61572410
– fundername: China Post-Doctoral Science Foundation
  grantid: 2017M612134
– fundername: Nature Science Foundation of Fujian Province, China
  grantid: 2017J01125
– fundername: National Key R&D Program
  grantid: 2017YFC0113000; 2016YFB1001503
– fundername: National Language Committee of China
  grantid: YB135-49
– fundername: Post Doctoral Innovative Talent Support Program
  grantid: BX201600094
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
~02
AAYXX
CITATION
5VS
9M8
AAYOK
ABFSI
ADRHT
AETIX
AGSQL
AI.
AIBXA
ALLEH
FA8
H~9
IBMZZ
ICLAB
IFJZH
NPM
PKN
RIC
RIG
RNI
RZB
VH1
XJT
Z5M
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c351t-f91326f90686650ad6a31a069e766ff1251b5fe943d5012e982eff3a881c38f3
IEDL.DBID RIE
ISICitedReferencesCount 49
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000460583500012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0162-8828
1939-3539
IngestDate Wed Oct 01 14:06:37 EDT 2025
Sun Sep 07 03:44:56 EDT 2025
Wed Feb 19 02:33:40 EST 2025
Tue Nov 18 21:49:20 EST 2025
Sat Nov 29 05:15:58 EST 2025
Wed Aug 27 02:51:46 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-f91326f90686650ad6a31a069e766ff1251b5fe943d5012e982eff3a881c38f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4295-2224
0000-0002-4888-4445
0000-0002-8648-8718
0000-0001-9163-2932
PMID 29994286
PQID 2188602848
PQPubID 85458
PageCount 15
ParticipantIDs proquest_journals_2188602848
proquest_miscellaneous_2068339919
ieee_primary_8326558
pubmed_primary_29994286
crossref_citationtrail_10_1109_TPAMI_2018_2819978
crossref_primary_10_1109_TPAMI_2018_2819978
PublicationCentury 2000
PublicationDate 2019-04-01
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref34
ref12
jiang (ref16) 2015
ref37
ref14
zhang (ref3) 2014
ref30
ref33
ref32
weiss (ref9) 2009
lin (ref24) 2014
ref2
ref1
ref39
ref38
norouzi (ref26) 2012
jégou (ref41) 2012
ref46
maaten (ref48) 2008; 9
kulis (ref18) 2009
ref23
norouzi (ref19) 2011
ref47
ref25
ref42
absil (ref35) 2009
ref22
cunningham (ref36) 2015; 16
ref21
ref43
vidal (ref31) 2016
xu (ref11) 2011
wang (ref44) 2016
raginsky (ref7) 2009
liu (ref17) 2016
cai (ref45) 2016
ref8
liu (ref28) 2017
liu (ref20) 2012
liu (ref10) 2011
ref4
kong (ref27) 2012
ref6
ref5
ref40
liu (ref15) 2014
terada (ref29) 2014
References_xml – ident: ref4
  doi: 10.1145/997817.997857
– ident: ref33
  doi: 10.1007/s10107-012-0584-1
– ident: ref38
  doi: 10.1109/CVPR.2008.4587633
– start-page: 2248
  year: 2015
  ident: ref16
  article-title: Scalable graph hashing with feature transformation
  publication-title: Proc Int Joint Conf Artif Intell
– ident: ref42
  doi: 10.1109/TPAMI.2010.57
– ident: ref25
  doi: 10.1109/ICCV.2015.223
– start-page: 3419
  year: 2014
  ident: ref15
  article-title: Discrete graph hashing
  publication-title: Proc Int Conf Neural Inf Process
– ident: ref6
  doi: 10.1145/509961.509965
– start-page: 847
  year: 2014
  ident: ref29
  article-title: Local ordinal embedding
  publication-title: Proc Int Conf Mach Learn
– ident: ref12
  doi: 10.1109/TPAMI.2012.193
– start-page: 1646
  year: 2012
  ident: ref27
  article-title: Isotropic hashing
  publication-title: Proc Int Conf Neural Inf Process
– ident: ref43
  doi: 10.1145/1646396.1646452
– start-page: 1753
  year: 2009
  ident: ref9
  article-title: Spectral hashing
  publication-title: Proc Int Conf Neural Inf Process
– start-page: 45
  year: 2016
  ident: ref31
  article-title: Model selection for principal component analysis
  publication-title: Generalized Principal Component Analysis
– ident: ref40
  doi: 10.1109/CVPR.2014.124
– volume: 16
  start-page: 2859
  year: 2015
  ident: ref36
  article-title: Linear dimensionality reduction: Survey, insights, and generalizations
  publication-title: J Mach Learn Res
– ident: ref2
  doi: 10.1109/JPROC.2015.2487976
– start-page: 2074
  year: 2012
  ident: ref20
  article-title: Supervised hashing with kernels
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– ident: ref39
  doi: 10.1109/CVPR.2013.207
– ident: ref37
  doi: 10.1023/A:1011139631724
– volume: 9
  start-page: 2579
  year: 2008
  ident: ref48
  article-title: Visualizing data using T-SNE
  publication-title: J Mach Learn Res
– start-page: 1061
  year: 2012
  ident: ref26
  article-title: Hamming distance metric learning
  publication-title: Proc Int Conf Neural Inf Process
– start-page: 2238
  year: 2017
  ident: ref28
  article-title: Ordinal constrained binary code learning for nearest neighbor search
  publication-title: Proc AAAI Conf Artif Intell
– ident: ref47
  doi: 10.1109/TMM.2017.2774009
– ident: ref46
  doi: 10.1109/CVPR.2013.378
– ident: ref23
  doi: 10.1109/ICCV.2013.377
– start-page: 838
  year: 2014
  ident: ref3
  article-title: Composite quantization for approximate nearest neighbor search
  publication-title: Proc Int Conf Mach Learn
– ident: ref5
  doi: 10.1006/jagm.2000.1131
– start-page: 1042
  year: 2009
  ident: ref18
  article-title: Learning to hash with binary reconstructive embeddings
  publication-title: Proc Int Conf Neural Inf Process
– ident: ref21
  doi: 10.1109/TPAMI.2015.2404776
– start-page: 1
  year: 2011
  ident: ref10
  article-title: Hashing with graphs
  publication-title: Proc Int Conf Mach Learn
– ident: ref1
  doi: 10.1109/TPAMI.2017.2699960
– ident: ref34
  doi: 10.1109/TPAMI.2013.240
– start-page: 1631
  year: 2011
  ident: ref11
  article-title: Complementary hashing for approximate nearest neighbor search
  publication-title: Proc IEEE Int Conf Comput Vis
– start-page: 353
  year: 2011
  ident: ref19
  article-title: Minimal loss hashing for compact binary codes
  publication-title: Proc Int Conf Mach Learn
– year: 2009
  ident: ref35
  publication-title: Optimization Algorithms on Matrix Manifolds
– ident: ref22
  doi: 10.1109/CVPR.2015.7298598
– start-page: 774
  year: 2012
  ident: ref41
  article-title: Negative evidences and co-occurences in image retrieval: The benefit of PCA and whitening
  publication-title: Proc Eur Conf Comput Vis
– start-page: 1258
  year: 2016
  ident: ref17
  article-title: Towards optimal binary code learning via ordinal embedding
  publication-title: Proc AAAI Conf Artif Intell
– ident: ref32
  doi: 10.1145/1015330.1015408
– start-page: 1509
  year: 2009
  ident: ref7
  article-title: Locality-sensitive binary codes from shift-invariant kernels
  publication-title: Proc Int Conf Neural Inf Process
– start-page: 613
  year: 2014
  ident: ref24
  article-title: Optimizing ranking measures for compact binary code learning
  publication-title: Proc Eur Conf Comput Vis
– start-page: 1102
  year: 2016
  ident: ref44
  article-title: Affinity preserving quantization for hashing: A vector quantization approach to learning compact binary codes
  publication-title: Proc AAAI Conf Artif Intell
– ident: ref14
  doi: 10.1109/TPAMI.2015.2408363
– year: 2016
  ident: ref45
  article-title: A revisit of hashing algorithms for approximate nearest neighbor search
  publication-title: arXiv preprint arXiv 1612 07545
– ident: ref30
  doi: 10.3150/15-BEJ792
– ident: ref13
  doi: 10.1145/2502081.2502100
– ident: ref8
  doi: 10.1109/TPAMI.2011.219
SSID ssj0014503
Score 2.4932206
Snippet Binary code learning, a.k.a. hashing, has been successfully applied to the approximate nearest neighbor search in large-scale image collections. The key...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 941
SubjectTerms Anchors
Binary code learning
Binary codes
Binary system
Codes
Data points
discrete optimization
Encoding
Hash based algorithms
hashing
image retrieval
Learning
Manifolds
Manifolds (mathematics)
Measurement
Optimization
ordinal preserving
Permutations
Preservation
Quantization (signal)
Ranking
Tensile stress
tensor graph
Tensors
Title Ordinal Constraint Binary Coding for Approximate Nearest Neighbor Search
URI https://ieeexplore.ieee.org/document/8326558
https://www.ncbi.nlm.nih.gov/pubmed/29994286
https://www.proquest.com/docview/2188602848
https://www.proquest.com/docview/2068339919
Volume 41
WOSCitedRecordID wos000460583500012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2160-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014503
  issn: 0162-8828
  databaseCode: RIE
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB4B4gCHUqDQtIBciRs12Fl7H8cUgUCClEMOuVnr9ayEhBKUOIif35n1QxwKEidb3rG93pnRfuN5AZxWMkvssFSxEk7FWelsXKaljCtdGQLkThofOH2nxmM9nZqHNfjd58IgYgg-w3M-Db78au5W_KvsgqRP5rleh3WlZJOr1XsMsjx0QSYEQxpOZkSXIJOYi8nD6P6Wo7j0ObuNyG7iEsCEjLKQQv1mPwoNVt7HmmHPud753Gy_wpcWW0ajRhh2YQ1ne7DT9W2IWjXeg-03RQj34eYvyQjfx707Q8eIOvoTsnTpCu9sEeHaaMS1x18fCd9iNOa6t8uajmTZkwxFTczyN5hcX00ub-K2v0LsRJ7WsTdkikpvOEuEgJqtpBWpTaRBJaX3DH1KjkXLRJXTPoZGD9F7YbVOndBeHMDGbD7D7xDZ1GpFRIh2mAmty7z0iUsUcqkgTHEAabfIhWtrj_MHPRXBBklMEXhUMI-KlkcDOOvveW4qb3xIvc8c6CnbxR_AUcfLolXOZUGohjtv6YyGf_XDpFbsK7EznK-IhhZFEHhLzQAOGxnon92Jzo__v_MnbNHMTBPecwQb9WKFx7DpXurH5eKEZHeqT4Ls_gONWeby
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB7RtFLh0FBoIYVSI3EDg52117vHUBUFNQQOOXCz1utZCalKKuIgfj4z64c4ABInW96xvd6Z0X7jeQEclTKJzLDIwkzYLEwKa8IiLmRYqlITILdSO8_pSTadqttbfbMGJ10uDCL64DM85VPvyy8XdsW_ys5I-mSaqg_wMU3I7qmztTqfQZL6PsiEYUjHyZBoU2QifTa7GV1dchyXOmXHEVlOXASYsFHik6if7Ui-xcrraNPvOhf99813E7406DIY1eLwFdZwvgX9tnND0CjyFmw8K0O4DeNrkhK-j7t3-p4RVXDu83TpCu9tASHbYMTVxx_vCOFiMOXKt8uKjmTbkxQFddTyN5hd_Jn9HodNh4XQijSuQqfJGJVOc54IQTVTSiNiE0mNmZTOMfgpOBotEWVKOxlqNUTnhFEqtkI58R1688UcdyEwsVEZESGaYSKUKtLCRTbKkIsFYYwDiNtFzm1TfZw_6F_urZBI555HOfMob3g0gOPunv917Y03qbeZAx1ls_gD2G95mTfqucwJ13DvLZXQ8GE3TIrF3hIzx8WKaGhRBMG3WA9gp5aB7tmt6Px4-Z2_4PN4djXJJ5fTv3uwTrPUdbDPPvSq-xX-hE_2obpb3h94CX4CRuvpUQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ordinal+Constraint+Binary+Coding+for+Approximate+Nearest+Neighbor+Search&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Liu%2C+Hong&rft.au=Ji%2C+Rongrong&rft.au=Wang%2C+Jingdong&rft.au=Shen%2C+Chunhua&rft.date=2019-04-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0162-8828&rft.eissn=1939-3539&rft.volume=41&rft.issue=4&rft.spage=941&rft_id=info:doi/10.1109%2FTPAMI.2018.2819978&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon