Ordinal Constraint Binary Coding for Approximate Nearest Neighbor Search
Binary code learning, a.k.a. hashing, has been successfully applied to the approximate nearest neighbor search in large-scale image collections. The key challenge lies in reducing the quantization error from the original real-valued feature space to a discrete Hamming space. Recent advances in unsup...
Saved in:
| Published in: | IEEE transactions on pattern analysis and machine intelligence Vol. 41; no. 4; pp. 941 - 955 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
IEEE
01.04.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 0162-8828, 1939-3539, 2160-9292, 1939-3539 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Binary code learning, a.k.a. hashing, has been successfully applied to the approximate nearest neighbor search in large-scale image collections. The key challenge lies in reducing the quantization error from the original real-valued feature space to a discrete Hamming space. Recent advances in unsupervised hashing advocate the preservation of ranking information, which is achieved by constraining the binary code learning to be correlated with pairwise similarity. However, few unsupervised methods consider the preservation of ordinal relations in the learning process, which serves as a more basic cue to learn optimal binary codes. In this paper, we propose a novel hashing scheme, termed Ordinal Constraint Hashing (OCH), which embeds the ordinal relation among data points to preserve ranking into binary codes. The core idea is to construct an ordinal graph via tensor product, and then train the hash function over this graph to preserve the permutation relations among data points in the Hamming space. Subsequently, an in-depth acceleration scheme, termed Ordinal Constraint Projection (OCP), is introduced, which approximates the <inline-formula><tex-math notation="LaTeX">n</tex-math> <inline-graphic xlink:href="ji-ieq1-2819978.gif"/> </inline-formula>-pair ordinal graph by <inline-formula><tex-math notation="LaTeX">L</tex-math> <inline-graphic xlink:href="ji-ieq2-2819978.gif"/> </inline-formula>-pair anchor-based ordinal graph, and reduce the corresponding complexity from <inline-formula><tex-math notation="LaTeX">O(n^4)</tex-math> <inline-graphic xlink:href="ji-ieq3-2819978.gif"/> </inline-formula> to <inline-formula><tex-math notation="LaTeX">O(L^3)</tex-math> <inline-graphic xlink:href="ji-ieq4-2819978.gif"/> </inline-formula> (<inline-formula><tex-math notation="LaTeX">L\ll n</tex-math> <inline-graphic xlink:href="ji-ieq5-2819978.gif"/> </inline-formula>). Finally, to make the optimization tractable, we further relax the discrete constrains and design a customized stochastic gradient decent algorithm on the Stiefel manifold. Experimental results on serval large-scale benchmarks demonstrate that the proposed OCH method can achieve superior performance over the state-of-the-art approaches. |
|---|---|
| AbstractList | Binary code learning, a.k.a. hashing, has been successfully applied to the approximate nearest neighbor search in large-scale image collections. The key challenge lies in reducing the quantization error from the original real-valued feature space to a discrete Hamming space. Recent advances in unsupervised hashing advocate the preservation of ranking information, which is achieved by constraining the binary code learning to be correlated with pairwise similarity. However, few unsupervised methods consider the preservation of ordinal relations in the learning process, which serves as a more basic cue to learn optimal binary codes. In this paper, we propose a novel hashing scheme, termed Ordinal Constraint Hashing (OCH), which embeds the ordinal relation among data points to preserve ranking into binary codes. The core idea is to construct an ordinal graph via tensor product, and then train the hash function over this graph to preserve the permutation relations among data points in the Hamming space. Subsequently, an in-depth acceleration scheme, termed Ordinal Constraint Projection (OCP), is introduced, which approximates the n-pair ordinal graph by L-pair anchor-based ordinal graph, and reduce the corresponding complexity from O(n
) to O(L
) ( L << n). Finally, to make the optimization tractable, we further relax the discrete constrains and design a customized stochastic gradient decent algorithm on the Stiefel manifold. Experimental results on serval large-scale benchmarks demonstrate that the proposed OCH method can achieve superior performance over the state-of-the-art approaches. Binary code learning, a.k.a. hashing, has been successfully applied to the approximate nearest neighbor search in large-scale image collections. The key challenge lies in reducing the quantization error from the original real-valued feature space to a discrete Hamming space. Recent advances in unsupervised hashing advocate the preservation of ranking information, which is achieved by constraining the binary code learning to be correlated with pairwise similarity. However, few unsupervised methods consider the preservation of ordinal relations in the learning process, which serves as a more basic cue to learn optimal binary codes. In this paper, we propose a novel hashing scheme, termed Ordinal Constraint Hashing (OCH), which embeds the ordinal relation among data points to preserve ranking into binary codes. The core idea is to construct an ordinal graph via tensor product, and then train the hash function over this graph to preserve the permutation relations among data points in the Hamming space. Subsequently, an in-depth acceleration scheme, termed Ordinal Constraint Projection (OCP), is introduced, which approximates the <inline-formula><tex-math notation="LaTeX">n</tex-math> <inline-graphic xlink:href="ji-ieq1-2819978.gif"/> </inline-formula>-pair ordinal graph by <inline-formula><tex-math notation="LaTeX">L</tex-math> <inline-graphic xlink:href="ji-ieq2-2819978.gif"/> </inline-formula>-pair anchor-based ordinal graph, and reduce the corresponding complexity from <inline-formula><tex-math notation="LaTeX">O(n^4)</tex-math> <inline-graphic xlink:href="ji-ieq3-2819978.gif"/> </inline-formula> to <inline-formula><tex-math notation="LaTeX">O(L^3)</tex-math> <inline-graphic xlink:href="ji-ieq4-2819978.gif"/> </inline-formula> (<inline-formula><tex-math notation="LaTeX">L\ll n</tex-math> <inline-graphic xlink:href="ji-ieq5-2819978.gif"/> </inline-formula>). Finally, to make the optimization tractable, we further relax the discrete constrains and design a customized stochastic gradient decent algorithm on the Stiefel manifold. Experimental results on serval large-scale benchmarks demonstrate that the proposed OCH method can achieve superior performance over the state-of-the-art approaches. Binary code learning, a.k.a. hashing, has been successfully applied to the approximate nearest neighbor search in large-scale image collections. The key challenge lies in reducing the quantization error from the original real-valued feature space to a discrete Hamming space. Recent advances in unsupervised hashing advocate the preservation of ranking information, which is achieved by constraining the binary code learning to be correlated with pairwise similarity. However, few unsupervised methods consider the preservation of ordinal relations in the learning process, which serves as a more basic cue to learn optimal binary codes. In this paper, we propose a novel hashing scheme, termed Ordinal Constraint Hashing (OCH), which embeds the ordinal relation among data points to preserve ranking into binary codes. The core idea is to construct an ordinal graph via tensor product, and then train the hash function over this graph to preserve the permutation relations among data points in the Hamming space. Subsequently, an in-depth acceleration scheme, termed Ordinal Constraint Projection (OCP), is introduced, which approximates the n-pair ordinal graph by L-pair anchor-based ordinal graph, and reduce the corresponding complexity from O(n4) to O(L3) ( L << n). Finally, to make the optimization tractable, we further relax the discrete constrains and design a customized stochastic gradient decent algorithm on the Stiefel manifold. Experimental results on serval large-scale benchmarks demonstrate that the proposed OCH method can achieve superior performance over the state-of-the-art approaches.Binary code learning, a.k.a. hashing, has been successfully applied to the approximate nearest neighbor search in large-scale image collections. The key challenge lies in reducing the quantization error from the original real-valued feature space to a discrete Hamming space. Recent advances in unsupervised hashing advocate the preservation of ranking information, which is achieved by constraining the binary code learning to be correlated with pairwise similarity. However, few unsupervised methods consider the preservation of ordinal relations in the learning process, which serves as a more basic cue to learn optimal binary codes. In this paper, we propose a novel hashing scheme, termed Ordinal Constraint Hashing (OCH), which embeds the ordinal relation among data points to preserve ranking into binary codes. The core idea is to construct an ordinal graph via tensor product, and then train the hash function over this graph to preserve the permutation relations among data points in the Hamming space. Subsequently, an in-depth acceleration scheme, termed Ordinal Constraint Projection (OCP), is introduced, which approximates the n-pair ordinal graph by L-pair anchor-based ordinal graph, and reduce the corresponding complexity from O(n4) to O(L3) ( L << n). Finally, to make the optimization tractable, we further relax the discrete constrains and design a customized stochastic gradient decent algorithm on the Stiefel manifold. Experimental results on serval large-scale benchmarks demonstrate that the proposed OCH method can achieve superior performance over the state-of-the-art approaches. Binary code learning, a.k.a. hashing, has been successfully applied to the approximate nearest neighbor search in large-scale image collections. The key challenge lies in reducing the quantization error from the original real-valued feature space to a discrete Hamming space. Recent advances in unsupervised hashing advocate the preservation of ranking information, which is achieved by constraining the binary code learning to be correlated with pairwise similarity. However, few unsupervised methods consider the preservation of ordinal relations in the learning process, which serves as a more basic cue to learn optimal binary codes. In this paper, we propose a novel hashing scheme, termed Ordinal Constraint Hashing (OCH), which embeds the ordinal relation among data points to preserve ranking into binary codes. The core idea is to construct an ordinal graph via tensor product, and then train the hash function over this graph to preserve the permutation relations among data points in the Hamming space. Subsequently, an in-depth acceleration scheme, termed Ordinal Constraint Projection (OCP), is introduced, which approximates the [Formula Omitted]-pair ordinal graph by [Formula Omitted]-pair anchor-based ordinal graph, and reduce the corresponding complexity from [Formula Omitted] to [Formula Omitted] ([Formula Omitted]). Finally, to make the optimization tractable, we further relax the discrete constrains and design a customized stochastic gradient decent algorithm on the Stiefel manifold. Experimental results on serval large-scale benchmarks demonstrate that the proposed OCH method can achieve superior performance over the state-of-the-art approaches. |
| Author | Ji, Rongrong Shen, Chunhua Wang, Jingdong Liu, Hong |
| Author_xml | – sequence: 1 givenname: Hong orcidid: 0000-0002-4295-2224 surname: Liu fullname: Liu, Hong email: lynnliu0207@163.com organization: Fujian Key Laboratory of Sensing and Computing for Smart City, School of Information Science and Engineering, Xiamen University, Xiamen Shi, Fujian Sheng, China – sequence: 2 givenname: Rongrong orcidid: 0000-0001-9163-2932 surname: Ji fullname: Ji, Rongrong email: rrji@xmu.edu.cn organization: Fujian Key Laboratory of Sensing and Computing for Smart City, School of Information Science and Engineering, Xiamen University, Xiamen Shi, Fujian Sheng, China – sequence: 3 givenname: Jingdong orcidid: 0000-0002-4888-4445 surname: Wang fullname: Wang, Jingdong email: jingdw@microsoft.com organization: Microsoft Research Asia, Beijing, China – sequence: 4 givenname: Chunhua orcidid: 0000-0002-8648-8718 surname: Shen fullname: Shen, Chunhua email: chunhua.shen@adelaide.edu.au organization: University of Adelaide, SA, Australia |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29994286$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kU9LAzEQxYMo2qpfQEEWvHjZmkm6cXKsxT-FagV7D-luoivb3ZpswX57p7b14MHTwJvfG2bmddl-3dSOsTPgPQCur6cvg6dRT3DAnkDQ-gb3WEeA4qkWWuyzDgclUkSBR6wb4wfn0M-4PGRHQmvdF6g67HESirK2VTJs6tgGW9ZtcktCWJFCnbfENyEZLBah-SrntnXJs7PBxZZq-fY-o-YrCfn7CTvwtorudFuP2fT-bjp8TMeTh9FwME5zmUGbeg1SKK-5QqUybgtlJViutLtRynsQGcwy73RfFhkH4TQK5720iJBL9PKYXW3G0kKfS9rDzMuYu6qytWuW0QgaLKXWoAm9_IN-NMtAtxIFiIoL7CNRF1tqOZu7wiwCnRlWZvciAnAD5KGJMThv8rK1bdnU63dVBrhZp2F-0jDrNMw2DbKKP9bd9H9N5xtT6Zz7NSB9LctQfgM4YJNo |
| CODEN | ITPIDJ |
| CitedBy_id | crossref_primary_10_1002_cpe_6355 crossref_primary_10_1145_3558769 crossref_primary_10_1145_3532519 crossref_primary_10_1007_s13042_020_01145_z crossref_primary_10_1109_TBDATA_2022_3233457 crossref_primary_10_1109_TCSVT_2019_2943902 crossref_primary_10_1109_TIP_2025_3594140 crossref_primary_10_1186_s13640_020_00497_4 crossref_primary_10_1109_TNNLS_2021_3071127 crossref_primary_10_1109_TNNLS_2020_3018790 crossref_primary_10_1109_TPAMI_2020_3042193 crossref_primary_10_1109_JIOT_2020_2992035 crossref_primary_10_1109_TCYB_2019_2955130 crossref_primary_10_1007_s11760_025_04030_w crossref_primary_10_1016_j_patcog_2022_109194 crossref_primary_10_1109_TPAMI_2019_2944597 crossref_primary_10_1016_j_neucom_2019_10_073 crossref_primary_10_1109_TIP_2018_2889269 crossref_primary_10_1109_TIP_2020_3028170 crossref_primary_10_1109_TITS_2024_3351841 crossref_primary_10_1109_TNNLS_2022_3160597 crossref_primary_10_1109_TNNLS_2018_2869574 crossref_primary_10_1109_TKDE_2019_2935449 crossref_primary_10_1109_TSMC_2022_3233392 crossref_primary_10_1109_TIP_2023_3242777 crossref_primary_10_1109_TMM_2023_3296940 crossref_primary_10_1007_s10489_025_06563_6 crossref_primary_10_1109_TCSVT_2023_3281868 crossref_primary_10_1016_j_eswa_2023_120832 crossref_primary_10_1016_j_ins_2025_122532 crossref_primary_10_3390_electronics11142236 crossref_primary_10_1109_TKDE_2023_3289882 crossref_primary_10_1007_s11760_019_01523_3 crossref_primary_10_1016_j_neucom_2020_11_017 crossref_primary_10_1109_LSP_2019_2941368 crossref_primary_10_1109_TIP_2020_2981879 crossref_primary_10_3390_rs13234786 crossref_primary_10_1007_s00371_020_01993_4 crossref_primary_10_1007_s11280_022_01072_9 crossref_primary_10_1109_TNNLS_2021_3060830 |
| Cites_doi | 10.1145/997817.997857 10.1007/s10107-012-0584-1 10.1109/CVPR.2008.4587633 10.1109/TPAMI.2010.57 10.1109/ICCV.2015.223 10.1145/509961.509965 10.1109/TPAMI.2012.193 10.1145/1646396.1646452 10.1109/CVPR.2014.124 10.1109/JPROC.2015.2487976 10.1109/CVPR.2013.207 10.1023/A:1011139631724 10.1109/TMM.2017.2774009 10.1109/CVPR.2013.378 10.1109/ICCV.2013.377 10.1006/jagm.2000.1131 10.1109/TPAMI.2015.2404776 10.1109/TPAMI.2017.2699960 10.1109/TPAMI.2013.240 10.1109/CVPR.2015.7298598 10.1145/1015330.1015408 10.1109/TPAMI.2015.2408363 10.3150/15-BEJ792 10.1145/2502081.2502100 10.1109/TPAMI.2011.219 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
| DOI | 10.1109/TPAMI.2018.2819978 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic Technology Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 2160-9292 1939-3539 |
| EndPage | 955 |
| ExternalDocumentID | 29994286 10_1109_TPAMI_2018_2819978 8326558 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: Nature Science Foundation of China grantid: U1705262; 61772443; 61572410 – fundername: China Post-Doctoral Science Foundation grantid: 2017M612134 – fundername: Nature Science Foundation of Fujian Province, China grantid: 2017J01125 – fundername: National Key R&D Program grantid: 2017YFC0113000; 2016YFB1001503 – fundername: National Language Committee of China grantid: YB135-49 – fundername: Post Doctoral Innovative Talent Support Program grantid: BX201600094 |
| GroupedDBID | --- -DZ -~X .DC 0R~ 29I 4.4 53G 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 UHB ~02 AAYXX CITATION 5VS 9M8 AAYOK ABFSI ADRHT AETIX AGSQL AI. AIBXA ALLEH FA8 H~9 IBMZZ ICLAB IFJZH NPM PKN RIC RIG RNI RZB VH1 XJT Z5M 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
| ID | FETCH-LOGICAL-c351t-f91326f90686650ad6a31a069e766ff1251b5fe943d5012e982eff3a881c38f3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 49 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000460583500012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0162-8828 1939-3539 |
| IngestDate | Wed Oct 01 14:06:37 EDT 2025 Sun Sep 07 03:44:56 EDT 2025 Wed Feb 19 02:33:40 EST 2025 Tue Nov 18 21:49:20 EST 2025 Sat Nov 29 05:15:58 EST 2025 Wed Aug 27 02:51:46 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c351t-f91326f90686650ad6a31a069e766ff1251b5fe943d5012e982eff3a881c38f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-4295-2224 0000-0002-4888-4445 0000-0002-8648-8718 0000-0001-9163-2932 |
| PMID | 29994286 |
| PQID | 2188602848 |
| PQPubID | 85458 |
| PageCount | 15 |
| ParticipantIDs | proquest_journals_2188602848 proquest_miscellaneous_2068339919 ieee_primary_8326558 pubmed_primary_29994286 crossref_citationtrail_10_1109_TPAMI_2018_2819978 crossref_primary_10_1109_TPAMI_2018_2819978 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-04-01 |
| PublicationDateYYYYMMDD | 2019-04-01 |
| PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on pattern analysis and machine intelligence |
| PublicationTitleAbbrev | TPAMI |
| PublicationTitleAlternate | IEEE Trans Pattern Anal Mach Intell |
| PublicationYear | 2019 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref34 ref12 jiang (ref16) 2015 ref37 ref14 zhang (ref3) 2014 ref30 ref33 ref32 weiss (ref9) 2009 lin (ref24) 2014 ref2 ref1 ref39 ref38 norouzi (ref26) 2012 jégou (ref41) 2012 ref46 maaten (ref48) 2008; 9 kulis (ref18) 2009 ref23 norouzi (ref19) 2011 ref47 ref25 ref42 absil (ref35) 2009 ref22 cunningham (ref36) 2015; 16 ref21 ref43 vidal (ref31) 2016 xu (ref11) 2011 wang (ref44) 2016 raginsky (ref7) 2009 liu (ref17) 2016 cai (ref45) 2016 ref8 liu (ref28) 2017 liu (ref20) 2012 liu (ref10) 2011 ref4 kong (ref27) 2012 ref6 ref5 ref40 liu (ref15) 2014 terada (ref29) 2014 |
| References_xml | – ident: ref4 doi: 10.1145/997817.997857 – ident: ref33 doi: 10.1007/s10107-012-0584-1 – ident: ref38 doi: 10.1109/CVPR.2008.4587633 – start-page: 2248 year: 2015 ident: ref16 article-title: Scalable graph hashing with feature transformation publication-title: Proc Int Joint Conf Artif Intell – ident: ref42 doi: 10.1109/TPAMI.2010.57 – ident: ref25 doi: 10.1109/ICCV.2015.223 – start-page: 3419 year: 2014 ident: ref15 article-title: Discrete graph hashing publication-title: Proc Int Conf Neural Inf Process – ident: ref6 doi: 10.1145/509961.509965 – start-page: 847 year: 2014 ident: ref29 article-title: Local ordinal embedding publication-title: Proc Int Conf Mach Learn – ident: ref12 doi: 10.1109/TPAMI.2012.193 – start-page: 1646 year: 2012 ident: ref27 article-title: Isotropic hashing publication-title: Proc Int Conf Neural Inf Process – ident: ref43 doi: 10.1145/1646396.1646452 – start-page: 1753 year: 2009 ident: ref9 article-title: Spectral hashing publication-title: Proc Int Conf Neural Inf Process – start-page: 45 year: 2016 ident: ref31 article-title: Model selection for principal component analysis publication-title: Generalized Principal Component Analysis – ident: ref40 doi: 10.1109/CVPR.2014.124 – volume: 16 start-page: 2859 year: 2015 ident: ref36 article-title: Linear dimensionality reduction: Survey, insights, and generalizations publication-title: J Mach Learn Res – ident: ref2 doi: 10.1109/JPROC.2015.2487976 – start-page: 2074 year: 2012 ident: ref20 article-title: Supervised hashing with kernels publication-title: Proc IEEE Conf Comput Vis Pattern Recognit – ident: ref39 doi: 10.1109/CVPR.2013.207 – ident: ref37 doi: 10.1023/A:1011139631724 – volume: 9 start-page: 2579 year: 2008 ident: ref48 article-title: Visualizing data using T-SNE publication-title: J Mach Learn Res – start-page: 1061 year: 2012 ident: ref26 article-title: Hamming distance metric learning publication-title: Proc Int Conf Neural Inf Process – start-page: 2238 year: 2017 ident: ref28 article-title: Ordinal constrained binary code learning for nearest neighbor search publication-title: Proc AAAI Conf Artif Intell – ident: ref47 doi: 10.1109/TMM.2017.2774009 – ident: ref46 doi: 10.1109/CVPR.2013.378 – ident: ref23 doi: 10.1109/ICCV.2013.377 – start-page: 838 year: 2014 ident: ref3 article-title: Composite quantization for approximate nearest neighbor search publication-title: Proc Int Conf Mach Learn – ident: ref5 doi: 10.1006/jagm.2000.1131 – start-page: 1042 year: 2009 ident: ref18 article-title: Learning to hash with binary reconstructive embeddings publication-title: Proc Int Conf Neural Inf Process – ident: ref21 doi: 10.1109/TPAMI.2015.2404776 – start-page: 1 year: 2011 ident: ref10 article-title: Hashing with graphs publication-title: Proc Int Conf Mach Learn – ident: ref1 doi: 10.1109/TPAMI.2017.2699960 – ident: ref34 doi: 10.1109/TPAMI.2013.240 – start-page: 1631 year: 2011 ident: ref11 article-title: Complementary hashing for approximate nearest neighbor search publication-title: Proc IEEE Int Conf Comput Vis – start-page: 353 year: 2011 ident: ref19 article-title: Minimal loss hashing for compact binary codes publication-title: Proc Int Conf Mach Learn – year: 2009 ident: ref35 publication-title: Optimization Algorithms on Matrix Manifolds – ident: ref22 doi: 10.1109/CVPR.2015.7298598 – start-page: 774 year: 2012 ident: ref41 article-title: Negative evidences and co-occurences in image retrieval: The benefit of PCA and whitening publication-title: Proc Eur Conf Comput Vis – start-page: 1258 year: 2016 ident: ref17 article-title: Towards optimal binary code learning via ordinal embedding publication-title: Proc AAAI Conf Artif Intell – ident: ref32 doi: 10.1145/1015330.1015408 – start-page: 1509 year: 2009 ident: ref7 article-title: Locality-sensitive binary codes from shift-invariant kernels publication-title: Proc Int Conf Neural Inf Process – start-page: 613 year: 2014 ident: ref24 article-title: Optimizing ranking measures for compact binary code learning publication-title: Proc Eur Conf Comput Vis – start-page: 1102 year: 2016 ident: ref44 article-title: Affinity preserving quantization for hashing: A vector quantization approach to learning compact binary codes publication-title: Proc AAAI Conf Artif Intell – ident: ref14 doi: 10.1109/TPAMI.2015.2408363 – year: 2016 ident: ref45 article-title: A revisit of hashing algorithms for approximate nearest neighbor search publication-title: arXiv preprint arXiv 1612 07545 – ident: ref30 doi: 10.3150/15-BEJ792 – ident: ref13 doi: 10.1145/2502081.2502100 – ident: ref8 doi: 10.1109/TPAMI.2011.219 |
| SSID | ssj0014503 |
| Score | 2.4932206 |
| Snippet | Binary code learning, a.k.a. hashing, has been successfully applied to the approximate nearest neighbor search in large-scale image collections. The key... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 941 |
| SubjectTerms | Anchors Binary code learning Binary codes Binary system Codes Data points discrete optimization Encoding Hash based algorithms hashing image retrieval Learning Manifolds Manifolds (mathematics) Measurement Optimization ordinal preserving Permutations Preservation Quantization (signal) Ranking Tensile stress tensor graph Tensors |
| Title | Ordinal Constraint Binary Coding for Approximate Nearest Neighbor Search |
| URI | https://ieeexplore.ieee.org/document/8326558 https://www.ncbi.nlm.nih.gov/pubmed/29994286 https://www.proquest.com/docview/2188602848 https://www.proquest.com/docview/2068339919 |
| Volume | 41 |
| WOSCitedRecordID | wos000460583500012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2160-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014503 issn: 0162-8828 databaseCode: RIE dateStart: 19790101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB4B4gCHUqDQtIBciRs12Fl7H8cUgUCClEMOuVnr9ayEhBKUOIif35n1QxwKEidb3rG93pnRfuN5AZxWMkvssFSxEk7FWelsXKaljCtdGQLkThofOH2nxmM9nZqHNfjd58IgYgg-w3M-Db78au5W_KvsgqRP5rleh3WlZJOr1XsMsjx0QSYEQxpOZkSXIJOYi8nD6P6Wo7j0ObuNyG7iEsCEjLKQQv1mPwoNVt7HmmHPud753Gy_wpcWW0ajRhh2YQ1ne7DT9W2IWjXeg-03RQj34eYvyQjfx707Q8eIOvoTsnTpCu9sEeHaaMS1x18fCd9iNOa6t8uajmTZkwxFTczyN5hcX00ub-K2v0LsRJ7WsTdkikpvOEuEgJqtpBWpTaRBJaX3DH1KjkXLRJXTPoZGD9F7YbVOndBeHMDGbD7D7xDZ1GpFRIh2mAmty7z0iUsUcqkgTHEAabfIhWtrj_MHPRXBBklMEXhUMI-KlkcDOOvveW4qb3xIvc8c6CnbxR_AUcfLolXOZUGohjtv6YyGf_XDpFbsK7EznK-IhhZFEHhLzQAOGxnon92Jzo__v_MnbNHMTBPecwQb9WKFx7DpXurH5eKEZHeqT4Ls_gONWeby |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB7RtFLh0FBoIYVSI3EDg52117vHUBUFNQQOOXCz1utZCalKKuIgfj4z64c4ABInW96xvd6Z0X7jeQEclTKJzLDIwkzYLEwKa8IiLmRYqlITILdSO8_pSTadqttbfbMGJ10uDCL64DM85VPvyy8XdsW_ys5I-mSaqg_wMU3I7qmztTqfQZL6PsiEYUjHyZBoU2QifTa7GV1dchyXOmXHEVlOXASYsFHik6if7Ui-xcrraNPvOhf99813E7406DIY1eLwFdZwvgX9tnND0CjyFmw8K0O4DeNrkhK-j7t3-p4RVXDu83TpCu9tASHbYMTVxx_vCOFiMOXKt8uKjmTbkxQFddTyN5hd_Jn9HodNh4XQijSuQqfJGJVOc54IQTVTSiNiE0mNmZTOMfgpOBotEWVKOxlqNUTnhFEqtkI58R1688UcdyEwsVEZESGaYSKUKtLCRTbKkIsFYYwDiNtFzm1TfZw_6F_urZBI555HOfMob3g0gOPunv917Y03qbeZAx1ls_gD2G95mTfqucwJ13DvLZXQ8GE3TIrF3hIzx8WKaGhRBMG3WA9gp5aB7tmt6Px4-Z2_4PN4djXJJ5fTv3uwTrPUdbDPPvSq-xX-hE_2obpb3h94CX4CRuvpUQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ordinal+Constraint+Binary+Coding+for+Approximate+Nearest+Neighbor+Search&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Liu%2C+Hong&rft.au=Ji%2C+Rongrong&rft.au=Wang%2C+Jingdong&rft.au=Shen%2C+Chunhua&rft.date=2019-04-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0162-8828&rft.eissn=1939-3539&rft.volume=41&rft.issue=4&rft.spage=941&rft_id=info:doi/10.1109%2FTPAMI.2018.2819978&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon |