End-to-End Optimized Versatile Image Compression With Wavelet-Like Transform

Built on deep networks, end-to-end optimized image compression has made impressive progress in the past few years. Previous studies usually adopt a compressive auto-encoder, where the encoder part first converts image into latent features, and then quantizes the features before encoding them into bi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence Jg. 44; H. 3; S. 1247 - 1263
Hauptverfasser: Ma, Haichuan, Liu, Dong, Yan, Ning, Li, Houqiang, Wu, Feng
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 01.03.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0162-8828, 1939-3539, 2160-9292, 1939-3539
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Built on deep networks, end-to-end optimized image compression has made impressive progress in the past few years. Previous studies usually adopt a compressive auto-encoder, where the encoder part first converts image into latent features, and then quantizes the features before encoding them into bits. Both the conversion and the quantization incur information loss, resulting in a difficulty to optimally achieve arbitrary compression ratio. We propose iWave++ as a new end-to-end optimized image compression scheme, in which iWave, a trained wavelet-like transform, converts images into coefficients without any information loss. Then the coefficients are optionally quantized and encoded into bits. Different from the previous schemes, iWave++ is versatile : a single model supports both lossless and lossy compression, and also achieves arbitrary compression ratio by simply adjusting the quantization scale. iWave++ also features a carefully designed entropy coding engine to encode the coefficients progressively, and a de-quantization module for lossy compression. Experimental results show that lossy iWave++ achieves state-of-the-art compression efficiency compared with deep network-based methods; on the Kodak dataset, lossy iWave++ leads to 17.34 percent bits saving over BPG; lossless iWave++ achieves comparable or better performance than FLIF. Our code and models are available at https://github.com/mahaichuan/Versatile-Image-Compression .
AbstractList Built on deep networks, end-to-end optimized image compression has made impressive progress in the past few years. Previous studies usually adopt a compressive auto-encoder, where the encoder part first converts image into latent features, and then quantizes the features before encoding them into bits. Both the conversion and the quantization incur information loss, resulting in a difficulty to optimally achieve arbitrary compression ratio. We propose iWave++ as a new end-to-end optimized image compression scheme, in which iWave, a trained wavelet-like transform, converts images into coefficients without any information loss. Then the coefficients are optionally quantized and encoded into bits. Different from the previous schemes, iWave++ is versatile : a single model supports both lossless and lossy compression, and also achieves arbitrary compression ratio by simply adjusting the quantization scale. iWave++ also features a carefully designed entropy coding engine to encode the coefficients progressively, and a de-quantization module for lossy compression. Experimental results show that lossy iWave++ achieves state-of-the-art compression efficiency compared with deep network-based methods; on the Kodak dataset, lossy iWave++ leads to 17.34 percent bits saving over BPG; lossless iWave++ achieves comparable or better performance than FLIF. Our code and models are available at https://github.com/mahaichuan/Versatile-Image-Compression .
Built on deep networks, end-to-end optimized image compression has made impressive progress in the past few years. Previous studies usually adopt a compressive auto-encoder, where the encoder part first converts image into latent features, and then quantizes the features before encoding them into bits. Both the conversion and the quantization incur information loss, resulting in a difficulty to optimally achieve arbitrary compression ratio. We propose iWave++ as a new end-to-end optimized image compression scheme, in which iWave, a trained wavelet-like transform, converts images into coefficients without any information loss. Then the coefficients are optionally quantized and encoded into bits. Different from the previous schemes, iWave++ is versatile: a single model supports both lossless and lossy compression, and also achieves arbitrary compression ratio by simply adjusting the quantization scale. iWave++ also features a carefully designed entropy coding engine to encode the coefficients progressively, and a de-quantization module for lossy compression. Experimental results show that lossy iWave++ achieves state-of-the-art compression efficiency compared with deep network-based methods; on the Kodak dataset, lossy iWave++ leads to 17.34 percent bits saving over BPG; lossless iWave++ achieves comparable or better performance than FLIF. Our code and models are available at https://github.com/mahaichuan/Versatile-Image-Compression.Built on deep networks, end-to-end optimized image compression has made impressive progress in the past few years. Previous studies usually adopt a compressive auto-encoder, where the encoder part first converts image into latent features, and then quantizes the features before encoding them into bits. Both the conversion and the quantization incur information loss, resulting in a difficulty to optimally achieve arbitrary compression ratio. We propose iWave++ as a new end-to-end optimized image compression scheme, in which iWave, a trained wavelet-like transform, converts images into coefficients without any information loss. Then the coefficients are optionally quantized and encoded into bits. Different from the previous schemes, iWave++ is versatile: a single model supports both lossless and lossy compression, and also achieves arbitrary compression ratio by simply adjusting the quantization scale. iWave++ also features a carefully designed entropy coding engine to encode the coefficients progressively, and a de-quantization module for lossy compression. Experimental results show that lossy iWave++ achieves state-of-the-art compression efficiency compared with deep network-based methods; on the Kodak dataset, lossy iWave++ leads to 17.34 percent bits saving over BPG; lossless iWave++ achieves comparable or better performance than FLIF. Our code and models are available at https://github.com/mahaichuan/Versatile-Image-Compression.
Author Ma, Haichuan
Yan, Ning
Wu, Feng
Li, Houqiang
Liu, Dong
Author_xml – sequence: 1
  givenname: Haichuan
  orcidid: 0000-0003-1126-9382
  surname: Ma
  fullname: Ma, Haichuan
  email: hcma@mail.ustc.edu.cn
  organization: CAS Key Laboratory of Technology in Geo-Spatial Information Processing and Application System, University of Science and Technology of China, Hefei, China
– sequence: 2
  givenname: Dong
  orcidid: 0000-0001-9100-2906
  surname: Liu
  fullname: Liu, Dong
  email: dongeliu@ustc.edu.cn
  organization: CAS Key Laboratory of Technology in Geo-Spatial Information Processing and Application System, University of Science and Technology of China, Hefei, China
– sequence: 3
  givenname: Ning
  orcidid: 0000-0002-6771-111X
  surname: Yan
  fullname: Yan, Ning
  email: nyan@mail.ustc.edu.cn
  organization: CAS Key Laboratory of Technology in Geo-Spatial Information Processing and Application System, University of Science and Technology of China, Hefei, China
– sequence: 4
  givenname: Houqiang
  orcidid: 0000-0003-2188-3028
  surname: Li
  fullname: Li, Houqiang
  email: lihq@ustc.edu.cn
  organization: CAS Key Laboratory of Technology in Geo-Spatial Information Processing and Application System, University of Science and Technology of China, Hefei, China
– sequence: 5
  givenname: Feng
  surname: Wu
  fullname: Wu, Feng
  email: fengwu@ustc.edu.cn
  organization: CAS Key Laboratory of Technology in Geo-Spatial Information Processing and Application System, University of Science and Technology of China, Hefei, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32966210$$D View this record in MEDLINE/PubMed
BookMark eNp9kcFOGzEQhi0EKoH2BUCqVuLSywZ77HXsI4poGykIDqEcLe_uuDXsrlPbQaJP300TeuDAaS7f92tm_hNyOIQBCTljdMoY1Zeru6ubxRQo0CmnICnlB2QCTNJSg4ZDMqFMQqkUqGNyktIjpUxUlH8gxxy0lMDohCyvh7bMoRxHcbvOvvd_sC1-YEw2-w6LRW9_YjEP_TpiSj4MxYPPv4oH-4wd5nLpn7BYRTskF2L_kRw52yX8tJ-n5P7r9Wr-vVzeflvMr5ZlwyuWS6ekExo5Z7KesZmum9pZ5jSXigvtnG0pawHHQxrXKkChFLNSuFro2jbI-Cn5sstdx_B7gymb3qcGu84OGDbJgBCVnlVawIhevEEfwyYO43YGJFRcSs22gZ_31KbusTXr6HsbX8zrn0ZA7YAmhpQiOtP4PH4oDDla3xlGzbYS868Ss63E7CsZVXijvqa_K53vJI-I_wUNVMy05n8B70uViQ
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1109_TAI_2023_3340982
crossref_primary_10_1109_ACCESS_2023_3349351
crossref_primary_10_1109_ACCESS_2024_3350643
crossref_primary_10_1109_TCSVT_2022_3222418
crossref_primary_10_1109_TMI_2022_3212780
crossref_primary_10_1109_TIP_2023_3276333
crossref_primary_10_1109_TPAMI_2021_3065339
crossref_primary_10_1109_ACCESS_2025_3597008
crossref_primary_10_1109_TGRS_2023_3315725
crossref_primary_10_1109_ACCESS_2024_3396407
crossref_primary_10_1016_j_ress_2025_111371
crossref_primary_10_1109_TIP_2022_3184845
crossref_primary_10_1109_TCSVT_2024_3465445
crossref_primary_10_1007_s00530_023_01192_w
crossref_primary_10_1016_j_engappai_2025_110982
crossref_primary_10_1049_ell2_12586
crossref_primary_10_1002_cta_4135
crossref_primary_10_1016_j_imavis_2024_105073
crossref_primary_10_1109_TCSVT_2023_3253702
crossref_primary_10_1109_TMM_2025_3535279
crossref_primary_10_1007_s11042_025_20687_4
crossref_primary_10_1109_TIP_2025_3550013
crossref_primary_10_1117_1_JRS_18_036508
crossref_primary_10_1007_s11263_021_01491_7
crossref_primary_10_1109_TII_2024_3431018
crossref_primary_10_1109_TCSVT_2024_3415823
crossref_primary_10_1016_j_dsp_2023_104339
crossref_primary_10_1109_ACCESS_2021_3137345
crossref_primary_10_1109_TIP_2024_3378910
crossref_primary_10_3390_s24165439
crossref_primary_10_1080_13682199_2025_2499390
crossref_primary_10_1016_j_sigpro_2022_108778
crossref_primary_10_1145_3652148
crossref_primary_10_1109_TCSVT_2023_3310188
crossref_primary_10_1109_TCSVT_2023_3316834
crossref_primary_10_1109_TCE_2024_3485179
crossref_primary_10_1007_s12652_024_04858_z
crossref_primary_10_1109_TIP_2024_3349859
crossref_primary_10_1007_s11263_023_01809_7
crossref_primary_10_1109_TBC_2024_3464413
crossref_primary_10_1109_TBDATA_2022_3201176
crossref_primary_10_1109_TIP_2024_3477356
crossref_primary_10_1145_3719011
crossref_primary_10_1109_JSEN_2025_3569520
crossref_primary_10_1145_3649503
crossref_primary_10_1109_TCSVT_2023_3237274
crossref_primary_10_1109_TCSVT_2023_3303228
crossref_primary_10_3390_rs16193594
crossref_primary_10_1109_TCSVT_2024_3371178
crossref_primary_10_1109_TCSVT_2024_3376704
crossref_primary_10_1109_TCSVT_2024_3401872
crossref_primary_10_1016_j_eswa_2024_125535
crossref_primary_10_1007_s40747_023_01119_y
crossref_primary_10_1109_TPAMI_2023_3348486
crossref_primary_10_3390_computation11100191
crossref_primary_10_1145_3631710
crossref_primary_10_1109_TBC_2024_3443470
crossref_primary_10_1007_s00521_024_09660_8
crossref_primary_10_1109_TBC_2025_3565895
crossref_primary_10_1109_TPAMI_2022_3185316
crossref_primary_10_1109_TCSVT_2025_3546765
crossref_primary_10_7717_peerj_cs_1924
crossref_primary_10_1016_j_image_2024_117227
crossref_primary_10_1109_TIP_2023_3333279
crossref_primary_10_1109_TCSVT_2024_3360248
crossref_primary_10_1049_ipr2_70080
crossref_primary_10_1109_TCSVT_2022_3216713
crossref_primary_10_1016_j_eswa_2023_121299
crossref_primary_10_1109_TCSVT_2022_3229701
crossref_primary_10_3390_fi16080297
crossref_primary_10_1016_j_neucom_2022_07_065
crossref_primary_10_1109_TMM_2021_3130754
crossref_primary_10_1007_s00371_024_03428_w
crossref_primary_10_1109_TCSVT_2024_3395275
crossref_primary_10_1109_TIP_2022_3160072
crossref_primary_10_1109_ACCESS_2023_3323873
crossref_primary_10_1109_ACCESS_2024_3514215
crossref_primary_10_3389_fpls_2022_901042
crossref_primary_10_1007_s10489_023_05047_9
crossref_primary_10_1109_TPAMI_2024_3356557
crossref_primary_10_1016_j_aei_2024_102669
crossref_primary_10_1109_TCSVT_2023_3317424
crossref_primary_10_3390_e26050357
crossref_primary_10_1109_JETCAS_2025_3538652
crossref_primary_10_1109_TBC_2025_3587532
crossref_primary_10_1007_s00530_025_01945_9
crossref_primary_10_1109_TIP_2023_3319275
crossref_primary_10_1109_TCSVT_2025_3556708
crossref_primary_10_1109_TIP_2024_3482877
crossref_primary_10_1109_TGRS_2023_3349306
crossref_primary_10_1109_TPAMI_2023_3322904
crossref_primary_10_1109_TIP_2023_3263099
crossref_primary_10_1109_TMM_2022_3220421
crossref_primary_10_1117_1_APN_3_3_036005
Cites_doi 10.1109/CVPRW.2017.151
10.1109/ICCV.2019.00031
10.1109/ICASSP.2018.8462263
10.1109/DCC.1993.253128
10.1109/TIP.2003.817237
10.1109/CVPR.2018.00461
10.1109/30.920468
10.1162/neco.1997.9.8.1735
10.1109/CVPR.2017.577
10.1109/TCSVT.2012.2221191
10.1109/CVPRW.2017.150
10.1109/83.847830
10.1080/2165347X.2015.1024298
10.1109/ICIP.2017.8296236
10.1109/CVPR.2018.00462
10.1006/acha.1996.0015
10.1109/CVPR.2019.01088
10.1109/TMM.2019.2957990
10.1109/76.499834
10.1126/science.1127647
10.1007/BF02476026
10.1109/TCSVT.2003.815165
10.1109/CVPR.2018.00339
10.1109/ICCV.2019.00324
10.1109/PCS.2016.7906310
10.1109/TCSVT.2018.2880492
10.1109/ICIP.2016.7532320
10.1007/978-3-319-51811-4_3
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TPAMI.2020.3026003
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Technology Research Database

PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2160-9292
1939-3539
EndPage 1263
ExternalDocumentID 32966210
10_1109_TPAMI_2020_3026003
9204799
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2018YFA0701603
  funderid: 10.13039/501100012166
– fundername: National Natural Science Foundation of China; Natural Science Foundation of China
  grantid: 61772483; 61931014
  funderid: 10.13039/501100001809
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
~02
AAYXX
CITATION
5VS
9M8
AAYOK
ABFSI
ADRHT
AETIX
AGSQL
AI.
AIBXA
ALLEH
FA8
H~9
IBMZZ
ICLAB
IFJZH
NPM
PKN
RIC
RIG
RNI
RZB
VH1
XJT
Z5M
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c351t-f86f49e3316b7179bcbfa1f9368349ffad01d2e160cfd82e4881a64fb49bace13
IEDL.DBID RIE
ISICitedReferencesCount 130
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000752018000014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0162-8828
1939-3539
IngestDate Sun Sep 28 10:35:49 EDT 2025
Mon Jun 30 07:18:33 EDT 2025
Wed Feb 19 02:28:07 EST 2025
Sat Nov 29 05:15:59 EST 2025
Tue Nov 18 22:34:45 EST 2025
Wed Aug 27 03:00:15 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-f86f49e3316b7179bcbfa1f9368349ffad01d2e160cfd82e4881a64fb49bace13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1126-9382
0000-0002-6771-111X
0000-0001-9100-2906
0000-0003-2188-3028
PMID 32966210
PQID 2625366911
PQPubID 85458
PageCount 17
ParticipantIDs crossref_citationtrail_10_1109_TPAMI_2020_3026003
proquest_journals_2625366911
ieee_primary_9204799
proquest_miscellaneous_2445975942
pubmed_primary_32966210
crossref_primary_10_1109_TPAMI_2020_3026003
PublicationCentury 2000
PublicationDate 2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
minnen (ref6) 2018
ref10
theis (ref8) 2017
ref17
ref16
ref18
zaremba (ref40) 2014
liu (ref21) 2019
ref46
ref45
ref48
ref41
ref44
ballé (ref1) 2016
ref43
ho (ref32) 2019
jacobsen (ref35) 2018
ref49
salimans (ref30) 2017
lipton (ref39) 2015
ref9
ref4
ref3
ref5
lee (ref50) 2018
rippel (ref7) 2017
agustsson (ref25) 2017
ref34
ref37
ref36
ref31
lee (ref51) 2019
ref38
liu (ref22) 2019
kingma (ref47) 2014
van den oord (ref29) 2016
ballé (ref2) 2018
lee (ref24) 2019
zhou (ref23) 2019
ref26
van den oord (ref28) 2016
ref20
ref27
li (ref42) 2018
hinton (ref11) 2006; 313
wiegand (ref14) 2003; 13
toderici (ref19) 2015
hoogeboom (ref33) 2019
References_xml – ident: ref43
  doi: 10.1109/CVPRW.2017.151
– year: 2018
  ident: ref50
  article-title: Context-adaptive entropy model for end-to-end optimized image compression
– year: 2019
  ident: ref32
  article-title: Compression with flows via local bits-back coding
– ident: ref10
  doi: 10.1109/ICCV.2019.00031
– ident: ref27
  doi: 10.1109/ICASSP.2018.8462263
– ident: ref36
  doi: 10.1109/DCC.1993.253128
– ident: ref34
  doi: 10.1109/TIP.2003.817237
– year: 2019
  ident: ref51
  article-title: An end-to-end joint learning scheme of image compression and quality enhancement with improved entropy minimization
– ident: ref3
  doi: 10.1109/CVPR.2018.00461
– ident: ref13
  doi: 10.1109/30.920468
– ident: ref41
  doi: 10.1162/neco.1997.9.8.1735
– year: 2015
  ident: ref19
  article-title: Variable rate image compression with recurrent neural networks
– ident: ref9
  doi: 10.1109/CVPR.2017.577
– start-page: 1747
  year: 2016
  ident: ref28
  article-title: Pixel recurrent neural networks
  publication-title: Proc 33rd Int Conf Mach Learn
– ident: ref15
  doi: 10.1109/TCSVT.2012.2221191
– ident: ref46
  doi: 10.1109/CVPRW.2017.150
– ident: ref38
  doi: 10.1109/83.847830
– start-page: 1
  year: 2019
  ident: ref23
  article-title: Multi-scale and context-adaptive entropy model for image compression
  publication-title: Proc IEEE/CVF Conf Comput Vis Pattern Recognit Workshops
– start-page: 4790
  year: 2016
  ident: ref29
  article-title: Conditional image generation with PixelCNN decoders
  publication-title: Proc 30th Int Conf Neural Inf Process Syst
– ident: ref48
  doi: 10.1080/2165347X.2015.1024298
– ident: ref45
  doi: 10.1109/ICIP.2017.8296236
– ident: ref5
  doi: 10.1109/CVPR.2018.00462
– ident: ref17
  doi: 10.1006/acha.1996.0015
– start-page: 1
  year: 2019
  ident: ref24
  article-title: Extended end-to-end optimized image compression method based on a context-adaptive entropy model
  publication-title: Proc IEEE/CVF Conf Comput Vis Pattern Recognit Workshops
– ident: ref31
  doi: 10.1109/CVPR.2019.01088
– start-page: 2922
  year: 2017
  ident: ref7
  article-title: Real-time adaptive image compression
  publication-title: Proc 34th Int Conf Mach Learn
– ident: ref16
  doi: 10.1109/TMM.2019.2957990
– start-page: 10 794
  year: 2018
  ident: ref6
  article-title: Joint autoregressive and hierarchical priors for learned image compression
  publication-title: Proc 32nd Int Conf Neural Inf Process Syst
– year: 2014
  ident: ref47
  article-title: Adam: A method for stochastic optimization
– year: 2015
  ident: ref39
  article-title: A critical review of recurrent neural networks for sequence learning
– ident: ref37
  doi: 10.1109/76.499834
– year: 2014
  ident: ref40
  article-title: Recurrent neural network regularization
– volume: 313
  start-page: 504
  year: 2006
  ident: ref11
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– year: 2019
  ident: ref21
  article-title: Non-local attention optimized deep image compression
– ident: ref18
  doi: 10.1007/BF02476026
– year: 2018
  ident: ref2
  article-title: Variational image compression with a scale hyperprior
– start-page: 1
  year: 2019
  ident: ref22
  article-title: Practical stacked non-local attention modules for image compression
  publication-title: Proc IEEE/CVF Conf Comput Vis Pattern Recognit Workshops
– volume: 13
  start-page: 560
  year: 2003
  ident: ref14
  article-title: overview of the h.264/avc video coding standard
  publication-title: IEEE Transactions on Circuits and Systems for Video Technology
  doi: 10.1109/TCSVT.2003.815165
– year: 2018
  ident: ref42
  article-title: Enlarging context with low cost: Efficient arithmetic coding with trimmed convolution
– start-page: 1141
  year: 2017
  ident: ref25
  article-title: Soft-to-hard vector quantization for end-to-end learning compressible representations
  publication-title: Proc 31st Int Conf Neural Inf Process Syst
– year: 2017
  ident: ref8
  article-title: Lossy image compression with compressive autoencoders
– ident: ref4
  doi: 10.1109/CVPR.2018.00339
– year: 2017
  ident: ref30
  article-title: PixelCNN++: Improving the PixelCNN with discretized logistic mixture likelihood and other modifications
– ident: ref12
  doi: 10.1109/ICCV.2019.00324
– year: 2018
  ident: ref35
  article-title: i-RevNet: Deep invertible networks
– year: 2019
  ident: ref33
  article-title: Integer discrete flows and lossless compression
– ident: ref20
  doi: 10.1109/PCS.2016.7906310
– ident: ref26
  doi: 10.1109/TCSVT.2018.2880492
– ident: ref49
  doi: 10.1109/ICIP.2016.7532320
– ident: ref44
  doi: 10.1007/978-3-319-51811-4_3
– year: 2016
  ident: ref1
  article-title: End-to-end optimized image compression
SSID ssj0014503
Score 2.6820345
Snippet Built on deep networks, end-to-end optimized image compression has made impressive progress in the past few years. Previous studies usually adopt a compressive...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1247
SubjectTerms Bit rate
Coders
Coefficients
Compression ratio
Deep network
end-to-end optimization
Entropy coding
Image coding
Image compression
lossless compression
lossy compression
Mathematical models
Measurement
Quantization (signal)
Rate-distortion
wavelet transform
Wavelet transforms
Title End-to-End Optimized Versatile Image Compression With Wavelet-Like Transform
URI https://ieeexplore.ieee.org/document/9204799
https://www.ncbi.nlm.nih.gov/pubmed/32966210
https://www.proquest.com/docview/2625366911
https://www.proquest.com/docview/2445975942
Volume 44
WOSCitedRecordID wos000752018000014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2160-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014503
  issn: 0162-8828
  databaseCode: RIE
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB61FQc4UGh5BEplJG5gmtiONz5WqBWVltLDou4tcuyxuqLNojbLgV_P2HmoB0DiFCtxHso3Y894PPMBvHPKo8Tcc2uc4UqjolZecR98ZAgsUdlUXX8-Oz-vlktzsQUfplwYREybz_BjbKZYvl-7TVwqOzIiFkQ327A9m-k-V2uKGKgysSCTBUMaTm7EmCCTm6PFxfGXM3IFBXmosYRWHslzpCBDX8TE2XvzUSJY-butmeac093_-9on8HiwLdlxLwxPYQvbPdgdeRvYoMZ78OheEcJ9mJ-0nndrTgf2lQaQm9Uv9CyuoxFo18jObmjIYfEp_ZbZll2uuit2aSNlRcfnq-_IFqP5-wy-nZ4sPn3mA8cCd7IsOh4qHZRBgkU35NmZxjXBFsFIXUllQrA-L7zAQucu-Eog6XthtQqNMo11WMjnsNOuW3wJjIYqgZ7OO-1VZSPXlZROa8QyRrd1BsX4p2s3FCCPPBjXdXJEclMnoOoIVD0AlcH76Z4fffmNf_bejzBMPQcEMjgYAa0HDb2rBTl-Umsa6zN4O10m3YoBE9viekN9lCJ_qzRKZPCiF4Tp2aP8vPrzO1_DQxETJdJutQPY6W43-AYeuJ_d6u72kAR4WR0mAf4N4wHolw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VgkQ5UGgpBAoYiRuYJrZj4mOFWnVFuvSwqL1FiT0WK9osarMc-PWMnYd6ACROsRLnoXwz9ozHMx_AW6scSkwdr401XGlU1EoL7rwLDIE5qjpW1y8_zufFxYU524D3Uy4MIsbNZ_ghNGMs363sOiyVHRgRCqKbO3A3V0qkfbbWFDNQeeRBJhuGdJwciTFFJjUHi7PD0xk5g4J81FBEKw30OVKQqS9C6uytGSlSrPzd2oyzzvH2_33vI3g4WJfssBeHx7CB7Q5sj8wNbFDkHXhwqwzhLpRHrePditOBfaEh5Gr5Cx0LK2kE2yWy2RUNOiw8pd8027LzZfeNndeBtKLj5fI7ssVoAD-Br8dHi08nfGBZ4FbmWcd9ob0ySMDohnw709jG15k3UhdSGe9rl2ZOYKZT610hkDQ-q7XyjTJNbTGTe7DZrlp8BowGK4GOzlvtVFEHtisprdaIeYhv6wSy8U9XdihBHpgwLqvoiqSmikBVAahqACqBd9M9P_oCHP_svRtgmHoOCCSwPwJaDTp6Uwly_aTWNNon8Ga6TNoVQiZ1i6s19VGKPK7cKJHA014QpmeP8vP8z-98DfdPFqdlVc7mn1_AlghpE3Hv2j5sdtdrfAn37M9ueXP9Korxb6kE6vY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=End-to-End+Optimized+Versatile+Image+Compression+With+Wavelet-Like+Transform&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Ma%2C+Haichuan&rft.au=Liu%2C+Dong&rft.au=Yan%2C+Ning&rft.au=Li%2C+Houqiang&rft.date=2022-03-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0162-8828&rft.eissn=1939-3539&rft.volume=44&rft.issue=3&rft.spage=1247&rft_id=info:doi/10.1109%2FTPAMI.2020.3026003&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon