Liver fibrosis

Liver damage leads to an inflammatory response and to the activation and proliferation of mesenchymal cell populations within the liver which remodel the extracellular matrix as part of an orchestrated wound-healing response. Chronic damage results in a progressive accumulation of scarring proteins...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical journal Jg. 411; H. 1; S. 1
Hauptverfasser: Wallace, Karen, Burt, Alastair D, Wright, Matthew C
Format: Journal Article
Sprache:Englisch
Veröffentlicht: England 01.04.2008
Schlagworte:
ISSN:1470-8728, 1470-8728
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Liver damage leads to an inflammatory response and to the activation and proliferation of mesenchymal cell populations within the liver which remodel the extracellular matrix as part of an orchestrated wound-healing response. Chronic damage results in a progressive accumulation of scarring proteins (fibrosis) that, with increasing severity, alters tissue structure and function, leading to cirrhosis and liver failure. Efforts to modulate the fibrogenesis process have focused on understanding the biology of the heterogeneous liver fibroblast populations. The fibroblasts are derived from sources within and out with the liver. Fibroblasts expressing alpha-smooth muscle actin (myofibroblasts) may be derived from the transdifferentiation of quiescent hepatic stellate cells. Other fibroblasts emerge from the portal tracts within the liver. At least a proportion of these cells in diseased liver originate from the bone marrow. In addition, fibrogenic fibroblasts may also be generated through liver epithelial (hepatocyte and biliary epithelial cell)-mesenchymal transition. Whatever their origin, it is clear that fibrogenic fibroblast activity is sensitive to (and may be active in) the cytokine and chemokine profiles of liver-resident leucocytes such as macrophages. They may also be a component driving the regeneration of tissue. Understanding the complex intercellular interactions regulating liver fibrogenesis is of increasing importance in view of predicted increases in chronic liver disease and the current paucity of effective therapies.
AbstractList Liver damage leads to an inflammatory response and to the activation and proliferation of mesenchymal cell populations within the liver which remodel the extracellular matrix as part of an orchestrated wound-healing response. Chronic damage results in a progressive accumulation of scarring proteins (fibrosis) that, with increasing severity, alters tissue structure and function, leading to cirrhosis and liver failure. Efforts to modulate the fibrogenesis process have focused on understanding the biology of the heterogeneous liver fibroblast populations. The fibroblasts are derived from sources within and out with the liver. Fibroblasts expressing alpha-smooth muscle actin (myofibroblasts) may be derived from the transdifferentiation of quiescent hepatic stellate cells. Other fibroblasts emerge from the portal tracts within the liver. At least a proportion of these cells in diseased liver originate from the bone marrow. In addition, fibrogenic fibroblasts may also be generated through liver epithelial (hepatocyte and biliary epithelial cell)-mesenchymal transition. Whatever their origin, it is clear that fibrogenic fibroblast activity is sensitive to (and may be active in) the cytokine and chemokine profiles of liver-resident leucocytes such as macrophages. They may also be a component driving the regeneration of tissue. Understanding the complex intercellular interactions regulating liver fibrogenesis is of increasing importance in view of predicted increases in chronic liver disease and the current paucity of effective therapies.
Liver damage leads to an inflammatory response and to the activation and proliferation of mesenchymal cell populations within the liver which remodel the extracellular matrix as part of an orchestrated wound-healing response. Chronic damage results in a progressive accumulation of scarring proteins (fibrosis) that, with increasing severity, alters tissue structure and function, leading to cirrhosis and liver failure. Efforts to modulate the fibrogenesis process have focused on understanding the biology of the heterogeneous liver fibroblast populations. The fibroblasts are derived from sources within and out with the liver. Fibroblasts expressing alpha-smooth muscle actin (myofibroblasts) may be derived from the transdifferentiation of quiescent hepatic stellate cells. Other fibroblasts emerge from the portal tracts within the liver. At least a proportion of these cells in diseased liver originate from the bone marrow. In addition, fibrogenic fibroblasts may also be generated through liver epithelial (hepatocyte and biliary epithelial cell)-mesenchymal transition. Whatever their origin, it is clear that fibrogenic fibroblast activity is sensitive to (and may be active in) the cytokine and chemokine profiles of liver-resident leucocytes such as macrophages. They may also be a component driving the regeneration of tissue. Understanding the complex intercellular interactions regulating liver fibrogenesis is of increasing importance in view of predicted increases in chronic liver disease and the current paucity of effective therapies.Liver damage leads to an inflammatory response and to the activation and proliferation of mesenchymal cell populations within the liver which remodel the extracellular matrix as part of an orchestrated wound-healing response. Chronic damage results in a progressive accumulation of scarring proteins (fibrosis) that, with increasing severity, alters tissue structure and function, leading to cirrhosis and liver failure. Efforts to modulate the fibrogenesis process have focused on understanding the biology of the heterogeneous liver fibroblast populations. The fibroblasts are derived from sources within and out with the liver. Fibroblasts expressing alpha-smooth muscle actin (myofibroblasts) may be derived from the transdifferentiation of quiescent hepatic stellate cells. Other fibroblasts emerge from the portal tracts within the liver. At least a proportion of these cells in diseased liver originate from the bone marrow. In addition, fibrogenic fibroblasts may also be generated through liver epithelial (hepatocyte and biliary epithelial cell)-mesenchymal transition. Whatever their origin, it is clear that fibrogenic fibroblast activity is sensitive to (and may be active in) the cytokine and chemokine profiles of liver-resident leucocytes such as macrophages. They may also be a component driving the regeneration of tissue. Understanding the complex intercellular interactions regulating liver fibrogenesis is of increasing importance in view of predicted increases in chronic liver disease and the current paucity of effective therapies.
Author Burt, Alastair D
Wright, Matthew C
Wallace, Karen
Author_xml – sequence: 1
  givenname: Karen
  surname: Wallace
  fullname: Wallace, Karen
  organization: Clinical and Laboratory Sciences, Institute of Cellular Medicine, Medical School, Framlington Place, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
– sequence: 2
  givenname: Alastair D
  surname: Burt
  fullname: Burt, Alastair D
– sequence: 3
  givenname: Matthew C
  surname: Wright
  fullname: Wright, Matthew C
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18333835$$D View this record in MEDLINE/PubMed
BookMark eNpNj81LxDAUxB-y4u5WPfgHiCdv1ZeXtEmPuvhJwYueS5K-QqUfa7IV_O-34AqeZgaGYX5rWAzjwAAXAm8EKrq9fyVELTKNR7ASSmNqNJnFP7-EdYyfiEKhwhNYCiOlNDJbwXnZfnO4aloXxtjGUzhubBf57KAJfDw-vG-e0_Lt6WVzV6ZeZmKXNsoJ9uQUS8HKeXa5mqMoiLJGsy1UlltHXHhhC4917WxtkLQryDDnjhK4_t3dhvFr4rir-jZ67jo78DjFSuN8T89wCVweipPrua62oe1t-Kn-CGgPDCdHSA
CitedBy_id crossref_primary_10_1002_jmri_24248
crossref_primary_10_1074_jbc_M115_691519
crossref_primary_10_1002_hep_23012
crossref_primary_10_1016_j_cellsig_2009_05_008
crossref_primary_10_1016_j_metabol_2022_155380
crossref_primary_10_1186_1476_5926_8_1
crossref_primary_10_1007_s12272_010_0616_4
crossref_primary_10_3892_mmr_2017_7654
crossref_primary_10_1007_s00247_010_1874_5
crossref_primary_10_1093_infdis_jiaa109
crossref_primary_10_1016_j_jsbmb_2010_04_012
crossref_primary_10_3389_fphar_2017_00056
crossref_primary_10_1016_j_bbrc_2018_07_092
crossref_primary_10_1016_j_lfs_2021_119220
crossref_primary_10_1093_infdis_jiu599
crossref_primary_10_1089_jwh_2019_7954
crossref_primary_10_1016_j_fct_2010_08_009
crossref_primary_10_1007_s11307_015_0887_8
crossref_primary_10_1155_2018_6546808
crossref_primary_10_1016_j_jep_2013_09_035
crossref_primary_10_1586_egh_10_29
crossref_primary_10_3389_fphys_2015_00209
crossref_primary_10_1007_s00109_013_1042_0
crossref_primary_10_1371_journal_pone_0080588
crossref_primary_10_1002_iub_1742
crossref_primary_10_1038_labinvest_2016_112
crossref_primary_10_1016_j_thromres_2009_12_009
crossref_primary_10_1148_radiol_2020191498
crossref_primary_10_33590_emj_10310892
crossref_primary_10_1155_2013_972863
crossref_primary_10_3348_kjr_2017_18_6_898
crossref_primary_10_1155_2018_2642714
crossref_primary_10_1016_j_cbi_2014_07_007
crossref_primary_10_14712_fb2021067010028
crossref_primary_10_1111_j_1365_2362_2011_02597_x
crossref_primary_10_1111_apt_13061
crossref_primary_10_1039_C5IB00298B
crossref_primary_10_1093_nsr_nwu038
crossref_primary_10_1016_j_drudis_2013_01_006
crossref_primary_10_1007_s11010_012_1277_z
crossref_primary_10_1016_j_heliyon_2024_e28329
crossref_primary_10_3390_cells8121597
crossref_primary_10_1016_j_etap_2010_10_011
crossref_primary_10_1039_C3TX50069A
crossref_primary_10_3390_bioengineering8080106
crossref_primary_10_1016_j_diff_2018_05_003
crossref_primary_10_1042_BCJ20160686
crossref_primary_10_3748_wjg_v24_i44_4962
crossref_primary_10_1002_jgm_1439
crossref_primary_10_3390_toxins7114758
crossref_primary_10_1186_s12876_020_1161_3
crossref_primary_10_1210_me_2016_1029
crossref_primary_10_1016_j_fct_2019_111069
crossref_primary_10_1016_j_tiv_2011_02_011
crossref_primary_10_1016_j_cld_2008_07_008
crossref_primary_10_1111_liv_12203
crossref_primary_10_1371_journal_pone_0103532
crossref_primary_10_1517_13543784_2011_566864
crossref_primary_10_1148_radiol_11101638
crossref_primary_10_1177_0022034516659642
crossref_primary_10_1586_epr_09_59
crossref_primary_10_1038_s44303_024_00037_z
crossref_primary_10_1016_j_ejrad_2017_02_041
crossref_primary_10_3390_cells10051107
crossref_primary_10_1016_j_tox_2010_08_120
crossref_primary_10_1002_jmri_25253
crossref_primary_10_1016_j_mri_2014_02_013
crossref_primary_10_1177_02841851231195535
crossref_primary_10_1007_s10753_015_0157_6
crossref_primary_10_1016_j_lfs_2021_119144
crossref_primary_10_3390_jcm6030023
crossref_primary_10_1097_RCT_0b013e3182a589be
crossref_primary_10_1089_adt_2012_474
crossref_primary_10_3390_app10114001
crossref_primary_10_1186_s13020_015_0066_5
crossref_primary_10_1016_j_bbrc_2015_05_074
crossref_primary_10_1158_1078_0432_CCR_08_1847
crossref_primary_10_1016_j_phymed_2021_153609
crossref_primary_10_1016_j_febslet_2009_05_025
crossref_primary_10_1259_bjr_98745548
crossref_primary_10_1007_s12072_008_9093_y
crossref_primary_10_1177_0192623312464308
crossref_primary_10_1089_ars_2009_2513
crossref_primary_10_1186_1423_0127_16_78
crossref_primary_10_1080_19768354_2013_801365
crossref_primary_10_1371_journal_pone_0082201
crossref_primary_10_1073_pnas_2419946122
crossref_primary_10_1016_j_dld_2008_12_095
crossref_primary_10_1080_09168451_2017_1356215
crossref_primary_10_52711_0974_360X_2021_01066
crossref_primary_10_1016_j_surg_2017_04_013
crossref_primary_10_1016_j_yexcr_2010_04_033
crossref_primary_10_1148_rg_296095512
crossref_primary_10_1002_jcb_23017
crossref_primary_10_1007_s13105_022_00913_5
crossref_primary_10_1155_2015_794862
crossref_primary_10_1002_jmri_24739
crossref_primary_10_3389_fcell_2024_1490315
crossref_primary_10_1002_ptr_3381
crossref_primary_10_1016_j_jep_2021_114768
crossref_primary_10_1038_s41598_019_56235_y
crossref_primary_10_1002_cbin_10682
crossref_primary_10_1016_j_phytochem_2018_10_011
crossref_primary_10_3390_ijms22084241
crossref_primary_10_1016_j_jhep_2011_02_020
crossref_primary_10_1007_s00330_010_1988_z
crossref_primary_10_1039_c4tx00214h
crossref_primary_10_1016_j_jhep_2013_01_005
crossref_primary_10_1016_j_ijpara_2013_11_003
crossref_primary_10_1038_cmi_2015_104
crossref_primary_10_1590_s0102_865020180030000002
crossref_primary_10_1038_srep19445
crossref_primary_10_1016_j_ajg_2009_12_012
crossref_primary_10_1002_stem_162
crossref_primary_10_1038_emm_2017_140
crossref_primary_10_1016_j_ejphar_2013_09_058
crossref_primary_10_1002_jcb_25356
crossref_primary_10_1186_1755_1536_5_S1_S11
crossref_primary_10_18632_oncotarget_12655
crossref_primary_10_1111_j_1478_3231_2008_01841_x
crossref_primary_10_1371_journal_pone_0150959
crossref_primary_10_3390_ijms15058591
crossref_primary_10_1155_2011_345803
crossref_primary_10_1039_c3tx50030f
crossref_primary_10_1124_pr_109_001289
crossref_primary_10_3748_wjg_v23_i26_4661
crossref_primary_10_1016_j_jhep_2010_03_027
crossref_primary_10_3109_1354750X_2014_994564
crossref_primary_10_1111_j_1538_7836_2010_03870_x
crossref_primary_10_1016_j_jhep_2016_03_021
crossref_primary_10_1038_nm_2490
crossref_primary_10_1038_s41598_018_30800_3
crossref_primary_10_1007_s10753_012_9575_x
crossref_primary_10_1074_jbc_M110_194498
crossref_primary_10_1016_j_bbrc_2019_02_065
crossref_primary_10_1002_hep_27235
crossref_primary_10_1038_labinvest_2009_51
crossref_primary_10_1073_pnas_0912203107
crossref_primary_10_1177_1756283X11413002
crossref_primary_10_1016_j_rgmxen_2017_01_003
crossref_primary_10_1016_j_tox_2017_05_014
crossref_primary_10_1111_1440_1681_12286
crossref_primary_10_1016_j_bbalip_2009_10_007
crossref_primary_10_1016_j_lfs_2021_119884
crossref_primary_10_1016_j_jhep_2011_01_033
crossref_primary_10_1155_2014_814760
crossref_primary_10_3390_ijms22147662
crossref_primary_10_1002_ijc_24800
crossref_primary_10_1002_jbm_a_37417
crossref_primary_10_1155_2014_712893
crossref_primary_10_3892_ijmm_2014_2008
crossref_primary_10_1016_j_ejphar_2013_12_033
crossref_primary_10_1002_iub_2256
crossref_primary_10_3389_fphar_2024_1377980
crossref_primary_10_1042_CBR20100001
crossref_primary_10_1007_s00330_012_2419_0
crossref_primary_10_1371_journal_pone_0136173
crossref_primary_10_3892_etm_2017_4033
crossref_primary_10_1017_S1462399409000994
crossref_primary_10_1016_j_jhep_2014_04_026
crossref_primary_10_1002_cbin_11021
crossref_primary_10_1177_0284185119889566
crossref_primary_10_1096_fj_08_115600
crossref_primary_10_1371_journal_pone_0113846
crossref_primary_10_1007_s00330_015_3972_0
crossref_primary_10_1007_s11604_013_0222_8
crossref_primary_10_1016_j_fbio_2023_102670
crossref_primary_10_1007_s00261_020_02428_3
crossref_primary_10_3727_096368910X504496
crossref_primary_10_1259_bjr_20150896
crossref_primary_10_1007_s11418_020_01394_w
crossref_primary_10_1016_j_biopha_2019_109360
crossref_primary_10_1016_j_ejrad_2021_109575
crossref_primary_10_1002_hep_23334
crossref_primary_10_1007_s00261_016_0685_z
crossref_primary_10_1097_RCT_0000000000000937
crossref_primary_10_1016_j_tox_2010_08_095
crossref_primary_10_1016_j_tox_2010_08_093
crossref_primary_10_1007_s10753_009_9179_2
crossref_primary_10_1016_j_transproceed_2021_02_024
crossref_primary_10_1099_mic_0_001608
crossref_primary_10_4155_fmc_09_83
crossref_primary_10_1016_j_ecoenv_2020_110902
crossref_primary_10_3389_fmed_2025_1647629
crossref_primary_10_1007_s00011_014_0772_y
crossref_primary_10_1007_s10911_010_9181_1
crossref_primary_10_3748_wjg_v24_i37_4272
crossref_primary_10_1111_obr_13481
crossref_primary_10_1016_j_clinthera_2015_05_507
crossref_primary_10_1155_2019_6351091
crossref_primary_10_3748_wjg_15_3009
crossref_primary_10_1002_jmri_27601
crossref_primary_10_1371_journal_pone_0055379
crossref_primary_10_1016_j_foodchem_2010_06_026
crossref_primary_10_1016_j_pt_2012_09_005
crossref_primary_10_1038_labinvest_2010_115
crossref_primary_10_1016_j_parint_2015_07_002
crossref_primary_10_1007_s00261_016_0913_6
crossref_primary_10_1002_hep_22820
crossref_primary_10_1016_S0378_4274_23_00337_5
crossref_primary_10_1016_j_clinre_2016_12_004
crossref_primary_10_3390_antiox8080277
crossref_primary_10_1016_j_tox_2010_05_008
crossref_primary_10_1089_omi_2021_0052
crossref_primary_10_1002_jat_2955
crossref_primary_10_1128_MCB_01218_10
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1042/BJ20071570
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1470-8728
ExternalDocumentID 18333835
Genre Journal Article
Review
GroupedDBID ---
-DZ
-~X
0R~
23N
2WC
3EH
3O-
4.4
53G
5GY
5RE
5VS
6J9
79B
AABGO
AAHRG
ABJNI
ABPPZ
ABRJW
ABTAH
ACGFO
ACGFS
ACNCT
ADBBV
AEGXH
AENEX
AI.
AIAGR
AIZAD
ALMA_UNASSIGNED_HOLDINGS
BAWUL
CGR
CS3
CUY
CVF
DU5
E3Z
EBS
ECM
EIF
EJD
F5P
H13
HH6
HZ~
K-O
L7B
MV1
MVM
N9A
NPM
O9-
OHT
OK1
P2P
RHI
RNS
RPM
RPO
TR2
TWZ
VH1
WH7
XSW
Y6R
YNY
ZY4
~02
~KM
7X8
A8Z
ADXHL
ID FETCH-LOGICAL-c351t-f4b1ec2b4e31e4bceb64c2b19225f7ea9456ab2e9c1a9c0ddbad8027b928ee6b2
IEDL.DBID 7X8
ISICitedReferencesCount 367
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000254907400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1470-8728
IngestDate Fri Sep 05 13:28:24 EDT 2025
Thu Apr 03 06:58:20 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-f4b1ec2b4e31e4bceb64c2b19225f7ea9456ab2e9c1a9c0ddbad8027b928ee6b2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PMID 18333835
PQID 70383704
PQPubID 23479
ParticipantIDs proquest_miscellaneous_70383704
pubmed_primary_18333835
PublicationCentury 2000
PublicationDate 2008-04-01
PublicationDateYYYYMMDD 2008-04-01
PublicationDate_xml – month: 04
  year: 2008
  text: 2008-04-01
  day: 01
PublicationDecade 2000
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Biochemical journal
PublicationTitleAlternate Biochem J
PublicationYear 2008
SSID ssj0014040
Score 2.4441626
SecondaryResourceType review_article
Snippet Liver damage leads to an inflammatory response and to the activation and proliferation of mesenchymal cell populations within the liver which remodel the...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 1
SubjectTerms Animals
Fibroblasts - pathology
Hepatocytes - pathology
Humans
Inflammation - immunology
Inflammation - pathology
Kupffer Cells - pathology
Liver Cirrhosis - etiology
Liver Cirrhosis - pathology
Wound Healing - immunology
Title Liver fibrosis
URI https://www.ncbi.nlm.nih.gov/pubmed/18333835
https://www.proquest.com/docview/70383704
Volume 411
WOSCitedRecordID wos000254907400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFH9MJ-jBr_k1P3sQb2VpmjYJCDKHQ2SOHVR2K0n6CjvYTjsF_3uTdsWTePBSyKGQJnmvv_feL-8HcIkm5kYLtEEOz3yWCu1Lw5VvMgxTkWoeVyoRLyM-HovpVE5acN3chXG0ysYnVo46LYzLkffsyXR9WtjN_M13mlGutroU0FiBdmiBjCN08elPDYGR-jok48TaPBVNc1JGe7cPLkUXRJz8DiyrH8xw-39T24GtJbD0-vVJ2IUW5h3Y6-c2qH798q68iupZ5dA7sD5oZN72YHPkmBleZsPmopyV-_A8vHsa3PtLkQTfhFGw8DOmAzRUMwwDZNqgjpkdWuBGo4yjkhYhKU1RmkBJQ9JUq1TYWFRLKhBjTQ9gNS9yPAJPGM2kUTIQijHUUpGYUIytkfKMmDDuwkXz_YmdpKssqByLjzJpVqALh_USJvO6V0ZiPYYLgqPjP989gY2ai-FYMafQzqz54Rmsmc_FrHw_r_bWPseTx2_ZE635
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Liver+fibrosis&rft.jtitle=Biochemical+journal&rft.au=Wallace%2C+Karen&rft.au=Burt%2C+Alastair+D&rft.au=Wright%2C+Matthew+C&rft.date=2008-04-01&rft.eissn=1470-8728&rft.volume=411&rft.issue=1&rft.spage=1&rft_id=info:doi/10.1042%2FBJ20071570&rft_id=info%3Apmid%2F18333835&rft_id=info%3Apmid%2F18333835&rft.externalDocID=18333835
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1470-8728&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1470-8728&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1470-8728&client=summon