Liver fibrosis
Liver damage leads to an inflammatory response and to the activation and proliferation of mesenchymal cell populations within the liver which remodel the extracellular matrix as part of an orchestrated wound-healing response. Chronic damage results in a progressive accumulation of scarring proteins...
Gespeichert in:
| Veröffentlicht in: | Biochemical journal Jg. 411; H. 1; S. 1 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
England
01.04.2008
|
| Schlagworte: | |
| ISSN: | 1470-8728, 1470-8728 |
| Online-Zugang: | Weitere Angaben |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Liver damage leads to an inflammatory response and to the activation and proliferation of mesenchymal cell populations within the liver which remodel the extracellular matrix as part of an orchestrated wound-healing response. Chronic damage results in a progressive accumulation of scarring proteins (fibrosis) that, with increasing severity, alters tissue structure and function, leading to cirrhosis and liver failure. Efforts to modulate the fibrogenesis process have focused on understanding the biology of the heterogeneous liver fibroblast populations. The fibroblasts are derived from sources within and out with the liver. Fibroblasts expressing alpha-smooth muscle actin (myofibroblasts) may be derived from the transdifferentiation of quiescent hepatic stellate cells. Other fibroblasts emerge from the portal tracts within the liver. At least a proportion of these cells in diseased liver originate from the bone marrow. In addition, fibrogenic fibroblasts may also be generated through liver epithelial (hepatocyte and biliary epithelial cell)-mesenchymal transition. Whatever their origin, it is clear that fibrogenic fibroblast activity is sensitive to (and may be active in) the cytokine and chemokine profiles of liver-resident leucocytes such as macrophages. They may also be a component driving the regeneration of tissue. Understanding the complex intercellular interactions regulating liver fibrogenesis is of increasing importance in view of predicted increases in chronic liver disease and the current paucity of effective therapies. |
|---|---|
| AbstractList | Liver damage leads to an inflammatory response and to the activation and proliferation of mesenchymal cell populations within the liver which remodel the extracellular matrix as part of an orchestrated wound-healing response. Chronic damage results in a progressive accumulation of scarring proteins (fibrosis) that, with increasing severity, alters tissue structure and function, leading to cirrhosis and liver failure. Efforts to modulate the fibrogenesis process have focused on understanding the biology of the heterogeneous liver fibroblast populations. The fibroblasts are derived from sources within and out with the liver. Fibroblasts expressing alpha-smooth muscle actin (myofibroblasts) may be derived from the transdifferentiation of quiescent hepatic stellate cells. Other fibroblasts emerge from the portal tracts within the liver. At least a proportion of these cells in diseased liver originate from the bone marrow. In addition, fibrogenic fibroblasts may also be generated through liver epithelial (hepatocyte and biliary epithelial cell)-mesenchymal transition. Whatever their origin, it is clear that fibrogenic fibroblast activity is sensitive to (and may be active in) the cytokine and chemokine profiles of liver-resident leucocytes such as macrophages. They may also be a component driving the regeneration of tissue. Understanding the complex intercellular interactions regulating liver fibrogenesis is of increasing importance in view of predicted increases in chronic liver disease and the current paucity of effective therapies. Liver damage leads to an inflammatory response and to the activation and proliferation of mesenchymal cell populations within the liver which remodel the extracellular matrix as part of an orchestrated wound-healing response. Chronic damage results in a progressive accumulation of scarring proteins (fibrosis) that, with increasing severity, alters tissue structure and function, leading to cirrhosis and liver failure. Efforts to modulate the fibrogenesis process have focused on understanding the biology of the heterogeneous liver fibroblast populations. The fibroblasts are derived from sources within and out with the liver. Fibroblasts expressing alpha-smooth muscle actin (myofibroblasts) may be derived from the transdifferentiation of quiescent hepatic stellate cells. Other fibroblasts emerge from the portal tracts within the liver. At least a proportion of these cells in diseased liver originate from the bone marrow. In addition, fibrogenic fibroblasts may also be generated through liver epithelial (hepatocyte and biliary epithelial cell)-mesenchymal transition. Whatever their origin, it is clear that fibrogenic fibroblast activity is sensitive to (and may be active in) the cytokine and chemokine profiles of liver-resident leucocytes such as macrophages. They may also be a component driving the regeneration of tissue. Understanding the complex intercellular interactions regulating liver fibrogenesis is of increasing importance in view of predicted increases in chronic liver disease and the current paucity of effective therapies.Liver damage leads to an inflammatory response and to the activation and proliferation of mesenchymal cell populations within the liver which remodel the extracellular matrix as part of an orchestrated wound-healing response. Chronic damage results in a progressive accumulation of scarring proteins (fibrosis) that, with increasing severity, alters tissue structure and function, leading to cirrhosis and liver failure. Efforts to modulate the fibrogenesis process have focused on understanding the biology of the heterogeneous liver fibroblast populations. The fibroblasts are derived from sources within and out with the liver. Fibroblasts expressing alpha-smooth muscle actin (myofibroblasts) may be derived from the transdifferentiation of quiescent hepatic stellate cells. Other fibroblasts emerge from the portal tracts within the liver. At least a proportion of these cells in diseased liver originate from the bone marrow. In addition, fibrogenic fibroblasts may also be generated through liver epithelial (hepatocyte and biliary epithelial cell)-mesenchymal transition. Whatever their origin, it is clear that fibrogenic fibroblast activity is sensitive to (and may be active in) the cytokine and chemokine profiles of liver-resident leucocytes such as macrophages. They may also be a component driving the regeneration of tissue. Understanding the complex intercellular interactions regulating liver fibrogenesis is of increasing importance in view of predicted increases in chronic liver disease and the current paucity of effective therapies. |
| Author | Burt, Alastair D Wright, Matthew C Wallace, Karen |
| Author_xml | – sequence: 1 givenname: Karen surname: Wallace fullname: Wallace, Karen organization: Clinical and Laboratory Sciences, Institute of Cellular Medicine, Medical School, Framlington Place, Newcastle University, Newcastle upon Tyne NE2 4HH, UK – sequence: 2 givenname: Alastair D surname: Burt fullname: Burt, Alastair D – sequence: 3 givenname: Matthew C surname: Wright fullname: Wright, Matthew C |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18333835$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNj81LxDAUxB-y4u5WPfgHiCdv1ZeXtEmPuvhJwYueS5K-QqUfa7IV_O-34AqeZgaGYX5rWAzjwAAXAm8EKrq9fyVELTKNR7ASSmNqNJnFP7-EdYyfiEKhwhNYCiOlNDJbwXnZfnO4aloXxtjGUzhubBf57KAJfDw-vG-e0_Lt6WVzV6ZeZmKXNsoJ9uQUS8HKeXa5mqMoiLJGsy1UlltHXHhhC4917WxtkLQryDDnjhK4_t3dhvFr4rir-jZ67jo78DjFSuN8T89wCVweipPrua62oe1t-Kn-CGgPDCdHSA |
| CitedBy_id | crossref_primary_10_1002_jmri_24248 crossref_primary_10_1074_jbc_M115_691519 crossref_primary_10_1002_hep_23012 crossref_primary_10_1016_j_cellsig_2009_05_008 crossref_primary_10_1016_j_metabol_2022_155380 crossref_primary_10_1186_1476_5926_8_1 crossref_primary_10_1007_s12272_010_0616_4 crossref_primary_10_3892_mmr_2017_7654 crossref_primary_10_1007_s00247_010_1874_5 crossref_primary_10_1093_infdis_jiaa109 crossref_primary_10_1016_j_jsbmb_2010_04_012 crossref_primary_10_3389_fphar_2017_00056 crossref_primary_10_1016_j_bbrc_2018_07_092 crossref_primary_10_1016_j_lfs_2021_119220 crossref_primary_10_1093_infdis_jiu599 crossref_primary_10_1089_jwh_2019_7954 crossref_primary_10_1016_j_fct_2010_08_009 crossref_primary_10_1007_s11307_015_0887_8 crossref_primary_10_1155_2018_6546808 crossref_primary_10_1016_j_jep_2013_09_035 crossref_primary_10_1586_egh_10_29 crossref_primary_10_3389_fphys_2015_00209 crossref_primary_10_1007_s00109_013_1042_0 crossref_primary_10_1371_journal_pone_0080588 crossref_primary_10_1002_iub_1742 crossref_primary_10_1038_labinvest_2016_112 crossref_primary_10_1016_j_thromres_2009_12_009 crossref_primary_10_1148_radiol_2020191498 crossref_primary_10_33590_emj_10310892 crossref_primary_10_1155_2013_972863 crossref_primary_10_3348_kjr_2017_18_6_898 crossref_primary_10_1155_2018_2642714 crossref_primary_10_1016_j_cbi_2014_07_007 crossref_primary_10_14712_fb2021067010028 crossref_primary_10_1111_j_1365_2362_2011_02597_x crossref_primary_10_1111_apt_13061 crossref_primary_10_1039_C5IB00298B crossref_primary_10_1093_nsr_nwu038 crossref_primary_10_1016_j_drudis_2013_01_006 crossref_primary_10_1007_s11010_012_1277_z crossref_primary_10_1016_j_heliyon_2024_e28329 crossref_primary_10_3390_cells8121597 crossref_primary_10_1016_j_etap_2010_10_011 crossref_primary_10_1039_C3TX50069A crossref_primary_10_3390_bioengineering8080106 crossref_primary_10_1016_j_diff_2018_05_003 crossref_primary_10_1042_BCJ20160686 crossref_primary_10_3748_wjg_v24_i44_4962 crossref_primary_10_1002_jgm_1439 crossref_primary_10_3390_toxins7114758 crossref_primary_10_1186_s12876_020_1161_3 crossref_primary_10_1210_me_2016_1029 crossref_primary_10_1016_j_fct_2019_111069 crossref_primary_10_1016_j_tiv_2011_02_011 crossref_primary_10_1016_j_cld_2008_07_008 crossref_primary_10_1111_liv_12203 crossref_primary_10_1371_journal_pone_0103532 crossref_primary_10_1517_13543784_2011_566864 crossref_primary_10_1148_radiol_11101638 crossref_primary_10_1177_0022034516659642 crossref_primary_10_1586_epr_09_59 crossref_primary_10_1038_s44303_024_00037_z crossref_primary_10_1016_j_ejrad_2017_02_041 crossref_primary_10_3390_cells10051107 crossref_primary_10_1016_j_tox_2010_08_120 crossref_primary_10_1002_jmri_25253 crossref_primary_10_1016_j_mri_2014_02_013 crossref_primary_10_1177_02841851231195535 crossref_primary_10_1007_s10753_015_0157_6 crossref_primary_10_1016_j_lfs_2021_119144 crossref_primary_10_3390_jcm6030023 crossref_primary_10_1097_RCT_0b013e3182a589be crossref_primary_10_1089_adt_2012_474 crossref_primary_10_3390_app10114001 crossref_primary_10_1186_s13020_015_0066_5 crossref_primary_10_1016_j_bbrc_2015_05_074 crossref_primary_10_1158_1078_0432_CCR_08_1847 crossref_primary_10_1016_j_phymed_2021_153609 crossref_primary_10_1016_j_febslet_2009_05_025 crossref_primary_10_1259_bjr_98745548 crossref_primary_10_1007_s12072_008_9093_y crossref_primary_10_1177_0192623312464308 crossref_primary_10_1089_ars_2009_2513 crossref_primary_10_1186_1423_0127_16_78 crossref_primary_10_1080_19768354_2013_801365 crossref_primary_10_1371_journal_pone_0082201 crossref_primary_10_1073_pnas_2419946122 crossref_primary_10_1016_j_dld_2008_12_095 crossref_primary_10_1080_09168451_2017_1356215 crossref_primary_10_52711_0974_360X_2021_01066 crossref_primary_10_1016_j_surg_2017_04_013 crossref_primary_10_1016_j_yexcr_2010_04_033 crossref_primary_10_1148_rg_296095512 crossref_primary_10_1002_jcb_23017 crossref_primary_10_1007_s13105_022_00913_5 crossref_primary_10_1155_2015_794862 crossref_primary_10_1002_jmri_24739 crossref_primary_10_3389_fcell_2024_1490315 crossref_primary_10_1002_ptr_3381 crossref_primary_10_1016_j_jep_2021_114768 crossref_primary_10_1038_s41598_019_56235_y crossref_primary_10_1002_cbin_10682 crossref_primary_10_1016_j_phytochem_2018_10_011 crossref_primary_10_3390_ijms22084241 crossref_primary_10_1016_j_jhep_2011_02_020 crossref_primary_10_1007_s00330_010_1988_z crossref_primary_10_1039_c4tx00214h crossref_primary_10_1016_j_jhep_2013_01_005 crossref_primary_10_1016_j_ijpara_2013_11_003 crossref_primary_10_1038_cmi_2015_104 crossref_primary_10_1590_s0102_865020180030000002 crossref_primary_10_1038_srep19445 crossref_primary_10_1016_j_ajg_2009_12_012 crossref_primary_10_1002_stem_162 crossref_primary_10_1038_emm_2017_140 crossref_primary_10_1016_j_ejphar_2013_09_058 crossref_primary_10_1002_jcb_25356 crossref_primary_10_1186_1755_1536_5_S1_S11 crossref_primary_10_18632_oncotarget_12655 crossref_primary_10_1111_j_1478_3231_2008_01841_x crossref_primary_10_1371_journal_pone_0150959 crossref_primary_10_3390_ijms15058591 crossref_primary_10_1155_2011_345803 crossref_primary_10_1039_c3tx50030f crossref_primary_10_1124_pr_109_001289 crossref_primary_10_3748_wjg_v23_i26_4661 crossref_primary_10_1016_j_jhep_2010_03_027 crossref_primary_10_3109_1354750X_2014_994564 crossref_primary_10_1111_j_1538_7836_2010_03870_x crossref_primary_10_1016_j_jhep_2016_03_021 crossref_primary_10_1038_nm_2490 crossref_primary_10_1038_s41598_018_30800_3 crossref_primary_10_1007_s10753_012_9575_x crossref_primary_10_1074_jbc_M110_194498 crossref_primary_10_1016_j_bbrc_2019_02_065 crossref_primary_10_1002_hep_27235 crossref_primary_10_1038_labinvest_2009_51 crossref_primary_10_1073_pnas_0912203107 crossref_primary_10_1177_1756283X11413002 crossref_primary_10_1016_j_rgmxen_2017_01_003 crossref_primary_10_1016_j_tox_2017_05_014 crossref_primary_10_1111_1440_1681_12286 crossref_primary_10_1016_j_bbalip_2009_10_007 crossref_primary_10_1016_j_lfs_2021_119884 crossref_primary_10_1016_j_jhep_2011_01_033 crossref_primary_10_1155_2014_814760 crossref_primary_10_3390_ijms22147662 crossref_primary_10_1002_ijc_24800 crossref_primary_10_1002_jbm_a_37417 crossref_primary_10_1155_2014_712893 crossref_primary_10_3892_ijmm_2014_2008 crossref_primary_10_1016_j_ejphar_2013_12_033 crossref_primary_10_1002_iub_2256 crossref_primary_10_3389_fphar_2024_1377980 crossref_primary_10_1042_CBR20100001 crossref_primary_10_1007_s00330_012_2419_0 crossref_primary_10_1371_journal_pone_0136173 crossref_primary_10_3892_etm_2017_4033 crossref_primary_10_1017_S1462399409000994 crossref_primary_10_1016_j_jhep_2014_04_026 crossref_primary_10_1002_cbin_11021 crossref_primary_10_1177_0284185119889566 crossref_primary_10_1096_fj_08_115600 crossref_primary_10_1371_journal_pone_0113846 crossref_primary_10_1007_s00330_015_3972_0 crossref_primary_10_1007_s11604_013_0222_8 crossref_primary_10_1016_j_fbio_2023_102670 crossref_primary_10_1007_s00261_020_02428_3 crossref_primary_10_3727_096368910X504496 crossref_primary_10_1259_bjr_20150896 crossref_primary_10_1007_s11418_020_01394_w crossref_primary_10_1016_j_biopha_2019_109360 crossref_primary_10_1016_j_ejrad_2021_109575 crossref_primary_10_1002_hep_23334 crossref_primary_10_1007_s00261_016_0685_z crossref_primary_10_1097_RCT_0000000000000937 crossref_primary_10_1016_j_tox_2010_08_095 crossref_primary_10_1016_j_tox_2010_08_093 crossref_primary_10_1007_s10753_009_9179_2 crossref_primary_10_1016_j_transproceed_2021_02_024 crossref_primary_10_1099_mic_0_001608 crossref_primary_10_4155_fmc_09_83 crossref_primary_10_1016_j_ecoenv_2020_110902 crossref_primary_10_3389_fmed_2025_1647629 crossref_primary_10_1007_s00011_014_0772_y crossref_primary_10_1007_s10911_010_9181_1 crossref_primary_10_3748_wjg_v24_i37_4272 crossref_primary_10_1111_obr_13481 crossref_primary_10_1016_j_clinthera_2015_05_507 crossref_primary_10_1155_2019_6351091 crossref_primary_10_3748_wjg_15_3009 crossref_primary_10_1002_jmri_27601 crossref_primary_10_1371_journal_pone_0055379 crossref_primary_10_1016_j_foodchem_2010_06_026 crossref_primary_10_1016_j_pt_2012_09_005 crossref_primary_10_1038_labinvest_2010_115 crossref_primary_10_1016_j_parint_2015_07_002 crossref_primary_10_1007_s00261_016_0913_6 crossref_primary_10_1002_hep_22820 crossref_primary_10_1016_S0378_4274_23_00337_5 crossref_primary_10_1016_j_clinre_2016_12_004 crossref_primary_10_3390_antiox8080277 crossref_primary_10_1016_j_tox_2010_05_008 crossref_primary_10_1089_omi_2021_0052 crossref_primary_10_1002_jat_2955 crossref_primary_10_1128_MCB_01218_10 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1042/BJ20071570 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Anatomy & Physiology Chemistry |
| EISSN | 1470-8728 |
| ExternalDocumentID | 18333835 |
| Genre | Journal Article Review |
| GroupedDBID | --- -DZ -~X 0R~ 23N 2WC 3EH 3O- 4.4 53G 5GY 5RE 5VS 6J9 79B AABGO AAHRG ABJNI ABPPZ ABRJW ABTAH ACGFO ACGFS ACNCT ADBBV AEGXH AENEX AI. AIAGR AIZAD ALMA_UNASSIGNED_HOLDINGS BAWUL CGR CS3 CUY CVF DU5 E3Z EBS ECM EIF EJD F5P H13 HH6 HZ~ K-O L7B MV1 MVM N9A NPM O9- OHT OK1 P2P RHI RNS RPM RPO TR2 TWZ VH1 WH7 XSW Y6R YNY ZY4 ~02 ~KM 7X8 A8Z ADXHL |
| ID | FETCH-LOGICAL-c351t-f4b1ec2b4e31e4bceb64c2b19225f7ea9456ab2e9c1a9c0ddbad8027b928ee6b2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 367 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000254907400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1470-8728 |
| IngestDate | Fri Sep 05 13:28:24 EDT 2025 Thu Apr 03 06:58:20 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c351t-f4b1ec2b4e31e4bceb64c2b19225f7ea9456ab2e9c1a9c0ddbad8027b928ee6b2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| PMID | 18333835 |
| PQID | 70383704 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_70383704 pubmed_primary_18333835 |
| PublicationCentury | 2000 |
| PublicationDate | 2008-04-01 |
| PublicationDateYYYYMMDD | 2008-04-01 |
| PublicationDate_xml | – month: 04 year: 2008 text: 2008-04-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Biochemical journal |
| PublicationTitleAlternate | Biochem J |
| PublicationYear | 2008 |
| SSID | ssj0014040 |
| Score | 2.4441626 |
| SecondaryResourceType | review_article |
| Snippet | Liver damage leads to an inflammatory response and to the activation and proliferation of mesenchymal cell populations within the liver which remodel the... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 1 |
| SubjectTerms | Animals Fibroblasts - pathology Hepatocytes - pathology Humans Inflammation - immunology Inflammation - pathology Kupffer Cells - pathology Liver Cirrhosis - etiology Liver Cirrhosis - pathology Wound Healing - immunology |
| Title | Liver fibrosis |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/18333835 https://www.proquest.com/docview/70383704 |
| Volume | 411 |
| WOSCitedRecordID | wos000254907400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFH9MJ-jBr_k1P3sQb2VpmjYJCDKHQ2SOHVR2K0n6CjvYTjsF_3uTdsWTePBSyKGQJnmvv_feL-8HcIkm5kYLtEEOz3yWCu1Lw5VvMgxTkWoeVyoRLyM-HovpVE5acN3chXG0ysYnVo46LYzLkffsyXR9WtjN_M13mlGutroU0FiBdmiBjCN08elPDYGR-jok48TaPBVNc1JGe7cPLkUXRJz8DiyrH8xw-39T24GtJbD0-vVJ2IUW5h3Y6-c2qH798q68iupZ5dA7sD5oZN72YHPkmBleZsPmopyV-_A8vHsa3PtLkQTfhFGw8DOmAzRUMwwDZNqgjpkdWuBGo4yjkhYhKU1RmkBJQ9JUq1TYWFRLKhBjTQ9gNS9yPAJPGM2kUTIQijHUUpGYUIytkfKMmDDuwkXz_YmdpKssqByLjzJpVqALh_USJvO6V0ZiPYYLgqPjP989gY2ai-FYMafQzqz54Rmsmc_FrHw_r_bWPseTx2_ZE635 |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Liver+fibrosis&rft.jtitle=Biochemical+journal&rft.au=Wallace%2C+Karen&rft.au=Burt%2C+Alastair+D&rft.au=Wright%2C+Matthew+C&rft.date=2008-04-01&rft.eissn=1470-8728&rft.volume=411&rft.issue=1&rft.spage=1&rft_id=info:doi/10.1042%2FBJ20071570&rft_id=info%3Apmid%2F18333835&rft_id=info%3Apmid%2F18333835&rft.externalDocID=18333835 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1470-8728&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1470-8728&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1470-8728&client=summon |