Local Feature Selection for Data Classification

Typical feature selection methods choose an optimal global feature subset that is applied over all regions of the sample space. In contrast, in this paper we propose a novel localized feature selection (LFS) approach whereby each region of the sample space is associated with its own distinct optimiz...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on pattern analysis and machine intelligence Vol. 38; no. 6; pp. 1217 - 1227
Main Authors: Armanfard, Narges, Reilly, James P., Komeili, Majid
Format: Journal Article
Language:English
Published: United States IEEE 01.06.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0162-8828, 1939-3539, 2160-9292, 1939-3539
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Typical feature selection methods choose an optimal global feature subset that is applied over all regions of the sample space. In contrast, in this paper we propose a novel localized feature selection (LFS) approach whereby each region of the sample space is associated with its own distinct optimized feature set, which may vary both in membership and size across the sample space. This allows the feature set to optimally adapt to local variations in the sample space. An associated method for measuring the similarities of a query datum to each of the respective classes is also proposed. The proposed method makes no assumptions about the underlying structure of the samples; hence the method is insensitive to the distribution of the data over the sample space. The method is efficiently formulated as a linear programming optimization problem. Furthermore, we demonstrate the method is robust against the over-fitting problem. Experimental results on eleven synthetic and real-world data sets demonstrate the viability of the formulation and the effectiveness of the proposed algorithm. In addition we show several examples where localized feature selection produces better results than a global feature selection method.
AbstractList Typical feature selection methods choose an optimal global feature subset that is applied over all regions of the sample space. In contrast, in this paper we propose a novel localized feature selection (LFS) approach whereby each region of the sample space is associated with its own distinct optimized feature set, which may vary both in membership and size across the sample space. This allows the feature set to optimally adapt to local variations in the sample space. An associated method for measuring the similarities of a query datum to each of the respective classes is also proposed. The proposed method makes no assumptions about the underlying structure of the samples; hence the method is insensitive to the distribution of the data over the sample space. The method is efficiently formulated as a linear programming optimization problem. Furthermore, we demonstrate the method is robust against the over-fitting problem. Experimental results on eleven synthetic and real-world data sets demonstrate the viability of the formulation and the effectiveness of the proposed algorithm. In addition we show several examples where localized feature selection produces better results than a global feature selection method.
Typical feature selection methods choose an optimal global feature subset that is applied over all regions of the sample space. In contrast, in this paper we propose a novel localized feature selection (LFS) approach whereby each region of the sample space is associated with its own distinct optimized feature set, which may vary both in membership and size across the sample space. This allows the feature set to optimally adapt to local variations in the sample space. An associated method for measuring the similarities of a query datum to each of the respective classes is also proposed. The proposed method makes no assumptions about the underlying structure of the samples; hence the method is insensitive to the distribution of the data over the sample space. The method is efficiently formulated as a linear programming optimization problem. Furthermore, we demonstrate the method is robust against the over-fitting problem. Experimental results on eleven synthetic and real-world data sets demonstrate the viability of the formulation and the effectiveness of the proposed algorithm. In addition we show several examples where localized feature selection produces better results than a global feature selection method.Typical feature selection methods choose an optimal global feature subset that is applied over all regions of the sample space. In contrast, in this paper we propose a novel localized feature selection (LFS) approach whereby each region of the sample space is associated with its own distinct optimized feature set, which may vary both in membership and size across the sample space. This allows the feature set to optimally adapt to local variations in the sample space. An associated method for measuring the similarities of a query datum to each of the respective classes is also proposed. The proposed method makes no assumptions about the underlying structure of the samples; hence the method is insensitive to the distribution of the data over the sample space. The method is efficiently formulated as a linear programming optimization problem. Furthermore, we demonstrate the method is robust against the over-fitting problem. Experimental results on eleven synthetic and real-world data sets demonstrate the viability of the formulation and the effectiveness of the proposed algorithm. In addition we show several examples where localized feature selection produces better results than a global feature selection method.
Author Armanfard, Narges
Reilly, James P.
Komeili, Majid
Author_xml – sequence: 1
  givenname: Narges
  surname: Armanfard
  fullname: Armanfard, Narges
  email: armanfn@mcmaster.ca
  organization: Dept. of Electr. & Comput. Eng., McMaster Univ., Hamilton, ON, Canada
– sequence: 2
  givenname: James P.
  surname: Reilly
  fullname: Reilly, James P.
  email: reillyj@mcmaster.ca
  organization: Dept. of Electr. & Comput. Eng., McMaster Univ., Hamilton, ON, Canada
– sequence: 3
  givenname: Majid
  surname: Komeili
  fullname: Komeili, Majid
  email: mkomeili@ece.utoronto.ca
  organization: Dept. of Electr. & Comput. Eng., Univ. of Toronto, Toronto, ON, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26390448$$D View this record in MEDLINE/PubMed
BookMark eNp9kM9LwzAUgINM3Kb-AwpS8OKlM7-THsd0KkwUnOeQZi_Q0bUzaQ_-97bb9LCDp8Dj-x553xgNqroChK4InhCCs_vl-_T1ZUIxERPKleaKnKARJRKnGc3oAI0wkTTVmuohGse4xphwgdkZGlLJMsy5HqH7Re1smczBNm2A5ANKcE1RV4mvQ_JgG5vMShtj4Qtn-_kFOvW2jHB5eM_R5_xxOXtOF29PL7PpInVMkCb1nHmZe2cpwxK8407hzFEssNXcA8WUS7bKgTnInAINSnLBae54zqXOOTtHd_u921B_tRAbsymig7K0FdRtNERpLThWOuvQ2yN0Xbeh6n7XU0oLoYnqqJsD1eYbWJltKDY2fJvfFB2g94ALdYwBvHFFs7u5CbYoDcGmr2521U1f3Ryqdyo9Un-3_ytd76UCAP4ERaXormI_nHuK8w
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1109_TCBB_2017_2712775
crossref_primary_10_1016_j_ijar_2018_10_014
crossref_primary_10_1016_j_knosys_2017_09_034
crossref_primary_10_1016_j_knosys_2018_07_028
crossref_primary_10_1007_s11432_020_3063_0
crossref_primary_10_1016_j_patcog_2018_05_013
crossref_primary_10_1007_s10844_021_00680_7
crossref_primary_10_1007_s11432_023_4132_0
crossref_primary_10_1109_TNNLS_2017_2676101
crossref_primary_10_1109_ACCESS_2018_2879848
crossref_primary_10_1109_TKDE_2021_3126642
crossref_primary_10_1016_j_neunet_2023_10_037
crossref_primary_10_1007_s11666_022_01363_7
crossref_primary_10_1109_TPAMI_2022_3222732
crossref_primary_10_1016_j_knosys_2020_105655
crossref_primary_10_1109_TFUZZ_2022_3146969
crossref_primary_10_1021_acs_analchem_5b04665
crossref_primary_10_3390_math11040920
crossref_primary_10_1371_journal_pone_0255307
crossref_primary_10_1016_j_ecolind_2021_108506
crossref_primary_10_3233_JIFS_211348
crossref_primary_10_1016_j_patcog_2018_03_014
crossref_primary_10_1007_s10723_021_09585_9
crossref_primary_10_1016_j_eswa_2023_121765
crossref_primary_10_1016_j_jrras_2022_05_010
crossref_primary_10_1109_JBHI_2020_3034295
crossref_primary_10_1016_j_ins_2024_120214
crossref_primary_10_1016_j_eswa_2018_03_058
crossref_primary_10_1109_TEVC_2022_3222297
crossref_primary_10_1016_j_neucom_2018_02_100
crossref_primary_10_1109_TNNLS_2017_2757497
crossref_primary_10_1109_TIP_2019_2902830
crossref_primary_10_1016_j_knosys_2020_106370
crossref_primary_10_3233_JIFS_169936
crossref_primary_10_1109_TFUZZ_2025_3529459
crossref_primary_10_1136_bmjopen_2019_029621
crossref_primary_10_1109_TPAMI_2020_2987013
crossref_primary_10_1109_ACCESS_2022_3172281
crossref_primary_10_3390_pr11010180
crossref_primary_10_1016_j_ins_2022_10_054
crossref_primary_10_1109_TPAMI_2019_2960358
crossref_primary_10_1007_s00779_018_1156_z
crossref_primary_10_1109_TAI_2025_3538549
crossref_primary_10_1016_j_eswa_2022_117955
crossref_primary_10_1002_int_22844
crossref_primary_10_1109_JBHI_2018_2877738
crossref_primary_10_1016_j_ejor_2025_07_014
crossref_primary_10_1016_j_patcog_2020_107629
crossref_primary_10_1016_j_compmedimag_2018_04_002
crossref_primary_10_1007_s00521_022_07705_4
crossref_primary_10_3390_atmos13091449
crossref_primary_10_1109_TNNLS_2017_2748952
crossref_primary_10_1111_exsy_12391
crossref_primary_10_1109_TIP_2017_2778569
crossref_primary_10_1007_s11227_018_2640_y
crossref_primary_10_1016_j_asoc_2023_111117
crossref_primary_10_1007_s11222_024_10382_z
crossref_primary_10_1016_j_jksuci_2024_102124
crossref_primary_10_1016_j_asoc_2019_105989
crossref_primary_10_1016_j_cose_2017_11_014
crossref_primary_10_1109_TIM_2023_3317923
Cites_doi 10.1109/TPAMI.2005.159
10.2172/15002155
10.1109/TKDE.2008.238
10.1162/089976603321780317
10.1109/TPAMI.2007.70799
10.1016/B978-1-55860-247-2.50037-1
10.1109/TPAMI.2007.250607
10.1109/TPAMI.2010.215
10.1073/pnas.201162998
10.1016/S0893-6080(00)00026-5
10.1109/TPAMI.2007.1093
10.1073/pnas.1031596100
10.1109/NNSP.1999.788172
10.1093/bioinformatics/btr547
10.1109/TCBB.2004.2
10.1016/j.patcog.2013.02.012
10.1109/TPAMI.2009.190
10.1109/72.977291
10.1109/34.824819
10.1109/MLSP.2013.6661950
10.1126/science.290.5500.2323
10.1016/j.eswa.2011.03.028
10.1145/1015330.1015352
10.1007/978-3-540-88688-4_4
10.1515/9781400874651
10.1007/3-540-57868-4_57
10.21236/ADA292575
10.1017/CBO9780511804441
10.1145/502512.502550
10.1126/science.290.5500.2319
10.1002/0470013192.bsa501
10.1007/978-3-642-45511-7
10.1016/j.amc.2009.03.037
10.1073/pnas.96.12.6745
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TPAMI.2015.2478471
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList PubMed
Technology Research Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2160-9292
1939-3539
EndPage 1227
ExternalDocumentID 4050811791
26390448
10_1109_TPAMI_2015_2478471
7265078
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Natural Sciences and Engineering Research Council of Canada (NSERC)
  funderid: 10.13039/501100000038
– fundername: MITACS
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AGSQL
AHBIQ
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
~02
AAYXX
CITATION
5VS
9M8
AAYOK
ABFSI
ADRHT
AETEA
AETIX
AI.
AIBXA
AKJIK
ALLEH
FA8
H~9
IBMZZ
ICLAB
IFJZH
NPM
RIG
RNI
RZB
VH1
XJT
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c351t-f43f6bfca2306efc4c709c2050a84fe202463dbe3ce9c7e8e764542bc4b468b43
IEDL.DBID RIE
ISICitedReferencesCount 71
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000375609000013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0162-8828
1939-3539
IngestDate Mon Sep 29 05:36:02 EDT 2025
Mon Jun 30 04:05:15 EDT 2025
Thu Apr 03 07:05:58 EDT 2025
Sat Nov 29 05:15:57 EST 2025
Tue Nov 18 22:34:45 EST 2025
Wed Aug 27 02:47:51 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords classification
Local feature selection
linear programming
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-f43f6bfca2306efc4c709c2050a84fe202463dbe3ce9c7e8e764542bc4b468b43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 26390448
PQID 1787855817
PQPubID 85458
PageCount 11
ParticipantIDs pubmed_primary_26390448
proquest_miscellaneous_1788540789
ieee_primary_7265078
proquest_journals_1787855817
crossref_citationtrail_10_1109_TPAMI_2015_2478471
crossref_primary_10_1109_TPAMI_2015_2478471
PublicationCentury 2000
PublicationDate 2016-June-1
2016-6-1
2016-06-00
20160601
PublicationDateYYYYMMDD 2016-06-01
PublicationDate_xml – month: 06
  year: 2016
  text: 2016-June-1
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2016
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref34
ref37
ref15
ref14
ref31
ref30
ref33
ref11
ref32
ref10
ref2
john (ref44) 0
ref17
ref38
ref16
ref19
brown (ref28) 2012; 13
webb (ref4) 2003
cheng (ref21) 0; 8
nie (ref41) 0
fodor (ref1) 2002
sun (ref23) 2010; 32
ref24
ref26
ref25
ref20
ref42
ref22
ref43
duda (ref12) 2001
he (ref18) 0; 2
bache (ref39) 2013
souza (ref36) 2001
thai (ref35) 2013
ref27
ref29
ref8
ref7
ref9
langley (ref3) 1994
ref6
ref5
ref40
References_xml – year: 2001
  ident: ref12
  publication-title: Pattern Classification
– ident: ref7
  doi: 10.1109/TPAMI.2005.159
– volume: 8
  start-page: 93
  year: 0
  ident: ref21
  article-title: Biclustering of expression data
  publication-title: Proc Int Conf Intell Syst Mol Biol
– year: 2002
  ident: ref1
  article-title: A survey of dimension reduction techniques
  doi: 10.2172/15002155
– ident: ref32
  doi: 10.1109/TKDE.2008.238
– ident: ref15
  doi: 10.1162/089976603321780317
– ident: ref9
  doi: 10.1109/TPAMI.2007.70799
– ident: ref25
  doi: 10.1016/B978-1-55860-247-2.50037-1
– ident: ref8
  doi: 10.1109/TPAMI.2007.250607
– year: 0
  ident: ref44
– ident: ref10
  doi: 10.1109/TPAMI.2010.215
– ident: ref42
  doi: 10.1073/pnas.201162998
– ident: ref13
  doi: 10.1016/S0893-6080(00)00026-5
– year: 2013
  ident: ref39
– ident: ref31
  doi: 10.1109/TPAMI.2007.1093
– ident: ref16
  doi: 10.1073/pnas.1031596100
– ident: ref19
  doi: 10.1109/NNSP.1999.788172
– ident: ref26
  doi: 10.1093/bioinformatics/btr547
– ident: ref20
  doi: 10.1109/TCBB.2004.2
– ident: ref33
  doi: 10.1016/j.patcog.2013.02.012
– volume: 2
  start-page: 1208
  year: 0
  ident: ref18
  article-title: Neighborhood preserving embedding
  publication-title: Proc 10th IEEE Int Conf Comput Vis
– volume: 32
  start-page: 1610
  year: 2010
  ident: ref23
  article-title: Local-learning-based feature selection for high-dimensional data analysis
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2009.190
– year: 2013
  ident: ref35
  article-title: Approximation algorithms: LP relaxation, rounding, and randomized rounding techniques
– ident: ref11
  doi: 10.1109/72.977291
– ident: ref2
  doi: 10.1109/34.824819
– year: 2003
  ident: ref4
  publication-title: Statistical Pattern Recognition
– ident: ref27
  doi: 10.1109/MLSP.2013.6661950
– ident: ref6
  doi: 10.1126/science.290.5500.2323
– ident: ref29
  doi: 10.1016/j.eswa.2011.03.028
– ident: ref24
  doi: 10.1145/1015330.1015352
– start-page: 1813
  year: 0
  ident: ref41
  article-title: Efficient and robust feature selection via joint $l_{2,1}$ -norms minimization
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref17
  doi: 10.1007/978-3-540-88688-4_4
– volume: 13
  start-page: 27
  year: 2012
  ident: ref28
  article-title: Conditional likelihood maximisation: A unifying framework for information theoretic feature selection
  publication-title: Journal of Machine Learning Research
– ident: ref43
  doi: 10.1515/9781400874651
– ident: ref30
  doi: 10.1007/3-540-57868-4_57
– year: 1994
  ident: ref3
  publication-title: Selection of Relevant Features in Machine Learning
  doi: 10.21236/ADA292575
– year: 2001
  ident: ref36
  article-title: Randomized algorithm & probabilistic methods
– ident: ref34
  doi: 10.1017/CBO9780511804441
– ident: ref22
  doi: 10.1145/502512.502550
– ident: ref14
  doi: 10.1126/science.290.5500.2319
– ident: ref5
  doi: 10.1002/0470013192.bsa501
– ident: ref37
  doi: 10.1007/978-3-642-45511-7
– ident: ref38
  doi: 10.1016/j.amc.2009.03.037
– ident: ref40
  doi: 10.1073/pnas.96.12.6745
SSID ssj0014503
Score 2.487248
Snippet Typical feature selection methods choose an optimal global feature subset that is applied over all regions of the sample space. In contrast, in this paper we...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1217
SubjectTerms Classification
Feature extraction
Frequency modulation
Linear programming
Local Feature Selection
Manifolds
Pareto optimization
Training
Title Local Feature Selection for Data Classification
URI https://ieeexplore.ieee.org/document/7265078
https://www.ncbi.nlm.nih.gov/pubmed/26390448
https://www.proquest.com/docview/1787855817
https://www.proquest.com/docview/1788540789
Volume 38
WOSCitedRecordID wos000375609000013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2160-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014503
  issn: 0162-8828
  databaseCode: RIE
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5UPOjB1_qoj6WCN63bR9okx0VdFFQWXGFvpUmnIMiu7Lb-fjPpAw8qeCs0bUO-mcyXTjIfwAXmqjC0QXi5H_seU1J6SkvlSZ0neRKgL4WyYhP8-VlMp3K8AlfdWRhEtJvP8JoubS4_n-uKfpUNeGj4BBersMp5Up_V6jIGLLYqyIbBGA83y4j2gIwvB5Px8OmBdnHF1yHjNB1TCWATmn1Gsj_f4pEVWPmda9qYM9r-X293YKvhlu6wNoZdWMHZHmy3ug1u48Z7sPmtCGEPBo8UzlzigtUC3RcrjGPQcg2ddW-zMnOtcCZtKbIo7sPr6G5yc-81MgqejuKg9AoWFYkqdEarDSw009yXOjTYZIIVGJoonUS5wkij1BwFcqryFSrNFEuEYtEBrM3mMzwC13C9LIiQxZHOmSGWgsU6KiRHSq_xrHAgaAcz1U2NcZK6eE_tWsOXqcUiJSzSBgsHLrtnPuoKG3-27tFIdy2bQXbgtMUsbZxwmQZmMhJxLALuwHl327gP5USyGc4r20ZQDUIhHTisse7e3ZrI8c_fPIEN07Ok3jd2CmvlosIzWNef5dty0Tc2OhV9a6NfTTDd9Q
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8QwEB68QH3wPupZwTftbo-kSR7FA8V1EVzBt9KkUxBkV9Zdf7-Z9MAHFXwrNG1DvkzmS2cyH8ApFrq0tEEGRcjDgGmlAm2UDpQp0iKNMFRSO7EJ0e_Llxf1OAPn7VkYRHTJZ9ihSxfLL0ZmSr_KuiK2fELIWZjnjMVhdVqrjRkw7nSQLYexNm43Es0RmVB1B48XD3eUx8U7MRO0IFMRYOucQ0bCP988kpNY-Z1tOq9zs_q__q7BSs0u_YtqOqzDDA43YLVRbvBrQ96A5W9lCDeh2yOH5hMbnI7Rf3LSOBYv3xJa_yqf5L6TzqSkIofjFjzfXA8ub4NaSCEwCY8mQcmSMtWlyWm_gaVhRoTKxBadXLISY-un06TQmBhURqBEQXW-Ym2YZqnULNmGueFoiLvgW7aXRwkynpiCWWopGTdJqQRSgE3kpQdRM5iZqauMk9jFW-Z2G6HKHBYZYZHVWHhw1j7zXtXY-LP1Jo1027IeZA8OGsyy2gw_ssguR5JzGQkPTtrb1oAoKpIPcTR1bSRVIZTKg50K6_bdzRTZ-_mbx7B4O3joZb27_v0-LNleplUW2QHMTcZTPIQF8zl5_RgfuZn6Bch54FQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Local+Feature+Selection+for+Data+Classification&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Armanfard%2C+Narges&rft.au=Reilly%2C+James+P&rft.au=Komeili%2C+Majid&rft.date=2016-06-01&rft.issn=1939-3539&rft.eissn=1939-3539&rft.volume=38&rft.issue=6&rft.spage=1217&rft_id=info:doi/10.1109%2FTPAMI.2015.2478471&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon