A Generalized Model for Robust Tensor Factorization With Noise Modeling by Mixture of Gaussians

The low-rank tensor factorization (LRTF) technique has received increasing attention in many computer vision applications. Compared with the traditional matrix factorization technique, it can better preserve the intrinsic structure information and thus has a better low-dimensional subspace recovery...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transaction on neural networks and learning systems Vol. 29; no. 11; pp. 5380 - 5393
Main Authors: Chen, Xi'ai, Han, Zhi, Wang, Yao, Zhao, Qian, Meng, Deyu, Lin, Lin, Tang, Yandong
Format: Journal Article
Language:English
Published: United States IEEE 01.11.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2162-237X, 2162-2388, 2162-2388
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The low-rank tensor factorization (LRTF) technique has received increasing attention in many computer vision applications. Compared with the traditional matrix factorization technique, it can better preserve the intrinsic structure information and thus has a better low-dimensional subspace recovery performance. Basically, the desired low-rank tensor is recovered by minimizing the least square loss between the input data and its factorized representation. Since the least square loss is most optimal when the noise follows a Gaussian distribution, <inline-formula> <tex-math notation="LaTeX">L_{1} </tex-math></inline-formula>-norm-based methods are designed to deal with outliers. Unfortunately, they may lose their effectiveness when dealing with real data, which are often contaminated by complex noise. In this paper, we consider integrating the noise modeling technique into a generalized weighted LRTF (GWLRTF) procedure. This procedure treats the original issue as an LRTF problem and models the noise using a mixture of Gaussians (MoG), a procedure called MoG GWLRTF. To extend the applicability of the model, two typical tensor factorization operations, i.e., CANDECOMP/PARAFAC factorization and Tucker factorization, are incorporated into the LRTF procedure. Its parameters are updated under the expectation-maximization framework. Extensive experiments indicate the respective advantages of these two versions of MoG GWLRTF in various applications and also demonstrate their effectiveness compared with other competing methods.
AbstractList The low-rank tensor factorization (LRTF) technique has received increasing attention in many computer vision applications. Compared with the traditional matrix factorization technique, it can better preserve the intrinsic structure information and thus has a better low-dimensional subspace recovery performance. Basically, the desired low-rank tensor is recovered by minimizing the least square loss between the input data and its factorized representation. Since the least square loss is most optimal when the noise follows a Gaussian distribution, <inline-formula> <tex-math notation="LaTeX">L_{1} </tex-math></inline-formula>-norm-based methods are designed to deal with outliers. Unfortunately, they may lose their effectiveness when dealing with real data, which are often contaminated by complex noise. In this paper, we consider integrating the noise modeling technique into a generalized weighted LRTF (GWLRTF) procedure. This procedure treats the original issue as an LRTF problem and models the noise using a mixture of Gaussians (MoG), a procedure called MoG GWLRTF. To extend the applicability of the model, two typical tensor factorization operations, i.e., CANDECOMP/PARAFAC factorization and Tucker factorization, are incorporated into the LRTF procedure. Its parameters are updated under the expectation-maximization framework. Extensive experiments indicate the respective advantages of these two versions of MoG GWLRTF in various applications and also demonstrate their effectiveness compared with other competing methods.
The low-rank tensor factorization (LRTF) technique has received increasing attention in many computer vision applications. Compared with the traditional matrix factorization technique, it can better preserve the intrinsic structure information and thus has a better low-dimensional subspace recovery performance. Basically, the desired low-rank tensor is recovered by minimizing the least square loss between the input data and its factorized representation. Since the least square loss is most optimal when the noise follows a Gaussian distribution, -norm-based methods are designed to deal with outliers. Unfortunately, they may lose their effectiveness when dealing with real data, which are often contaminated by complex noise. In this paper, we consider integrating the noise modeling technique into a generalized weighted LRTF (GWLRTF) procedure. This procedure treats the original issue as an LRTF problem and models the noise using a mixture of Gaussians (MoG), a procedure called MoG GWLRTF. To extend the applicability of the model, two typical tensor factorization operations, i.e., CANDECOMP/PARAFAC factorization and Tucker factorization, are incorporated into the LRTF procedure. Its parameters are updated under the expectation-maximization framework. Extensive experiments indicate the respective advantages of these two versions of MoG GWLRTF in various applications and also demonstrate their effectiveness compared with other competing methods.
The low-rank tensor factorization (LRTF) technique has received increasing attention in many computer vision applications. Compared with the traditional matrix factorization technique, it can better preserve the intrinsic structure information and thus has a better low-dimensional subspace recovery performance. Basically, the desired low-rank tensor is recovered by minimizing the least square loss between the input data and its factorized representation. Since the least square loss is most optimal when the noise follows a Gaussian distribution, -norm-based methods are designed to deal with outliers. Unfortunately, they may lose their effectiveness when dealing with real data, which are often contaminated by complex noise. In this paper, we consider integrating the noise modeling technique into a generalized weighted LRTF (GWLRTF) procedure. This procedure treats the original issue as an LRTF problem and models the noise using a mixture of Gaussians (MoG), a procedure called MoG GWLRTF. To extend the applicability of the model, two typical tensor factorization operations, i.e., CANDECOMP/PARAFAC factorization and Tucker factorization, are incorporated into the LRTF procedure. Its parameters are updated under the expectation-maximization framework. Extensive experiments indicate the respective advantages of these two versions of MoG GWLRTF in various applications and also demonstrate their effectiveness compared with other competing methods.The low-rank tensor factorization (LRTF) technique has received increasing attention in many computer vision applications. Compared with the traditional matrix factorization technique, it can better preserve the intrinsic structure information and thus has a better low-dimensional subspace recovery performance. Basically, the desired low-rank tensor is recovered by minimizing the least square loss between the input data and its factorized representation. Since the least square loss is most optimal when the noise follows a Gaussian distribution, -norm-based methods are designed to deal with outliers. Unfortunately, they may lose their effectiveness when dealing with real data, which are often contaminated by complex noise. In this paper, we consider integrating the noise modeling technique into a generalized weighted LRTF (GWLRTF) procedure. This procedure treats the original issue as an LRTF problem and models the noise using a mixture of Gaussians (MoG), a procedure called MoG GWLRTF. To extend the applicability of the model, two typical tensor factorization operations, i.e., CANDECOMP/PARAFAC factorization and Tucker factorization, are incorporated into the LRTF procedure. Its parameters are updated under the expectation-maximization framework. Extensive experiments indicate the respective advantages of these two versions of MoG GWLRTF in various applications and also demonstrate their effectiveness compared with other competing methods.
The low-rank tensor factorization (LRTF) technique has received increasing attention in many computer vision applications. Compared with the traditional matrix factorization technique, it can better preserve the intrinsic structure information and thus has a better low-dimensional subspace recovery performance. Basically, the desired low-rank tensor is recovered by minimizing the least square loss between the input data and its factorized representation. Since the least square loss is most optimal when the noise follows a Gaussian distribution, L1-norm-based methods are designed to deal with outliers. Unfortunately, they may lose their effectiveness when dealing with real data, which are often contaminated by complex noise. In this paper, we consider integrating the noise modeling technique into a generalized weighted LRTF (GWLRTF) procedure. This procedure treats the original issue as an LRTF problem and models the noise using a mixture of Gaussians (MoG), a procedure called MoG GWLRTF. To extend the applicability of the model, two typical tensor factorization operations, i.e., CANDECOMP/PARAFAC factorization and Tucker factorization, are incorporated into the LRTF procedure. Its parameters are updated under the expectation-maximization framework. Extensive experiments indicate the respective advantages of these two versions of MoG GWLRTF in various applications and also demonstrate their effectiveness compared with other competing methods.
Author Han, Zhi
Wang, Yao
Meng, Deyu
Lin, Lin
Tang, Yandong
Zhao, Qian
Chen, Xi'ai
Author_xml – sequence: 1
  givenname: Xi'ai
  orcidid: 0000-0003-4756-3962
  surname: Chen
  fullname: Chen, Xi'ai
  email: chenxiai@sia.cn
  organization: State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
– sequence: 2
  givenname: Zhi
  orcidid: 0000-0002-8039-6679
  surname: Han
  fullname: Han, Zhi
  email: hanzhi@sia.cn
  organization: State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
– sequence: 3
  givenname: Yao
  orcidid: 0000-0003-4207-5273
  surname: Wang
  fullname: Wang, Yao
  email: yao.s.wang@gmail.com
  organization: School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, China
– sequence: 4
  givenname: Qian
  orcidid: 0000-0001-9956-0064
  surname: Zhao
  fullname: Zhao, Qian
  email: timmy.zhaoqian@gmail.com
  organization: School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, China
– sequence: 5
  givenname: Deyu
  orcidid: 0000-0002-1294-8283
  surname: Meng
  fullname: Meng, Deyu
  email: dymeng@mail.xjtu.edu.cn
  organization: School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, China
– sequence: 6
  givenname: Lin
  orcidid: 0000-0002-0793-5795
  surname: Lin
  fullname: Lin, Lin
  email: 610674737@qq.com
  organization: School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, China
– sequence: 7
  givenname: Yandong
  orcidid: 0000-0003-3805-7654
  surname: Tang
  fullname: Tang, Yandong
  email: ytang@sia.cn
  organization: State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29994738$$D View this record in MEDLINE/PubMed
BookMark eNp9kUFrFDEYhoNUbK39AwoS8OJl1-TLbCY5lmJXYbuCrugtJJlvNGU2qUkGbH-9s91tDz2YSxJ4n5eP73lJjmKKSMhrzuacM_1hs16vvs2BcTWHVkvJ5DNyAlzCDIRSR4_v9ucxOSvlmk1HsoVs9AtyDFrrphXqhJhzusSI2Q7hDjt6lTocaJ8y_ZrcWCrdYCzT79L6mnK4szWkSH-E-puuUyi4B0L8Rd0tvQp_65iRpp4u7VhKsLG8Is97OxQ8O9yn5Pvlx83Fp9nqy_Lzxflq5sWC1xl657wV0GtkvWrRK74QFqBpwTvOOs8a6WTTSYdWOi4FoLes443STCx6LU7J-33vTU5_RizVbEPxOAw2YhqLASaVaKZSOUXfPYlepzHHaToDHLiWCppd4dtDanRb7MxNDlubb83D6qaA2gd8TqVk7I0P9X4_NdswGM7MTpS5F2V2osxB1ITCE_Sh_b_Qmz0UEPERUGJyClL8A3SCnco
CODEN ITNNAL
CitedBy_id crossref_primary_10_1109_TGRS_2023_3277848
crossref_primary_10_3390_rs15081970
crossref_primary_10_1109_TGRS_2021_3085779
crossref_primary_10_1109_TGRS_2023_3237865
crossref_primary_10_1109_TNNLS_2023_3280086
crossref_primary_10_12677_AAM_2022_1112896
crossref_primary_10_1109_TNNLS_2019_2956926
crossref_primary_10_1109_JSTARS_2020_3046488
crossref_primary_10_1109_TNNLS_2020_3009210
crossref_primary_10_1109_TGRS_2022_3217051
crossref_primary_10_1109_TFUZZ_2023_3291488
crossref_primary_10_1109_TNNLS_2021_3112577
crossref_primary_10_1109_TNNLS_2023_3248156
crossref_primary_10_1016_j_ins_2023_02_012
crossref_primary_10_1016_j_neucom_2021_06_020
crossref_primary_10_1016_j_sigpro_2020_107889
crossref_primary_10_1016_j_sigpro_2020_107527
crossref_primary_10_1109_TCSVT_2024_3442295
crossref_primary_10_1109_TNNLS_2023_3266841
crossref_primary_10_1109_TNNLS_2022_3214307
crossref_primary_10_1109_TNNLS_2021_3106654
crossref_primary_10_1109_TCI_2021_3126232
crossref_primary_10_1109_TNNLS_2019_2929063
crossref_primary_10_3390_rs14184470
crossref_primary_10_1109_TNNLS_2021_3104837
crossref_primary_10_1016_j_ins_2019_06_061
crossref_primary_10_1109_TNNLS_2021_3083931
crossref_primary_10_1016_j_patcog_2024_110995
crossref_primary_10_1016_j_patrec_2022_10_005
crossref_primary_10_1007_s11042_023_16561_w
crossref_primary_10_1109_TCYB_2021_3067676
crossref_primary_10_1016_j_jfranklin_2023_07_024
crossref_primary_10_1109_TCYB_2022_3169800
crossref_primary_10_1109_TNNLS_2018_2873655
crossref_primary_10_1109_TPAMI_2019_2923240
crossref_primary_10_1109_TNNLS_2023_3293328
crossref_primary_10_1109_TGRS_2022_3227735
crossref_primary_10_1016_j_sigpro_2024_109407
crossref_primary_10_1016_j_patcog_2020_107310
crossref_primary_10_1109_ACCESS_2020_3024635
crossref_primary_10_1109_TNNLS_2018_2885616
crossref_primary_10_1109_TNNLS_2019_2956153
crossref_primary_10_1007_s10489_024_05899_9
crossref_primary_10_1109_LSP_2020_2991581
crossref_primary_10_1016_j_neunet_2022_05_023
crossref_primary_10_1109_TGRS_2024_3379199
crossref_primary_10_3390_rs12081278
crossref_primary_10_1109_TNNLS_2019_2957527
crossref_primary_10_1109_TNNLS_2022_3172184
Cites_doi 10.1007/BF02310791
10.1109/TNNLS.2015.2465178
10.1109/CVPR.1991.139758
10.1109/ISIT.2010.5513535
10.1109/CVPR.2003.1211457
10.1109/LGRS.2008.915736
10.1007/s11432-015-5419-2
10.1109/TIP.2010.2046811
10.1145/1970392.1970395
10.1007/s11263-007-0099-z
10.1137/140997816
10.1364/JOSAA.4.000519
10.1111/j.2517-6161.1977.tb01600.x
10.1109/ICCV.2015.39
10.1109/TPAMI.2012.39
10.1109/CVPR.2014.377
10.1002/mrm.1910350312
10.1109/TIP.2007.899598
10.1109/TPAMI.2015.2392756
10.1002/sapm192761164
10.1109/34.598228
10.1109/TIP.2011.2109730
10.1214/07-AOAS131
10.1007/BF00129684
10.1109/WQV.1993.262951
10.1016/j.patcog.2006.08.004
10.1109/34.927464
10.1007/3-540-47969-4_30
10.1109/ICCV.2013.169
10.1145/1073204.1073209
10.1007/s11432-014-5223-4
10.1007/BF02289464
10.1016/j.laa.2004.01.016
10.1109/TIP.2004.836169
10.1109/ICCV.2003.1238452
10.1109/CVPR.2016.563
10.1109/CDC.2013.6760155
10.1002/1099-128X(200005/06)14:3<105::AID-CEM582>3.0.CO;2-I
10.1109/TGRS.2012.2187063
10.1016/0024-3795(77)90069-6
10.1016/j.neucom.2016.10.030
10.1137/1.9781611972801.19
10.1016/j.sigpro.2004.11.029
10.18637/jss.v033.i01
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2018.2796606
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 5393
ExternalDocumentID 29994738
10_1109_TNNLS_2018_2796606
8305626
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Key Research Program of Hunan Province, China
  grantid: 2017GK2273
– fundername: China Postdoctoral Science Foundation
  grantid: 2017M610628
  funderid: 10.13039/501100002858
– fundername: Youth Innovation Promotion Association of the Chinese Academy of Sciences
  grantid: 2016183
  funderid: 10.13039/501100004739
– fundername: National Natural Science Foundation of China
  grantid: 61773367; 61303168; 11501440; 61333019; 61373114
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
RIG
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c351t-ecbbca32f9e0f87ec8153a22472cb10dc046b64d6bea6b1632eca0d1489035f93
IEDL.DBID RIE
ISICitedReferencesCount 54
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000447832200017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2162-237X
2162-2388
IngestDate Thu Oct 02 07:08:01 EDT 2025
Sun Sep 07 03:47:36 EDT 2025
Thu Jan 02 22:59:41 EST 2025
Tue Nov 18 21:32:39 EST 2025
Sat Nov 29 01:39:59 EST 2025
Wed Aug 27 02:52:48 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-ecbbca32f9e0f87ec8153a22472cb10dc046b64d6bea6b1632eca0d1489035f93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4756-3962
0000-0003-4207-5273
0000-0002-0793-5795
0000-0003-3805-7654
0000-0001-9956-0064
0000-0002-8039-6679
0000-0002-1294-8283
PMID 29994738
PQID 2121968249
PQPubID 85436
PageCount 14
ParticipantIDs pubmed_primary_29994738
proquest_miscellaneous_2068341536
proquest_journals_2121968249
crossref_citationtrail_10_1109_TNNLS_2018_2796606
crossref_primary_10_1109_TNNLS_2018_2796606
ieee_primary_8305626
PublicationCentury 2000
PublicationDate 2018-11-01
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref53
ref52
ref55
ref10
ref17
ref19
ref18
huang (ref29) 2008
zhao (ref35) 2014
ref51
ref50
ref46
wright (ref1) 2009
ref45
ref48
ref47
ref42
ref41
harshman (ref11) 1970; 16
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
mei (ref54) 2017
wainwright (ref39) 2000
ref34
ref37
ref36
ref31
ref33
ref2
ref38
bader (ref44) 2015
friedman (ref43) 2010; 33
ref24
ref23
ref26
ref25
ref20
ref22
ref21
chi (ref30) 2010
ref28
ref27
savas (ref16) 2003
gu (ref32) 2014
rai (ref14) 2014
References_xml – start-page: 1
  year: 2014
  ident: ref35
  article-title: Robust principal component analysis with complex noise
  publication-title: Proc Int Conf Mach Learn
– ident: ref10
  doi: 10.1007/BF02310791
– ident: ref53
  doi: 10.1109/TNNLS.2015.2465178
– ident: ref3
  doi: 10.1109/CVPR.1991.139758
– ident: ref31
  doi: 10.1109/ISIT.2010.5513535
– start-page: 1
  year: 2008
  ident: ref29
  article-title: Robust tensor factorization using R1 norm
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit (CVPR)
– ident: ref24
  doi: 10.1109/CVPR.2003.1211457
– volume: 16
  start-page: 1
  year: 1970
  ident: ref11
  article-title: Foundations of the parafac procedure: Models and conditions for an 'explanatory' multimodal factor analysis
  publication-title: UCLA Working Papers Phonetics
– start-page: 1800
  year: 2014
  ident: ref14
  article-title: Scalable Bayesian low-rank decomposition of incomplete multiway tensors
  publication-title: Proc Int Conf Mach Learn
– ident: ref46
  doi: 10.1109/LGRS.2008.915736
– ident: ref33
  doi: 10.1007/s11432-015-5419-2
– ident: ref50
  doi: 10.1109/TIP.2010.2046811
– ident: ref8
  doi: 10.1145/1970392.1970395
– ident: ref7
  doi: 10.1007/s11263-007-0099-z
– ident: ref55
  doi: 10.1137/140997816
– ident: ref2
  doi: 10.1364/JOSAA.4.000519
– ident: ref40
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– ident: ref36
  doi: 10.1109/ICCV.2015.39
– ident: ref9
  doi: 10.1109/TPAMI.2012.39
– ident: ref47
  doi: 10.1109/CVPR.2014.377
– ident: ref27
  doi: 10.1002/mrm.1910350312
– ident: ref38
  doi: 10.1109/TIP.2007.899598
– ident: ref13
  doi: 10.1109/TPAMI.2015.2392756
– ident: ref18
  doi: 10.1002/sapm192761164
– ident: ref4
  doi: 10.1109/34.598228
– ident: ref48
  doi: 10.1109/TIP.2011.2109730
– start-page: 2080
  year: 2009
  ident: ref1
  article-title: Robust principal component analysis: Exact recovery of corrupted low-rank matrices via convex optimization
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref42
  doi: 10.1214/07-AOAS131
– ident: ref5
  doi: 10.1007/BF00129684
– start-page: 1
  year: 2017
  ident: ref54
  article-title: Cauchy noise removal by nonconvex ADMM with convergence guarantees
  publication-title: J Sci Comput
– ident: ref6
  doi: 10.1109/WQV.1993.262951
– ident: ref22
  doi: 10.1016/j.patcog.2006.08.004
– ident: ref49
  doi: 10.1109/34.927464
– year: 2010
  ident: ref30
  publication-title: Making Tensor Factorizations Robust to Non-Gaussian Noise
– ident: ref23
  doi: 10.1007/3-540-47969-4_30
– ident: ref34
  doi: 10.1109/ICCV.2013.169
– ident: ref25
  doi: 10.1145/1073204.1073209
– ident: ref41
  doi: 10.1007/s11432-014-5223-4
– ident: ref19
  doi: 10.1007/BF02289464
– ident: ref20
  doi: 10.1016/j.laa.2004.01.016
– ident: ref28
  doi: 10.1109/TIP.2004.836169
– ident: ref26
  doi: 10.1109/ICCV.2003.1238452
– ident: ref37
  doi: 10.1109/CVPR.2016.563
– year: 2015
  ident: ref44
  publication-title: MATLAB Tensor Toolbox Version 2 6
– ident: ref51
  doi: 10.1109/CDC.2013.6760155
– start-page: 855
  year: 2000
  ident: ref39
  article-title: Scale mixtures of Gaussians and the statistics of natural images
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref12
  doi: 10.1002/1099-128X(200005/06)14:3<105::AID-CEM582>3.0.CO;2-I
– ident: ref45
  doi: 10.1109/TGRS.2012.2187063
– year: 2003
  ident: ref16
  article-title: Analyses and tests of handwritten digit recognition algorithms
– start-page: 1422
  year: 2014
  ident: ref32
  article-title: Robust tensor decomposition with gross corruption
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref17
  doi: 10.1016/0024-3795(77)90069-6
– ident: ref52
  doi: 10.1016/j.neucom.2016.10.030
– ident: ref15
  doi: 10.1137/1.9781611972801.19
– ident: ref21
  doi: 10.1016/j.sigpro.2004.11.029
– volume: 33
  start-page: 1
  year: 2010
  ident: ref43
  article-title: Regularization paths for generalized linear models via coordinate descent
  publication-title: J Statist Softw
  doi: 10.18637/jss.v033.i01
SSID ssj0000605649
Score 2.485158
Snippet The low-rank tensor factorization (LRTF) technique has received increasing attention in many computer vision applications. Compared with the traditional matrix...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5380
SubjectTerms Computational modeling
Computer vision
Data processing
Expectation–maximization (EM) algorithm
Factorization
Gaussian distribution
generalized weighted low-rank tensor factorization (GWLRTF)
Indexes
Learning systems
Least squares
mixture of Gaussians (MoG) model
Modelling
Noise
Noise pollution
Normal distribution
Oligodendrocyte-myelin glycoprotein
Optimization
Outliers (statistics)
Robustness
Tensile stress
tensor factorization
Title A Generalized Model for Robust Tensor Factorization With Noise Modeling by Mixture of Gaussians
URI https://ieeexplore.ieee.org/document/8305626
https://www.ncbi.nlm.nih.gov/pubmed/29994738
https://www.proquest.com/docview/2121968249
https://www.proquest.com/docview/2068341536
Volume 29
WOSCitedRecordID wos000447832200017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2162-2388
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605649
  issn: 2162-237X
  databaseCode: RIE
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Ni9UwEB92Fw9eXHX9eLouEbxpd9OmzcdxEZ8etIg-8d1KkiZYWF5l24r61ztJ8wqCCt5amkxDZibzmyQzA_DMKcuoaU2mnWqz0paoUoLKzKhWUqVtTvVcbELUtdxu1fsDeLHEwjjn4uUzdx4e41l-29spbJVdyIB3C34Ih0LwOVZr2U-hiMt5RLtFzousYGK7j5Gh6mJT128_hotc8rwQISEl_80OxcIqf8eY0dasj_9vlLfhVsKU5HIWgjtw4HZ34Xhfr4Ek9T2B5pKkLNPdT9eSUAbtiiBoJR96Mw0j2aBLi2_rWIInxWeSz934hdR9N7i5A5o6Yn6Qd933cPZAek9e62kIoZjDPfi0frV5-SZLBRYyy6p8zJw1xmpWeOWol8JZieufRqMuCmty2lp0ng0vW26c5gaRW-Gspi16UIqyyit2H452_c49BFJWxkvGfJtbV_oql15TpFcpi3S98CvI99Pd2JR9PBTBuGqiF0JVE1nUBBY1iUUreL70-Trn3vhn65PAi6VlYsMKTvdcbZJ6Dg3aa1x5JLqeK3i6fEbFCqcleuf6CdtQLtHEVwxJPJilYaGNNlyVgslHf_7nY7gZRjaHLJ7C0Xg9uSdww34bu-H6DKV3K8-i9P4CYg_rjw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB_OU9AXTz0_Vk-N4Jv2Lm36kTwe4nriXhFdcd9KPrFwbOXaivrXO0mzBUEF31qaTEMn099vkswMwHMrNKPKqERaYZJc52hSFeWJEoZTIXVK5VRsoqprvtmI93vwco6FsdaGw2f22F-GvXzT6dEvlZ1wz3ez8gpcLfI8o1O01ryiQpGZl4HvZmmZJRmrNrsoGSpO1nW9-uiPcvHjrPIpKcvfkCiUVvk7ywxoszz4v3HegpuRVZLTaRrchj27vQMHu4oNJBrwITSnJOaZbn9aQ3whtAuCtJV86NTYD2SNTi3eLUMRnhihST63wxdSd21vpw4IdkT9IOftd7_7QDpH3six98GY_V34tHy9fnWWxBILiWZFOiRWK6Uly5yw1PHKao5_QImwXmVapdRodJ9VmZtSWVkq5G6Z1ZIa9KEEZYUT7B7sb7utfQAkL5TjjDmTapu7IuVOUpRXCI1yXeUWkO4-d6Nj_nFfBuOiCX4IFU1QUeNV1EQVLeDF3OfrlH3jn60PvS7mllENCzjaabWJBto3iNj47-HofC7g2fwYTcvvl8it7UZsQ0uOIF8wFHF_mg2zbERxkVeMP_zzO5_C9bP1-apZva3fPYIbfpRTAOMR7A-Xo30M1_S3oe0vn4Q5_As4c-3u
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Generalized+Model+for+Robust+Tensor+Factorization+With+Noise+Modeling+by+Mixture+of+Gaussians&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Chen%2C+Xi%27ai&rft.au=Han%2C+Zhi&rft.au=Wang%2C+Yao&rft.au=Zhao%2C+Qian&rft.date=2018-11-01&rft.issn=2162-2388&rft.eissn=2162-2388&rft.volume=29&rft.issue=11&rft.spage=5380&rft_id=info:doi/10.1109%2FTNNLS.2018.2796606&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon