Scalable Proximal Jacobian Iteration Method With Global Convergence Analysis for Nonconvex Unconstrained Composite Optimizations
The recent studies have found that the nonconvex relaxation functions usually perform better than the convex counterparts in the <inline-formula> <tex-math notation="LaTeX">l_{0} </tex-math></inline-formula>-norm and rank function minimization problems. However, due...
Uložené v:
| Vydané v: | IEEE transaction on neural networks and learning systems Ročník 30; číslo 9; s. 2825 - 2839 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
IEEE
01.09.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 2162-237X, 2162-2388, 2162-2388 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
Buďte prvý, kto okomentuje tento záznam!