Scalable Proximal Jacobian Iteration Method With Global Convergence Analysis for Nonconvex Unconstrained Composite Optimizations
The recent studies have found that the nonconvex relaxation functions usually perform better than the convex counterparts in the <inline-formula> <tex-math notation="LaTeX">l_{0} </tex-math></inline-formula>-norm and rank function minimization problems. However, due...
Uloženo v:
| Vydáno v: | IEEE transaction on neural networks and learning systems Ročník 30; číslo 9; s. 2825 - 2839 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
IEEE
01.09.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2162-237X, 2162-2388, 2162-2388 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Buďte první, kdo okomentuje tento záznam!