Scalable Proximal Jacobian Iteration Method With Global Convergence Analysis for Nonconvex Unconstrained Composite Optimizations
The recent studies have found that the nonconvex relaxation functions usually perform better than the convex counterparts in the <inline-formula> <tex-math notation="LaTeX">l_{0} </tex-math></inline-formula>-norm and rank function minimization problems. However, due...
Uložené v:
| Vydané v: | IEEE transaction on neural networks and learning systems Ročník 30; číslo 9; s. 2825 - 2839 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
IEEE
01.09.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 2162-237X, 2162-2388, 2162-2388 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The recent studies have found that the nonconvex relaxation functions usually perform better than the convex counterparts in the <inline-formula> <tex-math notation="LaTeX">l_{0} </tex-math></inline-formula>-norm and rank function minimization problems. However, due to the absence of convexity in these nonconvex problems, developing efficient algorithms with convergence guarantee becomes very challenging. Inspired by the basic ideas of both the Jacobian alternating direction method of multipliers (JADMMs) for solving linearly constrained problems with separable objectives and the proximal gradient methods (PGMs) for optimizing the unconstrained problems with one variable, this paper focuses on extending the PGMs to the proximal Jacobian iteration methods (PJIMs) for handling with a family of nonconvex composite optimization problems with two splitting variables. To reduce the total computational complexity by decreasing the number of iterations, we devise the accelerated version of PJIMs through the well-known Nesterov's acceleration strategy and further extend both to solve the multivariable cases. Most importantly, we provide a rigorous convergence analysis, in theory, to show that the generated variable sequence globally converges to a critical point by exploiting the Kurdyka-Łojasiewica (KŁ) property for a broad class of functions. Furthermore, we also establish the linear and sublinear convergence rates of the obtained variable sequence in the objective function. As the specific application to the nonconvex sparse and low-rank recovery problems, several numerical experiments can verify that the newly proposed algorithms not only keep fast convergence speed but also have high precision. |
|---|---|
| AbstractList | The recent studies have found that the nonconvex relaxation functions usually perform better than the convex counterparts in the [Formula Omitted]-norm and rank function minimization problems. However, due to the absence of convexity in these nonconvex problems, developing efficient algorithms with convergence guarantee becomes very challenging. Inspired by the basic ideas of both the Jacobian alternating direction method of multipliers (JADMMs) for solving linearly constrained problems with separable objectives and the proximal gradient methods (PGMs) for optimizing the unconstrained problems with one variable, this paper focuses on extending the PGMs to the proximal Jacobian iteration methods (PJIMs) for handling with a family of nonconvex composite optimization problems with two splitting variables. To reduce the total computational complexity by decreasing the number of iterations, we devise the accelerated version of PJIMs through the well-known Nesterov’s acceleration strategy and further extend both to solve the multivariable cases. Most importantly, we provide a rigorous convergence analysis, in theory, to show that the generated variable sequence globally converges to a critical point by exploiting the Kurdyk–Łojasiewica (KŁ) property for a broad class of functions. Furthermore, we also establish the linear and sublinear convergence rates of the obtained variable sequence in the objective function. As the specific application to the nonconvex sparse and low-rank recovery problems, several numerical experiments can verify that the newly proposed algorithms not only keep fast convergence speed but also have high precision. The recent studies have found that the nonconvex relaxation functions usually perform better than the convex counterparts in the l -norm and rank function minimization problems. However, due to the absence of convexity in these nonconvex problems, developing efficient algorithms with convergence guarantee becomes very challenging. Inspired by the basic ideas of both the Jacobian alternating direction method of multipliers (JADMMs) for solving linearly constrained problems with separable objectives and the proximal gradient methods (PGMs) for optimizing the unconstrained problems with one variable, this paper focuses on extending the PGMs to the proximal Jacobian iteration methods (PJIMs) for handling with a family of nonconvex composite optimization problems with two splitting variables. To reduce the total computational complexity by decreasing the number of iterations, we devise the accelerated version of PJIMs through the well-known Nesterov's acceleration strategy and further extend both to solve the multivariable cases. Most importantly, we provide a rigorous convergence analysis, in theory, to show that the generated variable sequence globally converges to a critical point by exploiting the Kurdyka-Łojasiewica (KŁ) property for a broad class of functions. Furthermore, we also establish the linear and sublinear convergence rates of the obtained variable sequence in the objective function. As the specific application to the nonconvex sparse and low-rank recovery problems, several numerical experiments can verify that the newly proposed algorithms not only keep fast convergence speed but also have high precision. The recent studies have found that the nonconvex relaxation functions usually perform better than the convex counterparts in the l0 -norm and rank function minimization problems. However, due to the absence of convexity in these nonconvex problems, developing efficient algorithms with convergence guarantee becomes very challenging. Inspired by the basic ideas of both the Jacobian alternating direction method of multipliers (JADMMs) for solving linearly constrained problems with separable objectives and the proximal gradient methods (PGMs) for optimizing the unconstrained problems with one variable, this paper focuses on extending the PGMs to the proximal Jacobian iteration methods (PJIMs) for handling with a family of nonconvex composite optimization problems with two splitting variables. To reduce the total computational complexity by decreasing the number of iterations, we devise the accelerated version of PJIMs through the well-known Nesterov's acceleration strategy and further extend both to solve the multivariable cases. Most importantly, we provide a rigorous convergence analysis, in theory, to show that the generated variable sequence globally converges to a critical point by exploiting the Kurdyka-Łojasiewica (KŁ) property for a broad class of functions. Furthermore, we also establish the linear and sublinear convergence rates of the obtained variable sequence in the objective function. As the specific application to the nonconvex sparse and low-rank recovery problems, several numerical experiments can verify that the newly proposed algorithms not only keep fast convergence speed but also have high precision.The recent studies have found that the nonconvex relaxation functions usually perform better than the convex counterparts in the l0 -norm and rank function minimization problems. However, due to the absence of convexity in these nonconvex problems, developing efficient algorithms with convergence guarantee becomes very challenging. Inspired by the basic ideas of both the Jacobian alternating direction method of multipliers (JADMMs) for solving linearly constrained problems with separable objectives and the proximal gradient methods (PGMs) for optimizing the unconstrained problems with one variable, this paper focuses on extending the PGMs to the proximal Jacobian iteration methods (PJIMs) for handling with a family of nonconvex composite optimization problems with two splitting variables. To reduce the total computational complexity by decreasing the number of iterations, we devise the accelerated version of PJIMs through the well-known Nesterov's acceleration strategy and further extend both to solve the multivariable cases. Most importantly, we provide a rigorous convergence analysis, in theory, to show that the generated variable sequence globally converges to a critical point by exploiting the Kurdyka-Łojasiewica (KŁ) property for a broad class of functions. Furthermore, we also establish the linear and sublinear convergence rates of the obtained variable sequence in the objective function. As the specific application to the nonconvex sparse and low-rank recovery problems, several numerical experiments can verify that the newly proposed algorithms not only keep fast convergence speed but also have high precision. The recent studies have found that the nonconvex relaxation functions usually perform better than the convex counterparts in the <inline-formula> <tex-math notation="LaTeX">l_{0} </tex-math></inline-formula>-norm and rank function minimization problems. However, due to the absence of convexity in these nonconvex problems, developing efficient algorithms with convergence guarantee becomes very challenging. Inspired by the basic ideas of both the Jacobian alternating direction method of multipliers (JADMMs) for solving linearly constrained problems with separable objectives and the proximal gradient methods (PGMs) for optimizing the unconstrained problems with one variable, this paper focuses on extending the PGMs to the proximal Jacobian iteration methods (PJIMs) for handling with a family of nonconvex composite optimization problems with two splitting variables. To reduce the total computational complexity by decreasing the number of iterations, we devise the accelerated version of PJIMs through the well-known Nesterov's acceleration strategy and further extend both to solve the multivariable cases. Most importantly, we provide a rigorous convergence analysis, in theory, to show that the generated variable sequence globally converges to a critical point by exploiting the Kurdyka-Łojasiewica (KŁ) property for a broad class of functions. Furthermore, we also establish the linear and sublinear convergence rates of the obtained variable sequence in the objective function. As the specific application to the nonconvex sparse and low-rank recovery problems, several numerical experiments can verify that the newly proposed algorithms not only keep fast convergence speed but also have high precision. |
| Author | Zhang, Hengmin Xu, Chunyan Qian, Jianjun Yang, Jian Gao, Junbin |
| Author_xml | – sequence: 1 givenname: Hengmin orcidid: 0000-0002-2472-6637 surname: Zhang fullname: Zhang, Hengmin email: zhanghengmin@126.com organization: PCA Lab, Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education, Nanjing University of Science and Technology, Nanjing, China – sequence: 2 givenname: Jianjun orcidid: 0000-0002-0968-8556 surname: Qian fullname: Qian, Jianjun email: csjqian@njust.edu.cn organization: PCA Lab, Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education, Nanjing University of Science and Technology, Nanjing, China – sequence: 3 givenname: Junbin orcidid: 0000-0001-9803-0256 surname: Gao fullname: Gao, Junbin email: junbin.gao@sydney.edu.au organization: Discipline of Business Analytics, The University of Sydney Business School, The University of Sydney, Sydney, NSW, Australia – sequence: 4 givenname: Jian orcidid: 0000-0003-4800-832X surname: Yang fullname: Yang, Jian email: csjyang@njust.edu.cn organization: Jiangsu Key Laboratory of Image and Video Understanding for Social Security School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China – sequence: 5 givenname: Chunyan orcidid: 0000-0002-0814-4362 surname: Xu fullname: Xu, Chunyan email: cyx@njust.edu.cn organization: Jiangsu Key Laboratory of Image and Video Understanding for Social Security School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30668503$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kU1vEzEQhi1URD_oHwAJWeLSS4I_dr32sYqgFIUUqa3gtrK9s9TVxk5tB7Wc-Ol4k5BDD8xlRvLzzsjve4wOfPCA0BtKppQS9eFmsZhfTxmhcsqkrIVSL9ARo4JNGJfyYD83Pw7RaUr3pJQgtajUK3TIiRCyJvwI_bm2etBmAPwthke31AP-om0wTnt8mSHq7ILHXyHfhQ5_d_kOXwzBFGoW_C-IP8FbwOdeD0_JJdyHiBfB2_HtEd-OQ8pROw9dESxXIbkM-GqV3dL93qxOr9HLXg8JTnf9BN1--ngz-zyZX11czs7nE8trmifAVU1BsL4jvZS8MmDrvlGyA26sbGqtZG8lF1IxJig1XSMMGNNQK_peNMBP0Nl27yqGhzWk3C5dsjAM2kNYp5bRRlVUUFUV9P0z9D6sY_ljoVgjq-KkUoV6t6PWZgldu4rFvfjU_vO2AGwL2BhSitDvEUraMcN2k2E7ZtjuMiwi-UxkXd44Nfo4_F_6dit1ALC_JQXlhDf8LwDhq2Y |
| CODEN | ITNNAL |
| CitedBy_id | crossref_primary_10_1016_j_inffus_2024_102347 crossref_primary_10_1109_TCSVT_2023_3291821 crossref_primary_10_1109_TCYB_2020_3010960 crossref_primary_10_1109_TNNLS_2019_2900572 crossref_primary_10_1109_TNNLS_2023_3327716 crossref_primary_10_3390_s19143145 crossref_primary_10_1016_j_anucene_2024_110943 crossref_primary_10_1109_TNNLS_2022_3183970 crossref_primary_10_1016_j_image_2021_116569 crossref_primary_10_1109_TNNLS_2024_3395064 crossref_primary_10_23919_cje_2023_00_340 crossref_primary_10_1016_j_neucom_2024_128703 crossref_primary_10_1109_TIFS_2023_3337717 crossref_primary_10_1109_TMM_2022_3171088 crossref_primary_10_1007_s12652_020_02778_2 crossref_primary_10_1109_TIFS_2022_3172218 crossref_primary_10_1007_s11063_023_11424_9 crossref_primary_10_1016_j_neucom_2023_01_030 crossref_primary_10_1109_TGRS_2022_3172018 crossref_primary_10_1016_j_jfranklin_2023_01_041 |
| Cites_doi | 10.1109/TNNLS.2016.2573644 10.1109/ICCV.2013.309 10.1007/s00041-008-9045-x 10.1016/0024-3795(93)90211-6 10.1109/TPAMI.2015.2465956 10.1007/978-3-642-02431-3 10.1287/moor.1100.0449 10.1109/TIP.2017.2777183 10.1137/070697835 10.1007/s10107-013-0701-9 10.1007/s10107-014-0826-5 10.1109/TIP.2009.2028250 10.1109/TIP.2016.2599290 10.1137/050644641 10.1007/s10107-007-0133-5 10.24963/ijcai.2017/462 10.1109/TNNLS.2015.2436951 10.1198/016214501753382273 10.1007/s11263-016-0930-5 10.1109/TIP.2017.2745200 10.1109/TPAMI.2012.271 10.1214/09-AOS729 10.1016/j.patcog.2015.01.024 10.1109/TIP.2015.2481325 10.1109/TPAMI.2017.2748590 10.1137/15M1027528 10.1080/00401706.1993.10485033 10.1007/BF01581204 10.1137/080716542 10.1016/0898-1221(76)90003-1 10.1109/TNNLS.2016.2608834 10.1016/j.ins.2017.02.020 10.1109/TPAMI.2017.2651816 10.1007/s10107-011-0484-9 10.1109/TNNLS.2015.2500600 10.1109/TPAMI.2013.57 10.1109/JPROC.2009.2035722 10.1109/TIT.2013.2249572 10.1137/140990309 10.1109/TPAMI.2016.2535218 10.1109/ICCV.2013.34 10.1109/TIP.2004.836169 10.1561/2200000016 10.1109/TNNLS.2017.2690970 10.1109/TPAMI.2017.2689021 10.1109/TCYB.2018.2811764 10.1109/ICDM.2015.9 10.1088/0266-5611/24/3/035020 10.1109/ISIT.2010.5513535 10.1145/1970392.1970395 10.1007/s10115-013-0713-z 10.1016/j.jvcir.2012.10.006 10.1007/BF00927673 10.1137/1.9781611971309 10.1016/j.ins.2015.12.038 10.1137/080738970 10.1109/TIP.2015.2511584 10.5802/aif.1638 10.1109/TPAMI.2012.88 10.1109/TPAMI.2012.132 10.1109/TPAMI.2008.79 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| DOI | 10.1109/TNNLS.2018.2885699 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
| DatabaseTitleList | Materials Research Database PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2162-2388 |
| EndPage | 2839 |
| ExternalDocumentID | 30668503 10_1109_TNNLS_2018_2885699 8613037 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: National Science Fund of China grantid: U1713208; 61472187; 61502235; 61876083; 61602244 – fundername: 973 Program grantid: 2014CB349303 – fundername: Program for Changjiang Scholars – fundername: Fundamental Research Funds for the Central Universities grantid: 30918011321 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION NPM RIG 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| ID | FETCH-LOGICAL-c351t-e3951e62fd0f8834bec5f798de3bc875a98fc8368922611bd76bebb71c6ff67e3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 28 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000482589400021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2162-237X 2162-2388 |
| IngestDate | Sun Sep 28 00:49:44 EDT 2025 Sun Nov 09 06:23:15 EST 2025 Wed Feb 19 02:36:31 EST 2025 Sat Nov 29 01:40:02 EST 2025 Tue Nov 18 22:12:50 EST 2025 Wed Aug 27 02:41:42 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c351t-e3951e62fd0f8834bec5f798de3bc875a98fc8368922611bd76bebb71c6ff67e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-9803-0256 0000-0002-2472-6637 0000-0003-4800-832X 0000-0002-0814-4362 0000-0002-0968-8556 |
| PMID | 30668503 |
| PQID | 2278400099 |
| PQPubID | 85436 |
| PageCount | 15 |
| ParticipantIDs | proquest_journals_2278400099 ieee_primary_8613037 crossref_primary_10_1109_TNNLS_2018_2885699 pubmed_primary_30668503 proquest_miscellaneous_2179416194 crossref_citationtrail_10_1109_TNNLS_2018_2885699 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-09-01 |
| PublicationDateYYYYMMDD | 2019-09-01 |
| PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Piscataway |
| PublicationTitle | IEEE transaction on neural networks and learning systems |
| PublicationTitleAbbrev | TNNLS |
| PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
| PublicationYear | 2019 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref56 ref12 ref59 ref15 ref58 ref14 ref52 ref11 gong (ref8) 2012 wang (ref38) 2015 ref54 wang (ref35) 2014 ref16 ref19 ref51 ref50 gong (ref47) 2013 ref46 ref45 ref48 ref42 ref41 ref44 nesterov (ref60) 1983; 27 ref43 ref49 lu (ref57) 2014 ref7 liu (ref18) 2013 ref4 ref3 ref6 zhang (ref2) 2010; 11 ref40 ref80 ref79 ref78 ref34 ref37 ref36 ref75 ref31 ref74 ref30 ref77 ref33 ref76 ref32 candès (ref27) 2009; 58 li (ref53) 2015 candés (ref5) 2008; 14 ref1 nesterov (ref70) 2013 nie (ref22) 2012 bolzano (ref71) 2012 lojasiewicz (ref39) 1963; 117 ref73 lin (ref17) 2010 ref72 toh (ref67) 2010; 6 ref68 ref24 ref23 ref69 ref25 ref64 ref20 ref63 ref66 zhang (ref10) 2016 ref65 ref21 ref28 ref29 lu (ref9) 2015 wright (ref26) 2009 zhong (ref55) 2014 ref62 ref61 |
| References_xml | – ident: ref7 doi: 10.1109/TNNLS.2016.2573644 – year: 2015 ident: ref38 publication-title: Global convergence of ADMM in nonconvex nonsmooth optimization – start-page: 2330 year: 2016 ident: ref10 article-title: An alternating proximal splitting method with global convergence for nonconvex structured sparsity optimization publication-title: Proc Assoc Adv Artif Intell (AAAI) – start-page: 655 year: 2012 ident: ref22 article-title: Low-rank matrix recovery via efficient Schatten p-norm minimization publication-title: Proc Assoc Adv Artif Intell (AAAI) – ident: ref76 doi: 10.1109/ICCV.2013.309 – start-page: 2206 year: 2014 ident: ref55 article-title: Gradient descent with proximal average for nonconvex and composite regularization publication-title: Proc Assoc Adv Artif Intell (AAAI) – volume: 14 start-page: 5 year: 2008 ident: ref5 article-title: Enhancing sparsity by reweighted $\ell_{1}$ -minimization publication-title: J Fourier Anal Appl doi: 10.1007/s00041-008-9045-x – ident: ref64 doi: 10.1016/0024-3795(93)90211-6 – ident: ref51 doi: 10.1109/TPAMI.2015.2465956 – ident: ref69 doi: 10.1007/978-3-642-02431-3 – ident: ref42 doi: 10.1287/moor.1100.0449 – ident: ref63 doi: 10.1109/TIP.2017.2777183 – start-page: 37 year: 2013 ident: ref47 article-title: A general iterative shrinkage and thresholding algorithm for non-convex regularized optimization problems publication-title: Proc Int Conf Mach Learn (ICML) – ident: ref31 doi: 10.1137/070697835 – ident: ref44 doi: 10.1007/s10107-013-0701-9 – ident: ref58 doi: 10.1007/s10107-014-0826-5 – ident: ref68 doi: 10.1109/TIP.2009.2028250 – ident: ref65 doi: 10.1109/TIP.2016.2599290 – ident: ref41 doi: 10.1137/050644641 – ident: ref73 doi: 10.1007/s10107-007-0133-5 – ident: ref54 doi: 10.24963/ijcai.2017/462 – ident: ref33 doi: 10.1109/TNNLS.2015.2436951 – volume: 27 start-page: 372 year: 1983 ident: ref60 article-title: A method of solving a convex programming problem with convergence rate $O(1/k^{2})$ publication-title: Soviet Math Doklady – ident: ref4 doi: 10.1198/016214501753382273 – ident: ref50 doi: 10.1007/s11263-016-0930-5 – start-page: 1988 year: 2012 ident: ref8 article-title: Multi-stage multi-task feature learning publication-title: Proc Assoc Adv Artif Intell (AAAI) – year: 2012 ident: ref71 publication-title: Theory of Science A Selection With an Introduction – year: 2013 ident: ref70 publication-title: Introductory Lectures on Convex Optimization A Basic Course – ident: ref56 doi: 10.1109/TIP.2017.2745200 – ident: ref49 doi: 10.1109/TPAMI.2012.271 – volume: 11 start-page: 1081 year: 2010 ident: ref2 article-title: Analysis of multi-stage convex relaxation for sparse regularization publication-title: J Mach Learn Res – ident: ref3 doi: 10.1214/09-AOS729 – year: 2014 ident: ref35 publication-title: Convergence of bregman alternating direction method with multipliers for nonconvex composite problems – ident: ref11 doi: 10.1016/j.patcog.2015.01.024 – volume: 6 start-page: 615 year: 2010 ident: ref67 article-title: An accelerated proximal gradient algorithm for nuclear norm regularized least squares problems publication-title: Pacific J Optim – ident: ref62 doi: 10.1109/TIP.2015.2481325 – ident: ref77 doi: 10.1109/TPAMI.2017.2748590 – ident: ref36 doi: 10.1137/15M1027528 – ident: ref1 doi: 10.1080/00401706.1993.10485033 – start-page: 379 year: 2015 ident: ref53 article-title: Accelerated proximal gradient methods for nonconvex programming publication-title: Proc Adv Neural Inf Process Syst (NIPS) – ident: ref59 doi: 10.1007/BF01581204 – ident: ref66 doi: 10.1137/080716542 – year: 2010 ident: ref17 publication-title: The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices – ident: ref15 doi: 10.1016/0898-1221(76)90003-1 – ident: ref30 doi: 10.1109/TNNLS.2016.2608834 – ident: ref52 doi: 10.1016/j.ins.2017.02.020 – ident: ref78 doi: 10.1109/TPAMI.2017.2651816 – ident: ref43 doi: 10.1007/s10107-011-0484-9 – ident: ref29 doi: 10.1109/TNNLS.2015.2500600 – ident: ref21 doi: 10.1109/TPAMI.2013.57 – ident: ref24 doi: 10.1109/JPROC.2009.2035722 – ident: ref25 doi: 10.1109/TIT.2013.2249572 – start-page: 116 year: 2013 ident: ref18 article-title: Linearized alternating direction method with parallel splitting and adaptive penalty for separable convex programs in machine learning publication-title: Proc Asian Conf Mach Learn – ident: ref37 doi: 10.1137/140990309 – ident: ref32 doi: 10.1109/TPAMI.2016.2535218 – ident: ref6 doi: 10.1109/ICCV.2013.34 – ident: ref79 doi: 10.1109/TIP.2004.836169 – ident: ref16 doi: 10.1561/2200000016 – ident: ref34 doi: 10.1109/TNNLS.2017.2690970 – start-page: 1805 year: 2015 ident: ref9 article-title: Generalized singular value thresholding publication-title: Proc Assoc Adv Artif Intell (AAAI) – ident: ref19 doi: 10.1109/TPAMI.2017.2689021 – ident: ref74 doi: 10.1109/TCYB.2018.2811764 – volume: 117 start-page: 87 year: 1963 ident: ref39 article-title: Une propriété topologique des sous-ensembles analytiques réels publication-title: Les équations aux dérivées partielles – start-page: 2080 year: 2009 ident: ref26 article-title: Robust principal component analysis: Exact recovery of corrupted low-rank matrices via convex optimization publication-title: Proc Adv Neural Inf Process Syst (NIPS) – ident: ref46 doi: 10.1109/ICDM.2015.9 – ident: ref48 doi: 10.1088/0266-5611/24/3/035020 – ident: ref75 doi: 10.1109/ISIT.2010.5513535 – volume: 58 start-page: 1 year: 2009 ident: ref27 article-title: Robust principal component analysis? publication-title: J ACM doi: 10.1145/1970392.1970395 – ident: ref12 doi: 10.1007/s10115-013-0713-z – ident: ref61 doi: 10.1016/j.jvcir.2012.10.006 – start-page: 1251 year: 2014 ident: ref57 article-title: Proximal iteratively reweighted algorithm with multiple splitting for nonconvex sparsity optimization publication-title: Proc Assoc Adv Artif Intell (AAAI) – ident: ref14 doi: 10.1007/BF00927673 – ident: ref72 doi: 10.1137/1.9781611971309 – ident: ref13 doi: 10.1016/j.ins.2015.12.038 – ident: ref23 doi: 10.1137/080738970 – ident: ref45 doi: 10.1109/TIP.2015.2511584 – ident: ref40 doi: 10.5802/aif.1638 – ident: ref28 doi: 10.1109/TPAMI.2012.88 – ident: ref80 doi: 10.1109/TPAMI.2012.132 – ident: ref20 doi: 10.1109/TPAMI.2008.79 |
| SSID | ssj0000605649 |
| Score | 2.4331214 |
| Snippet | The recent studies have found that the nonconvex relaxation functions usually perform better than the convex counterparts in the <inline-formula> <tex-math... The recent studies have found that the nonconvex relaxation functions usually perform better than the convex counterparts in the l -norm and rank function... The recent studies have found that the nonconvex relaxation functions usually perform better than the convex counterparts in the [Formula Omitted]-norm and... The recent studies have found that the nonconvex relaxation functions usually perform better than the convex counterparts in the l0 -norm and rank function... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2825 |
| SubjectTerms | Acceleration Algorithms Basic converters Computer applications Convergence Convexity Critical point Generalized proximal thresholding operators global convergence analysis Iterative methods Jacobian matrices kurdyka–Łojasiewica (KŁ) property Learning systems Linear programming Minimization nonconvex sparse and low-rank optimization Nonlinear programming Objective function Optimization proximal Jacobian iteration method (PJIM) |
| Title | Scalable Proximal Jacobian Iteration Method With Global Convergence Analysis for Nonconvex Unconstrained Composite Optimizations |
| URI | https://ieeexplore.ieee.org/document/8613037 https://www.ncbi.nlm.nih.gov/pubmed/30668503 https://www.proquest.com/docview/2278400099 https://www.proquest.com/docview/2179416194 |
| Volume | 30 |
| WOSCitedRecordID | wos000482589400021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared) customDbUrl: eissn: 2162-2388 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000605649 issn: 2162-237X databaseCode: RIE dateStart: 20120101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbtUwEB21FQs2FCiPQKmMxA7SJnHixxJVVIAgVGor7i5KnIm4Ek3QfaAu--mdcZysAImdpdiOpTO2j-2ZOQBvnMZWN3UXY-FUnKeNjWvMVdzksrO21rXTrReb0GVpFgt7vgPv5lgYRPTOZ3jMRf-W3w5uy1dlJ4bJrtS7sKu1HmO15vuUhHi58mw3S1UWZ1IvphiZxJ5cluWXC3bkMseZMYWynC2U2LIyxSSXFbYkr7Hyd7rpt52z_f8b8EN4EOileD_awyPYwf4x7E_SDSLM5AO4vSBsOGpKnK-Gm-U1tflMayMnIBeffKJlwkt89fLS4vty80OM4gDilL3UfcAmiimhiSDiK8qh9x7sN-KKC2uvPYGt4H-zYxiKb7Q6XU9hn0_g6uzD5enHOIgxxE4W6SZGSVwMVda1SWeMzAn7otPWtCgbR4ee2prOGamMJUKXpk2rVYNNo1Onuk5plE9hrx96fA7CSVnTgT5j0ZucGIl1FqnHzhR0ttSJjSCd8KhcyFTOg_5Z-RNLYisPZ8VwVgHOCN7ObX6NeTr-WfuAwZprBpwiOJxgr8JUXlccK5x7Jh3B6_kzTUJ-Wal7HLZUh5e1lC-EIng2msvc92RlL_78z5dwn0YW3NYOYW-z2uIruOd-b5br1RFZ-sIceUu_A9Yk-gY |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VggQXCpRHoICRuEHaJE78OKKKqoVtqNSt2FuUOBOxEk3QPlCP_HRmnMcJkLhZiu1Y-sb2Z3tmPoC3TmOtq7IJMXMqTOPKhiWmKqxS2Vhb6tLp2otN6Dw3i4W92IH3UywMInrnMzzkon_Lrzu35auyI8NkV-pbcDtL0yTuo7WmG5WImLnyfDeJVRImUi_GKJnIHs3zfHbJrlzmMDEmU5bzhRJfViYbBbOGTcmrrPydcPqN52Tv_4b8AO4PBFN86C3iIexg-wj2RvEGMczlffh1Sehw3JS4WHU3y2tq84lWR05BLs58qmVCTJx7gWnxdbn5Jnp5AHHMfuo-ZBPFmNJEEPUVedd6H_YbccWFtVefwFrwv9k1DMUXWp-ux8DPx3B18nF-fBoOcgyhk1m8CVESG0OVNHXUGCNTQj9rtDU1ysrRsae0pnFGKmOJ0sVxVWtVYVXp2KmmURrlE9htuxafgXBSlnSkT1j2JiVOYp1F6rExGZ0udWQDiEc8CjfkKudBfy_8mSWyhYezYDiLAc4A3k1tfvSZOv5Ze5_BmmoOOAVwMMJeDJN5XXC0cOq5dABvps80DfltpWyx21IdXthivhIK4GlvLlPfo5U9__M_X8Pd0_n5rJid5Z9fwD0a5eDEdgC7m9UWX8Id93OzXK9eeXv_DRQz_GU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scalable+Proximal+Jacobian+Iteration+Method+With+Global+Convergence+Analysis+for+Nonconvex+Unconstrained+Composite+Optimizations&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Zhang%2C+Hengmin&rft.au=Qian%2C+Jianjun&rft.au=Gao%2C+Junbin&rft.au=Yang%2C+Jian&rft.date=2019-09-01&rft.eissn=2162-2388&rft.volume=30&rft.issue=9&rft.spage=2825&rft_id=info:doi/10.1109%2FTNNLS.2018.2885699&rft_id=info%3Apmid%2F30668503&rft.externalDocID=30668503 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |