Designing New Metaheuristics: Manual Versus Automatic Approaches
A metaheuristic is a collection of algorithmic concepts that can be used to define heuristic methods applicable to a wide set of optimization problems for which exact/analytical approaches are either limited or impractical. In other words, a metaheuristic can be considered a general algorithmic fram...
Uloženo v:
| Vydáno v: | Intelligent computing Ročník 2 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
American Association for the Advancement of Science (AAAS)
2023
|
| ISSN: | 2771-5892, 2771-5892 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | A metaheuristic is a collection of algorithmic concepts that can be used to define heuristic methods applicable to a wide set of optimization problems for which exact/analytical approaches are either limited or impractical. In other words, a metaheuristic can be considered a general algorithmic framework that can be easily adapted to different optimization problems. In this article, we discuss the two main approaches used to create new metaheuristics: manual design, which is based on the designer’s “intuition” and often involves looking for inspiration in other fields of knowledge, and automatic design, which seeks to reduce human involvement in the design process by harnessing recent advances in automatic algorithm configuration methods. In this context, we discuss the trend of manually designed “novel” metaphor-based metaheuristics inspired by natural, artificial, and even supernatural behaviors. In recent years, this trend has been strongly criticized due to the uselessness of new metaphors in devising truly novel algorithms and the confusion such metaheuristics have created in the literature. We then present automatic design as a powerful alternative to manual design that has the potential to render the “novel” metaphor-based metaheuristics trend obsolete. Finally, we examine several fundamental aspects of the field of metaheuristics and offer suggestions for improving them. |
|---|---|
| AbstractList | A metaheuristic is a collection of algorithmic concepts that can be used to define heuristic methods applicable to a wide set of optimization problems for which exact/analytical approaches are either limited or impractical. In other words, a metaheuristic can be considered a general algorithmic framework that can be easily adapted to different optimization problems. In this article, we discuss the two main approaches used to create new metaheuristics: manual design, which is based on the designer’s “intuition” and often involves looking for inspiration in other fields of knowledge, and automatic design, which seeks to reduce human involvement in the design process by harnessing recent advances in automatic algorithm configuration methods. In this context, we discuss the trend of manually designed “novel” metaphor-based metaheuristics inspired by natural, artificial, and even supernatural behaviors. In recent years, this trend has been strongly criticized due to the uselessness of new metaphors in devising truly novel algorithms and the confusion such metaheuristics have created in the literature. We then present automatic design as a powerful alternative to manual design that has the potential to render the “novel” metaphor-based metaheuristics trend obsolete. Finally, we examine several fundamental aspects of the field of metaheuristics and offer suggestions for improving them. |
| Author | Dorigo, Marco Stützle, Thomas Camacho-Villalón, Christian L. |
| Author_xml | – sequence: 1 givenname: Christian L. surname: Camacho-Villalón fullname: Camacho-Villalón, Christian L. organization: Institut de Recherches Interdisciplinaires et de Développements en Intelligence Artificielle (IRIDIA), Université Libre de Bruxelles, 1050 Bruxelles, Belgium – sequence: 2 givenname: Thomas surname: Stützle fullname: Stützle, Thomas organization: Institut de Recherches Interdisciplinaires et de Développements en Intelligence Artificielle (IRIDIA), Université Libre de Bruxelles, 1050 Bruxelles, Belgium – sequence: 3 givenname: Marco surname: Dorigo fullname: Dorigo, Marco organization: Institut de Recherches Interdisciplinaires et de Développements en Intelligence Artificielle (IRIDIA), Université Libre de Bruxelles, 1050 Bruxelles, Belgium |
| BookMark | eNp1kE1PwzAMhiMEEmPszrF_oCNp-pFyYhpfkza4ANfISdwtU9dUSSvEv6dsIBASJ1u2nkf2e0aOG9cgIReMTnnKOL-02u3avrPNekppKo7IKCkKFmeiTI5_9adkEsKWUpqIIi-KZESubzDYdTOA0SO-RSvsYIO9t6GzOlxFK2h6qKNX9KEP0azv3A6GTTRrW-9AbzCck5MK6oCTrzomL3e3z_OHePl0v5jPlrHmGetig7pSJldaVSxhkGmaGlSgEiWAUqVpzgUIxY1QDHPMDBY5GsZKQbPSmJSPyeLgNQ62svV2B_5dOrByP3B-LcEPp9UoU2G04SoHhCLNhYZMJYOdZqZUxmA5uPKDS3sXgsdKatsNf7mm82Bryajcxyp_YpWfsQ4g_QN-H_Iv8gFhKoMG |
| CitedBy_id | crossref_primary_10_1109_TEVC_2024_3497793 crossref_primary_10_1016_j_swevo_2024_101483 crossref_primary_10_1016_j_swevo_2024_101807 crossref_primary_10_1016_j_advengsoft_2024_103696 crossref_primary_10_1016_j_swevo_2025_102063 crossref_primary_10_1080_0305215X_2024_2390130 crossref_primary_10_1016_j_neucom_2025_130551 crossref_primary_10_1038_s41598_025_16174_3 crossref_primary_10_1109_ACCESS_2024_3523464 crossref_primary_10_1109_TCYB_2024_3412997 |
| Cites_doi | 10.1145/3466624 10.7551/mitpress/1290.001.0001 10.1145/2076450.2076469 10.1016/j.ejor.2019.01.018 10.1016/j.ejor.2021.04.032 10.1162/evco_a_00245 10.1109/ICNN.1995.488968 10.1111/itor.12001 10.1016/j.dib.2020.105792 10.1007/1-84628-137-7_6 10.1016/j.swevo.2011.02.002 10.1145/3319619.3326832 10.1016/0305-0548(86)90048-1 10.1145/3377929.3398123 10.1016/j.ins.2014.01.026 10.1016/j.ejor.2021.05.042 10.1007/978-3-642-30671-6 10.1007/s11047-020-09837-9 10.1007/s12559-020-09730-8 10.1109/4235.996017 10.1145/3067695.3082057 10.1007/978-3-031-20176-9_3 10.1016/j.cor.2022.105747 10.1007/s11721-017-0131-z 10.1007/978-3-319-07124-4_4 10.1007/978-3-319-07153-4_21-1 10.1057/jors.2013.71 10.1109/TEVC.2005.857074 10.4249/scholarpedia.1462 10.1007/s10732-018-9396-7 10.1016/j.artint.2015.11.002 10.1145/3449726.3463155 10.1145/3459664 10.1287/opre.1050.0243 10.1162/106365600568202 10.1007/s10462-020-09893-8 10.1109/3477.484436 10.1007/978-3-540-74089-6 10.4249/scholarpedia.1461 10.1145/2598394.2609841 10.1023/A:1016540724870 10.1016/j.ins.2010.12.006 10.1016/j.ins.2017.07.015 10.1007/978-3-540-30217-9_84 10.1023/A:1008202821328 10.1007/s11047-012-9322-0 10.1162/106365601750190398 10.1109/CEC.2005.1554717 10.1109/TEVC.2013.2281527 10.1198/106186007X237892 10.1287/ijoc.1.3.190 10.1145/1143997.1144029 10.1007/s13748-019-00185-z 10.1007/BF00940812 10.1137/040620886 10.1023/B:HEUR.0000026900.92269.ec 10.1016/j.cor.2014.05.020 10.1007/978-3-540-78295-7_1 10.1287/ijoc.2.1.4 10.1016/j.cor.2018.12.015 10.1007/BF01009452 10.1016/j.swevo.2023.101248 10.1007/978-3-642-44973-4_40 10.1007/3-540-44811-X_2 10.1007/978-3-319-91086-4_17 10.1109/MHS.1995.494215 10.1145/3205455.3205585 10.1126/science.220.4598.671 10.1109/MCI.2020.2976182 10.1016/j.asoc.2011.03.001 10.1007/978-3-319-18842-3 10.1007/BF02430364 10.1016/j.ejor.2013.10.024 10.3390/math8112046 10.1109/TEVC.2021.3102863 10.1287/opre.42.2.201 10.1007/s11721-021-00202-9 10.1016/j.asoc.2019.105977 10.1007/s11721-011-0065-9 10.1007/s10732-014-9275-9 10.1109/TEVC.2011.2182651 10.1145/3449726.3463276 10.1007/978-3-642-02538-9 10.1287/inte.32.3.30.39 10.1016/j.ejor.2020.08.045 10.1109/CEC.2010.5586354 10.1007/978-3-030-60376-2_10 10.1007/s11721-019-00165-y 10.1109/TEVC.2015.2474158 10.1007/s11227-015-1592-8 10.1007/978-3-030-70277-9 10.1613/jair.2861 10.1109/4235.797969 10.1007/978-3-0348-5927-1 10.1007/s42979-019-0050-8 10.1007/978-3-642-25566-3_40 10.1093/oso/9780195131581.001.0001 10.1109/TEVC.2005.861417 10.1145/3449726.3463167 10.1038/s42256-022-00579-0 10.1007/s00500-016-2471-9 10.1007/978-3-030-00533-7_24 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION DOA |
| DOI | 10.34133/icomputing.0048 |
| DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2771-5892 |
| ExternalDocumentID | oai_doaj_org_article_48dcd3b6aea7468ca5b238a05d9bdde9 10_34133_icomputing_0048 |
| GroupedDBID | AAYXX AENVI ALMA_UNASSIGNED_HOLDINGS CITATION GROUPED_DOAJ M~E |
| ID | FETCH-LOGICAL-c351t-decfbd6bcbf121a5c04debab2b8a00bc0638a8b3d8b1e6e5de76ed1198059dd43 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 12 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001406333400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2771-5892 |
| IngestDate | Fri Oct 03 12:44:22 EDT 2025 Tue Nov 18 22:33:42 EST 2025 Sat Nov 29 06:16:29 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c351t-decfbd6bcbf121a5c04debab2b8a00bc0638a8b3d8b1e6e5de76ed1198059dd43 |
| OpenAccessLink | https://doaj.org/article/48dcd3b6aea7468ca5b238a05d9bdde9 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_48dcd3b6aea7468ca5b238a05d9bdde9 crossref_citationtrail_10_34133_icomputing_0048 crossref_primary_10_34133_icomputing_0048 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-00-00 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – year: 2023 text: 2023-00-00 |
| PublicationDecade | 2020 |
| PublicationTitle | Intelligent computing |
| PublicationYear | 2023 |
| Publisher | American Association for the Advancement of Science (AAAS) |
| Publisher_xml | – name: American Association for the Advancement of Science (AAAS) |
| References | e_1_3_3_96_2 Simon D (e_1_3_3_60_2) 2011; 181 Huband S (e_1_3_3_102_2) 2006; 10 Fawcett C (e_1_3_3_87_2) 2016; 22 Pagnozzi F (e_1_3_3_108_2) 2019; 276 Cahon S (e_1_3_3_89_2) 2004; 10 Yuan Z (e_1_3_3_82_2) 2012; 6 Campelo F (e_1_3_3_123_2) 2019; 25 Glover F (e_1_3_3_14_2) 1989; 1 e_1_3_3_16_2 Song H (e_1_3_3_127_2) 2019; 8 e_1_3_3_39_2 e_1_3_3_132_2 e_1_3_3_12_2 Eftimov T (e_1_3_3_115_2) 2020; 87 e_1_3_3_92_2 e_1_3_3_113_2 e_1_3_3_31_2 e_1_3_3_73_2 Hooker JN (e_1_3_3_112_2) 1996; 1 Derrac J (e_1_3_3_117_2) 2011; 1 e_1_3_3_88_2 Fortin FA (e_1_3_3_139_2) 2012; 13 Aydın D (e_1_3_3_137_2) 2017; 11 Weyland D (e_1_3_3_26_2) 2010; 12 López-Ibáñez M (e_1_3_3_124_2) 2021; 1 e_1_3_3_5_2 e_1_3_3_105_2 e_1_3_3_9_2 Sörensen K (e_1_3_3_44_2) 2015; 22 e_1_3_3_23_2 e_1_3_3_69_2 Stegherr H (e_1_3_3_65_2) 2020; 21 e_1_3_3_46_2 Thymianis M (e_1_3_3_27_2) 2022; 1 Gambella C (e_1_3_3_129_2) 2021; 290 e_1_3_3_42_2 e_1_3_3_84_2 e_1_3_3_101_2 Hooker G (e_1_3_3_131_2) 2012; 16 Hoos HH (e_1_3_3_125_2) 2012; 55 e_1_3_3_76_2 e_1_3_3_99_2 Tzanetos A (e_1_3_3_34_2) 2021; 54 Burke EK (e_1_3_3_75_2) 2013; 64 Blackwell T (e_1_3_3_52_2) 2006; 10 Melvin G (e_1_3_3_61_2) 2012; 11 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_57_2 e_1_3_3_91_2 Hutter F (e_1_3_3_81_2) 2009; 36 e_1_3_3_11_2 e_1_3_3_72_2 Audet C (e_1_3_3_79_2) 2006; 17 e_1_3_3_95_2 Camacho-Villalón CL (e_1_3_3_141_2) 2022; 26 KhudaBukhsh AR (e_1_3_3_143_2) 2016; 232 Deb K (e_1_3_3_97_2) 2002; 6 e_1_3_3_8_2 e_1_3_3_104_2 Zitzler E (e_1_3_3_103_2) 1999; 3 e_1_3_3_142_2 e_1_3_3_45_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 e_1_3_3_71_2 e_1_3_3_98_2 García-Martínez C (e_1_3_3_122_2) 2017; 21 Černý V (e_1_3_3_17_2) 1985; 45 Glover F (e_1_3_3_7_2) 1986; 13 Franzin A (e_1_3_3_109_2) 2019; 104 e_1_3_3_138_2 Camacho-Villalón CL (e_1_3_3_30_2) 2019; 13 Zitzler E (e_1_3_3_100_2) 2000; 8 e_1_3_3_119_2 e_1_3_3_18_2 e_1_3_3_37_2 e_1_3_3_56_2 Molina D (e_1_3_3_63_2) 2020; 12 Sabar NR (e_1_3_3_77_2) 2013; 17 e_1_3_3_94_2 e_1_3_3_111_2 Swan J (e_1_3_3_133_2) 2019; 27 e_1_3_3_134_2 e_1_3_3_10_2 e_1_3_3_40_2 Hansen N (e_1_3_3_53_2) 2011; 11 Cruz-Duarte JM (e_1_3_3_64_2) 2020; 8 e_1_3_3_86_2 López-Ibáñez M (e_1_3_3_48_2) 2016; 3 Hooker JN (e_1_3_3_120_2) 1994; 42 Piotrowski AP (e_1_3_3_28_2) 2014; 267 e_1_3_3_107_2 Camacho-Villalón CL (e_1_3_3_33_2) 2022; 30 Kudela J (e_1_3_3_55_2) 2022; 4 Mascia F (e_1_3_3_90_2) 2014; 51 Dorigo M (e_1_3_3_47_2) 1996; 26 e_1_3_3_29_2 Talbi EG (e_1_3_3_128_2) 2021; 54 e_1_3_3_25_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_51_2 e_1_3_3_74_2 Armas J (e_1_3_3_35_2) 2022; 21 e_1_3_3_70_2 e_1_3_3_78_2 Hansen N (e_1_3_3_83_2) 2001; 9 Glover F (e_1_3_3_15_2) 1990; 2 Tovey CA (e_1_3_3_6_2) 2002; 32 Tzanetos A (e_1_3_3_68_2) 2020; 31 e_1_3_3_118_2 Camacho-Villalón CL (e_1_3_3_32_2) 2022; 142 Aranha C (e_1_3_3_54_2) 2022; 16 Bezerra LCT (e_1_3_3_49_2) 2016; 20 Ma Z (e_1_3_3_59_2) 2023; 77 e_1_3_3_13_2 e_1_3_3_36_2 Lones MA (e_1_3_3_67_2) 2020; 1 Qu R (e_1_3_3_126_2) 2020; 15 e_1_3_3_110_2 Fong S (e_1_3_3_62_2) 2016; 72 e_1_3_3_93_2 e_1_3_3_114_2 e_1_3_3_85_2 Karimi-Mamaghan M (e_1_3_3_130_2) 2022; 296 Adenso-Dıéaz B (e_1_3_3_80_2) 2006; 54 Liao T (e_1_3_3_136_2) 2014; 234 López-Ibáñez M (e_1_3_3_135_2) 2012; 16 e_1_3_3_106_2 Talbi EG (e_1_3_3_50_2) 2002; 8 Storn R (e_1_3_3_58_2) 1997; 11 e_1_3_3_24_2 e_1_3_3_121_2 e_1_3_3_140_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_66_2 Eftimov T (e_1_3_3_116_2) 2017; 417 |
| References_xml | – volume: 1 start-page: 1 issue: 4 year: 2021 ident: e_1_3_3_124_2 article-title: Reproducibility in evolutionary computation publication-title: ACM Trans Evol Learn Optim doi: 10.1145/3466624 – ident: e_1_3_3_19_2 doi: 10.7551/mitpress/1290.001.0001 – volume: 55 start-page: 70 issue: 2 year: 2012 ident: e_1_3_3_125_2 article-title: Programming by optimization publication-title: Commun ACM doi: 10.1145/2076450.2076469 – ident: e_1_3_3_76_2 – volume: 276 start-page: 409 year: 2019 ident: e_1_3_3_108_2 article-title: Automatic design of hybrid stochastic local search algorithms for permutation flowshop problems publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2019.01.018 – volume: 296 start-page: 393 issue: 3 year: 2022 ident: e_1_3_3_130_2 article-title: Machine learning at the service of meta-heuristics for solving combinatorial optimization problems: A state-of-the-art publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2021.04.032 – volume: 27 start-page: 173 issue: 1 year: 2019 ident: e_1_3_3_133_2 article-title: Extending the open-closed principle to automated algorithm configuration publication-title: Evol Comput doi: 10.1162/evco_a_00245 – ident: e_1_3_3_21_2 doi: 10.1109/ICNN.1995.488968 – volume: 22 start-page: 3 issue: 1 year: 2015 ident: e_1_3_3_44_2 article-title: Metaheuristics—The metaphor exposed publication-title: Int Trans Oper Res doi: 10.1111/itor.12001 – volume: 31 year: 2020 ident: e_1_3_3_68_2 article-title: A comprehensive database of nature-inspired Algorithms publication-title: Data Brief doi: 10.1016/j.dib.2020.105792 – ident: e_1_3_3_101_2 doi: 10.1007/1-84628-137-7_6 – volume: 1 start-page: 3 issue: 1 year: 2011 ident: e_1_3_3_117_2 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2011.02.002 – ident: e_1_3_3_106_2 doi: 10.1145/3319619.3326832 – volume: 13 start-page: 533 year: 1986 ident: e_1_3_3_7_2 article-title: Future paths for integer programming and links to artificial intelligence publication-title: Comput Oper Res doi: 10.1016/0305-0548(86)90048-1 – ident: e_1_3_3_140_2 doi: 10.1145/3377929.3398123 – volume: 267 start-page: 191 year: 2014 ident: e_1_3_3_28_2 article-title: How novel is the “novel” black hole optimization approach? publication-title: Inf Sci doi: 10.1016/j.ins.2014.01.026 – ident: e_1_3_3_45_2 – ident: e_1_3_3_111_2 doi: 10.1016/j.ejor.2021.05.042 – volume: 12 start-page: 50 year: 2010 ident: e_1_3_3_26_2 article-title: A rigorous analysis of the harmony search algorithm: How the research community can be misled by a “novel” methodology publication-title: Int J Appl Met Comput – ident: e_1_3_3_43_2 doi: 10.1007/978-3-642-30671-6 – volume: 21 start-page: 265 year: 2022 ident: e_1_3_3_35_2 article-title: Similarity in metaheuristics: A gentle step towards a comparison methodology publication-title: Nat Comput doi: 10.1007/s11047-020-09837-9 – volume: 12 start-page: 897 issue: 1 year: 2020 ident: e_1_3_3_63_2 article-title: Comprehensive taxonomies of nature-and bio-inspired optimization: Inspiration versus algorithmic behavior, critical analysis recommendations publication-title: Cogn Comput doi: 10.1007/s12559-020-09730-8 – volume: 6 start-page: 182 issue: 2 year: 2002 ident: e_1_3_3_97_2 article-title: A fast and elitist multi-objective genetic algorithm: NSGA-II publication-title: IEEE Trans Evol Comput doi: 10.1109/4235.996017 – ident: e_1_3_3_85_2 doi: 10.1145/3067695.3082057 – ident: e_1_3_3_107_2 doi: 10.1007/978-3-031-20176-9_3 – volume: 142 year: 2022 ident: e_1_3_3_32_2 article-title: An analysis of why cuckoo search does not bring any novel ideas to optimization publication-title: Comput Oper Res doi: 10.1016/j.cor.2022.105747 – volume: 11 start-page: 1 year: 2017 ident: e_1_3_3_137_2 article-title: ABC-X: A generalized, automatically configurable artificial bee colony framework publication-title: Swarm Intell doi: 10.1007/s11721-017-0131-z – ident: e_1_3_3_110_2 doi: 10.1007/978-3-319-07124-4_4 – ident: e_1_3_3_92_2 – ident: e_1_3_3_94_2 – ident: e_1_3_3_134_2 doi: 10.1007/978-3-319-07153-4_21-1 – volume: 64 start-page: 1695 issue: 12 year: 2013 ident: e_1_3_3_75_2 article-title: Hyper-heuristics: A survey of the state of the art publication-title: J Oper Res Soc doi: 10.1057/jors.2013.71 – ident: e_1_3_3_13_2 – volume: 10 start-page: 459 issue: 4 year: 2006 ident: e_1_3_3_52_2 article-title: Multiswarms, exclusion, and anti-convergence in dynamic environments publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2005.857074 – ident: e_1_3_3_46_2 – ident: e_1_3_3_40_2 doi: 10.4249/scholarpedia.1462 – volume: 25 start-page: 305 issue: 1 year: 2019 ident: e_1_3_3_123_2 article-title: Sample size estimation for power and accuracy in the experimental comparison of algorithms publication-title: J Heuristics doi: 10.1007/s10732-018-9396-7 – volume: 232 start-page: 20 year: 2016 ident: e_1_3_3_143_2 article-title: SATenstein: Automatically building local search SAT solvers from components publication-title: Artif Intell doi: 10.1016/j.artint.2015.11.002 – ident: e_1_3_3_142_2 – ident: e_1_3_3_93_2 doi: 10.1145/3449726.3463155 – volume: 54 start-page: 1 issue: 6 year: 2021 ident: e_1_3_3_128_2 article-title: Machine learning into metaheuristics: A survey and taxonomy publication-title: ACM Comput Surv (CSUR) doi: 10.1145/3459664 – volume: 54 start-page: 99 issue: 1 year: 2006 ident: e_1_3_3_80_2 article-title: Fine-tuning of Algorithms using fractional experimental design and local search publication-title: Oper Res doi: 10.1287/opre.1050.0243 – ident: e_1_3_3_119_2 – ident: e_1_3_3_3_2 – ident: e_1_3_3_9_2 – volume: 8 start-page: 173 issue: 2 year: 2000 ident: e_1_3_3_100_2 article-title: Comparison of multiobjective evolutionary Algorithms: Empirical results publication-title: Evol Comput doi: 10.1162/106365600568202 – volume: 54 start-page: 1841 issue: 3 year: 2021 ident: e_1_3_3_34_2 article-title: Nature inspired optimization algorithms or simply variations of metaheuristics? publication-title: Artif Intell Rev doi: 10.1007/s10462-020-09893-8 – volume: 26 start-page: 29 year: 1996 ident: e_1_3_3_47_2 article-title: Ant system: Optimization by a Colony of cooperating agents publication-title: IEEE Trans Syst Man Cyber Part B doi: 10.1109/3477.484436 – ident: e_1_3_3_4_2 – ident: e_1_3_3_39_2 doi: 10.1007/978-3-540-74089-6 – ident: e_1_3_3_20_2 doi: 10.4249/scholarpedia.1461 – ident: e_1_3_3_66_2 doi: 10.1145/2598394.2609841 – volume: 8 start-page: 541 issue: 5 year: 2002 ident: e_1_3_3_50_2 article-title: A taxonomy of hybrid metaheuristics publication-title: J Heuristics doi: 10.1023/A:1016540724870 – ident: e_1_3_3_11_2 – volume: 181 start-page: 1224 issue: 7 year: 2011 ident: e_1_3_3_60_2 article-title: Analytical and numerical comparisons of biogeography based optimization and genetic algorithms publication-title: Inf Sci doi: 10.1016/j.ins.2010.12.006 – ident: e_1_3_3_113_2 – volume: 417 start-page: 186 year: 2017 ident: e_1_3_3_116_2 article-title: A novel approach to statistical comparison of metaheuristic stochastic optimization algorithms using deep statistics publication-title: Inf Sci doi: 10.1016/j.ins.2017.07.015 – volume: 13 start-page: 2171 year: 2012 ident: e_1_3_3_139_2 article-title: DEAP: Evolutionary algorithms made easy publication-title: J Mach Learn Res – ident: e_1_3_3_99_2 doi: 10.1007/978-3-540-30217-9_84 – volume: 11 start-page: 341 issue: 4 year: 1997 ident: e_1_3_3_58_2 article-title: Differential evolution—A simple and efficient heuristic for global Optimization over continuous spaces publication-title: J Glob Optim doi: 10.1023/A:1008202821328 – volume: 11 start-page: 719 year: 2012 ident: e_1_3_3_61_2 article-title: Why ‘GSA: A gravitational search algorithm’ is not genuinely based on the law of gravity publication-title: Nat Comput doi: 10.1007/s11047-012-9322-0 – volume: 9 start-page: 159 issue: 2 year: 2001 ident: e_1_3_3_83_2 article-title: Completely derandomized self-adaptation in evolution strategies publication-title: Evol Comput doi: 10.1162/106365601750190398 – ident: e_1_3_3_74_2 – ident: e_1_3_3_98_2 doi: 10.1109/CEC.2005.1554717 – volume: 17 start-page: 840 issue: 6 year: 2013 ident: e_1_3_3_77_2 article-title: Grammatical evolution hyper-heuristic for combinatorial optimization problems publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2013.2281527 – volume: 16 start-page: 709 issue: 3 year: 2012 ident: e_1_3_3_131_2 article-title: Generalized functional ANOVA diagnostics for high-dimensional functions of dependent variables publication-title: J Comput Graph Stat doi: 10.1198/106186007X237892 – volume: 1 start-page: 190 year: 1989 ident: e_1_3_3_14_2 article-title: Tabu search—Part I publication-title: INFORMS J Comput doi: 10.1287/ijoc.1.3.190 – ident: e_1_3_3_78_2 doi: 10.1145/1143997.1144029 – volume: 8 start-page: 143 year: 2019 ident: e_1_3_3_127_2 article-title: A review on the self and dual interactions between machine learning and optimisation publication-title: Prog Artif Intell doi: 10.1007/s13748-019-00185-z – volume: 45 start-page: 41 year: 1985 ident: e_1_3_3_17_2 article-title: A thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm publication-title: J Optim Theory Appl doi: 10.1007/BF00940812 – ident: e_1_3_3_71_2 – ident: e_1_3_3_23_2 – volume: 17 start-page: 642 issue: 3 year: 2006 ident: e_1_3_3_79_2 article-title: Finding optimal algorithmic parameters using derivative-free Optimization publication-title: SIAM J Optim doi: 10.1137/040620886 – volume: 10 start-page: 357 issue: 3 year: 2004 ident: e_1_3_3_89_2 article-title: ParadisEO: A framework for the reusable design of parallel and distributed metaheuristics publication-title: J Heuristics doi: 10.1023/B:HEUR.0000026900.92269.ec – volume: 51 start-page: 190 year: 2014 ident: e_1_3_3_90_2 article-title: Grammar-based generation of stochastic local search heuristics through automatic algorithm configuration tools publication-title: Comput Oper Res doi: 10.1016/j.cor.2014.05.020 – ident: e_1_3_3_42_2 doi: 10.1007/978-3-540-78295-7_1 – volume: 2 start-page: 4 year: 1990 ident: e_1_3_3_15_2 article-title: Tabu search—Part II publication-title: INFORMS J Comput doi: 10.1287/ijoc.2.1.4 – volume: 104 start-page: 191 year: 2019 ident: e_1_3_3_109_2 article-title: Revisiting simulated annealing: A component-based analysis publication-title: Comput Oper Res doi: 10.1016/j.cor.2018.12.015 – ident: e_1_3_3_16_2 doi: 10.1007/BF01009452 – volume: 77 year: 2023 ident: e_1_3_3_59_2 article-title: Performance assessment and exhaustive listing of 500+ nature-inspired metaheuristic algorithms publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2023.101248 – ident: e_1_3_3_132_2 doi: 10.1007/978-3-642-44973-4_40 – ident: e_1_3_3_18_2 doi: 10.1007/3-540-44811-X_2 – ident: e_1_3_3_36_2 doi: 10.1007/978-3-319-91086-4_17 – ident: e_1_3_3_72_2 – ident: e_1_3_3_22_2 doi: 10.1109/MHS.1995.494215 – ident: e_1_3_3_86_2 – ident: e_1_3_3_10_2 – ident: e_1_3_3_95_2 doi: 10.1145/3205455.3205585 – ident: e_1_3_3_37_2 doi: 10.1126/science.220.4598.671 – volume: 15 start-page: 14 issue: 2 year: 2020 ident: e_1_3_3_126_2 article-title: The general combinatorial optimization problem: Towards automated algorithm design publication-title: IEEE Comput Intell Mag doi: 10.1109/MCI.2020.2976182 – volume: 11 start-page: 5755 issue: 8 year: 2011 ident: e_1_3_3_53_2 article-title: Impacts of invariance in search: When CMA-ES and PSO face ill-conditioned and non-separable problems publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2011.03.001 – ident: e_1_3_3_24_2 – ident: e_1_3_3_118_2 – ident: e_1_3_3_104_2 – ident: e_1_3_3_70_2 – ident: e_1_3_3_2_2 doi: 10.1007/978-3-319-18842-3 – volume: 1 start-page: 33 year: 1996 ident: e_1_3_3_112_2 article-title: Testing heuristics: We have it all wrong publication-title: J Heuristics doi: 10.1007/BF02430364 – volume: 234 start-page: 3 year: 2014 ident: e_1_3_3_136_2 article-title: A unified ant colony optimization algorithm for continuous optimization publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2013.10.024 – volume: 8 start-page: 2046 issue: 11 year: 2020 ident: e_1_3_3_64_2 article-title: Towards a generalised metaheuristic model for continuous optimisation problems publication-title: Mathematics doi: 10.3390/math8112046 – volume: 26 start-page: 402 issue: 3 year: 2022 ident: e_1_3_3_141_2 article-title: PSO-X: A component-based framework for the automatic design of particle swarm optimization algorithms publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2021.3102863 – ident: e_1_3_3_57_2 – volume: 42 start-page: 201 year: 1994 ident: e_1_3_3_120_2 article-title: Needed: An empirical science of Algorithms publication-title: Oper Res doi: 10.1287/opre.42.2.201 – ident: e_1_3_3_73_2 – volume: 16 start-page: 1 year: 2022 ident: e_1_3_3_54_2 article-title: Metaphor-based metaheuristics, a call for action: The elephant in the room publication-title: Swarm Intell doi: 10.1007/s11721-021-00202-9 – volume: 30 start-page: 13176 issue: 2 year: 2022 ident: e_1_3_3_33_2 article-title: Exposing the grey wolf, moth-flame, whale, firefly, bat, and antlion algorithms: Six misleading optimization techniques inspired by bestial metaphors publication-title: Int Trans Oper Res – volume: 87 issue: 6 year: 2020 ident: e_1_3_3_115_2 article-title: DSCTool: A web-service-based framework for statistical comparison of stochastic optimization algorithms publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2019.105977 – volume: 6 start-page: 49 year: 2012 ident: e_1_3_3_82_2 article-title: Continuous optimization algorithms for tuning real and integer algorithm parameters of swarm intelligence algorithms publication-title: Swarm Intell doi: 10.1007/s11721-011-0065-9 – volume: 22 start-page: 431 issue: 4 year: 2016 ident: e_1_3_3_87_2 article-title: Analysing differences between algorithm configurations through ablation publication-title: J Heuristics doi: 10.1007/s10732-014-9275-9 – volume: 21 start-page: 1 issue: 5 year: 2020 ident: e_1_3_3_65_2 article-title: Classifying metaheuristics: Towards a unified multi-level classification system publication-title: Nat Comput – volume: 16 start-page: 861 issue: 6 year: 2012 ident: e_1_3_3_135_2 article-title: The automatic design of multi-objective ant colony optimization algorithms publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2011.2182651 – ident: e_1_3_3_91_2 doi: 10.1145/3449726.3463276 – ident: e_1_3_3_121_2 doi: 10.1007/978-3-642-02538-9 – volume: 32 start-page: 30 year: 2002 ident: e_1_3_3_6_2 article-title: Tutorial on computational complexity publication-title: Interfaces doi: 10.1287/inte.32.3.30.39 – volume: 290 start-page: 807 issue: 3 year: 2021 ident: e_1_3_3_129_2 article-title: Optimization problems for machine learning: A survey publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2020.08.045 – ident: e_1_3_3_96_2 doi: 10.1109/CEC.2010.5586354 – ident: e_1_3_3_31_2 doi: 10.1007/978-3-030-60376-2_10 – volume: 13 start-page: 173 year: 2019 ident: e_1_3_3_30_2 article-title: The intelligent water drops algorithm: Why it cannot be considered a novel algorithm publication-title: Swarm Intell doi: 10.1007/s11721-019-00165-y – ident: e_1_3_3_56_2 – ident: e_1_3_3_105_2 – ident: e_1_3_3_5_2 – volume: 20 start-page: 403 issue: 3 year: 2016 ident: e_1_3_3_49_2 article-title: Automatic component-wise design of multi-objective evolutionary algorithms publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2015.2474158 – volume: 72 start-page: 3764 issue: 10 year: 2016 ident: e_1_3_3_62_2 article-title: Recent advances in metaheuristic algorithms: Does the Makara dragon exist? publication-title: J Supercomput doi: 10.1007/s11227-015-1592-8 – ident: e_1_3_3_51_2 doi: 10.1007/978-3-030-70277-9 – volume: 36 start-page: 267 issue: 1 year: 2009 ident: e_1_3_3_81_2 article-title: ParamILS: An automatic algorithm configuration framework publication-title: J Artif Intell Res doi: 10.1613/jair.2861 – ident: e_1_3_3_8_2 – ident: e_1_3_3_25_2 – volume: 3 start-page: 257 issue: 4 year: 1999 ident: e_1_3_3_103_2 article-title: Multi objective evolutionary Algorithms: A comparative case study and the strength Pareto evolutionary algorithm publication-title: IEEE Trans Evol Comput doi: 10.1109/4235.797969 – ident: e_1_3_3_41_2 – ident: e_1_3_3_114_2 – volume: 1 start-page: 1 year: 2022 ident: e_1_3_3_27_2 article-title: Is integration of mechanisms a way to enhance a nature-inspired algorithm? publication-title: Nat Comput – ident: e_1_3_3_12_2 doi: 10.1007/978-3-0348-5927-1 – volume: 1 start-page: 1 year: 2020 ident: e_1_3_3_67_2 article-title: Mitigating metaphors: A comprehensible guide to recent nature-inspired algorithms publication-title: SN Comput Sci doi: 10.1007/s42979-019-0050-8 – ident: e_1_3_3_84_2 doi: 10.1007/978-3-642-25566-3_40 – ident: e_1_3_3_38_2 doi: 10.1093/oso/9780195131581.001.0001 – volume: 10 start-page: 477 issue: 5 year: 2006 ident: e_1_3_3_102_2 article-title: A review of multiobjective test problems and a scalable test problem toolkit publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2005.861417 – ident: e_1_3_3_88_2 – ident: e_1_3_3_138_2 doi: 10.1145/3449726.3463167 – volume: 4 start-page: 1238 issue: 12 year: 2022 ident: e_1_3_3_55_2 article-title: A critical problem in benchmarking and analysis of evolutionary computation methods publication-title: Nat Mach Intell doi: 10.1038/s42256-022-00579-0 – ident: e_1_3_3_69_2 – volume: 21 start-page: 5573 issue: 19 year: 2017 ident: e_1_3_3_122_2 article-title: Since CEC 2005 competition on real-parameter optimisation: A decade of research, progress and comparative analysis’s weakness publication-title: Soft Comput doi: 10.1007/s00500-016-2471-9 – ident: e_1_3_3_29_2 doi: 10.1007/978-3-030-00533-7_24 – volume: 3 start-page: 43 year: 2016 ident: e_1_3_3_48_2 article-title: The irace package: Iterated racing for automatic algorithm configuration publication-title: Oper Res Perspect |
| SSID | ssj0002876772 |
| Score | 2.3476412 |
| SecondaryResourceType | review_article |
| Snippet | A metaheuristic is a collection of algorithmic concepts that can be used to define heuristic methods applicable to a wide set of optimization problems for... |
| SourceID | doaj crossref |
| SourceType | Open Website Enrichment Source Index Database |
| Title | Designing New Metaheuristics: Manual Versus Automatic Approaches |
| URI | https://doaj.org/article/48dcd3b6aea7468ca5b238a05d9bdde9 |
| Volume | 2 |
| WOSCitedRecordID | wos001406333400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2771-5892 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002876772 issn: 2771-5892 databaseCode: DOA dateStart: 20220101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center) customDbUrl: eissn: 2771-5892 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002876772 issn: 2771-5892 databaseCode: M~E dateStart: 20220101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELUQYmBBIECUL3lgYYga146TMFGgFUsrBpC6RT7fRRShFrUJI78d2wmlLLCwZLAcK35n-85n5z3GLtJSq9gkcWQJykhpCZExJomET_Fjz2gNjdhEOh5nk0n-sCb15e-ENfTADXBdlaFFCdqQSZXOrEnAeRkTJ5iDm5rh1704zdc2Uy8hZZRqFzc255J-oZbdqQ0yCV6OwA_bH35oja4_-JXhLttpA0Lebz5kj23QbJ9d34WLFa4V7lYhPqLKPFPdkipf8ZHxRKLc57rqJe_X1TwQr_J-SxBOywP2NBw83t5HrdZBZGUiqgjJloAaLJSiJ0xiY4UEBnrg-hqD9ZGFyUBiBoI0JUipJhQiz1x8hKjkIduczWd0xLhyEQ8JhZBLq0jEBhTFVtpMI6LMZYd1v3pe2JYI3OtRvBZuQxCwKr6xKjxWHXa5euOtIcH4pe6NB3NVz9NXhwJn1KI1avGXUY__o5ETtu214Zt8ySnbrBY1nbEt-15Nl4vzMF7cc_Qx-AQSss2X |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Designing+New+Metaheuristics%3A+Manual+Versus+Automatic+Approaches&rft.jtitle=Intelligent+computing&rft.au=Christian+L.+Camacho-Villal%C3%B3n&rft.au=Thomas+St%C3%BCtzle&rft.au=Marco+Dorigo&rft.date=2023&rft.pub=American+Association+for+the+Advancement+of+Science+%28AAAS%29&rft.eissn=2771-5892&rft.volume=2&rft_id=info:doi/10.34133%2Ficomputing.0048&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_48dcd3b6aea7468ca5b238a05d9bdde9 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2771-5892&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2771-5892&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2771-5892&client=summon |