Monads need not be endofunctors

We introduce a generalization of monads, called relative monads, allowing for underlying functors between different categories. Examples include finite-dimensional vector spaces, untyped and typed lambda-calculus syntax and indexed containers. We show that the Kleisli and Eilenberg-Moore constructio...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Logical methods in computer science Ročník 11, Issue 1
Hlavní autoři: Altenkirch, Thosten, Chapman, James, Uustalu, Tarmo
Médium: Journal Article
Jazyk:angličtina
Vydáno: Logical Methods in Computer Science e.V 06.03.2015
Témata:
ISSN:1860-5974, 1860-5974
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We introduce a generalization of monads, called relative monads, allowing for underlying functors between different categories. Examples include finite-dimensional vector spaces, untyped and typed lambda-calculus syntax and indexed containers. We show that the Kleisli and Eilenberg-Moore constructions carry over to relative monads and are related to relative adjunctions. Under reasonable assumptions, relative monads are monoids in the functor category concerned and extend to monads, giving rise to a coreflection between relative monads and monads. Arrows are also an instance of relative monads.
ISSN:1860-5974
1860-5974
DOI:10.2168/LMCS-11(1:3)2015