Monads need not be endofunctors

We introduce a generalization of monads, called relative monads, allowing for underlying functors between different categories. Examples include finite-dimensional vector spaces, untyped and typed lambda-calculus syntax and indexed containers. We show that the Kleisli and Eilenberg-Moore constructio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Logical methods in computer science Jg. 11, Issue 1
Hauptverfasser: Altenkirch, Thosten, Chapman, James, Uustalu, Tarmo
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Logical Methods in Computer Science e.V 06.03.2015
Schlagworte:
ISSN:1860-5974, 1860-5974
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We introduce a generalization of monads, called relative monads, allowing for underlying functors between different categories. Examples include finite-dimensional vector spaces, untyped and typed lambda-calculus syntax and indexed containers. We show that the Kleisli and Eilenberg-Moore constructions carry over to relative monads and are related to relative adjunctions. Under reasonable assumptions, relative monads are monoids in the functor category concerned and extend to monads, giving rise to a coreflection between relative monads and monads. Arrows are also an instance of relative monads.
AbstractList We introduce a generalization of monads, called relative monads, allowing for underlying functors between different categories. Examples include finite-dimensional vector spaces, untyped and typed lambda-calculus syntax and indexed containers. We show that the Kleisli and Eilenberg-Moore constructions carry over to relative monads and are related to relative adjunctions. Under reasonable assumptions, relative monads are monoids in the functor category concerned and extend to monads, giving rise to a coreflection between relative monads and monads. Arrows are also an instance of relative monads.
We introduce a generalization of monads, called relative monads, allowing for underlying functors between different categories. Examples include finite-dimensional vector spaces, untyped and typed lambda-calculus syntax and indexed containers. We show that the Kleisli and Eilenberg-Moore constructions carry over to relative monads and are related to relative adjunctions. Under reasonable assumptions, relative monads are monoids in the functor category concerned and extend to monads, giving rise to a coreflection between relative monads and monads. Arrows are also an instance of relative monads.
Author Chapman, James
Uustalu, Tarmo
Altenkirch, Thosten
Author_xml – sequence: 1
  givenname: Thosten
  surname: Altenkirch
  fullname: Altenkirch, Thosten
– sequence: 2
  givenname: James
  orcidid: 0000-0001-9036-8252
  surname: Chapman
  fullname: Chapman, James
– sequence: 3
  givenname: Tarmo
  orcidid: 0000-0002-1297-0579
  surname: Uustalu
  fullname: Uustalu, Tarmo
BookMark eNp1kEtLAzEURoNUsGr37pylLkbznsSdFB-FFhfqOtw8RqbURJK48N87tSIieDf38sF3LpxDNIkpBoROCL6gRKrL5Wr-2BJyRq7YOcVE7KEpURK3Qnd88us-QLNS1ngcxoiicopOVymCL00MwTcx1caGJkSf-vfoasrlGO33sClh9r2P0PPtzdP8vl0-3C3m18vWMUFq6z1mfXA4WA5WCRd6oQXhSvGOUwpOUgu6w9b12mHKrfRY6SB7y4Bp6TU7Qosd1ydYm7c8vEL-MAkG8xWk_GIg18FtggEmlcKdgPEpD1qA5c4xpzoKQsnOjSy8Y7mcSsmh_-ERbLa-zNaXIcQQw8zW11iRfypuqFCHFGuGYfN_8RMgy3AB
CitedBy_id crossref_primary_10_1145_3594735
crossref_primary_10_1145_3704890
crossref_primary_10_1145_3371099
crossref_primary_10_1145_3434303
crossref_primary_10_1017_S0956796819000170
crossref_primary_10_1145_3371072
crossref_primary_10_1145_3747527
crossref_primary_10_1007_s10485_021_09649_7
crossref_primary_10_1017_S0956796820000076
crossref_primary_10_1016_j_entcs_2020_09_012
crossref_primary_10_1007_s10485_023_09735_y
crossref_primary_10_1007_s40509_025_00368_5
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.2168/LMCS-11(1:3)2015
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1860-5974
ExternalDocumentID oai_doaj_org_article_a3688075add04e95ab4cc3c872a5867c
10_2168_LMCS_11_1_3_2015
GroupedDBID .4S
.DC
29L
2WC
5GY
5VS
AAFWJ
AAYXX
ADBBV
ADMLS
ADQAK
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ARCSS
BCNDV
CITATION
EBS
EJD
FRP
GROUPED_DOAJ
J9A
KQ8
MK~
ML~
M~E
OK1
OVT
P2P
TR2
TUS
XSB
ID FETCH-LOGICAL-c351t-dd03fec0eb4ab85cef595148847422ac62ba970bcf9c024b6d089e6fb3a396d93
IEDL.DBID DOA
ISICitedReferencesCount 55
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000353193000010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1860-5974
IngestDate Fri Oct 03 12:38:40 EDT 2025
Tue Nov 18 20:52:34 EST 2025
Sat Nov 29 06:21:51 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://arxiv.org/licenses/nonexclusive-distrib/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-dd03fec0eb4ab85cef595148847422ac62ba970bcf9c024b6d089e6fb3a396d93
ORCID 0000-0002-1297-0579
0000-0001-9036-8252
OpenAccessLink https://doaj.org/article/a3688075add04e95ab4cc3c872a5867c
ParticipantIDs doaj_primary_oai_doaj_org_article_a3688075add04e95ab4cc3c872a5867c
crossref_primary_10_2168_LMCS_11_1_3_2015
crossref_citationtrail_10_2168_LMCS_11_1_3_2015
PublicationCentury 2000
PublicationDate 2015-03-06
PublicationDateYYYYMMDD 2015-03-06
PublicationDate_xml – month: 03
  year: 2015
  text: 2015-03-06
  day: 06
PublicationDecade 2010
PublicationTitle Logical methods in computer science
PublicationYear 2015
Publisher Logical Methods in Computer Science e.V
Publisher_xml – name: Logical Methods in Computer Science e.V
References 614:not-found
References_xml – ident: 614:not-found
SSID ssj0000331826
Score 2.3507311
Snippet We introduce a generalization of monads, called relative monads, allowing for underlying functors between different categories. Examples include...
We introduce a generalization of monads, called relative monads, allowing for underlying functors between different categories. Examples include...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
SubjectTerms computer science - logic in computer science
computer science - programming languages
mathematics - category theory
Title Monads need not be endofunctors
URI https://doaj.org/article/a3688075add04e95ab4cc3c872a5867c
Volume 11, Issue 1
WOSCitedRecordID wos000353193000010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1860-5974
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331826
  issn: 1860-5974
  databaseCode: DOA
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1860-5974
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331826
  issn: 1860-5974
  databaseCode: M~E
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxcDCG1GeGRjoEDWOHcdmg6oVQ1sh8VA3yz47EhJKUVsY-e2ck7QqCywsGSLbsu98993J9neEXAkqPaTUhdwEYs5y9IM-4zE3CNYuTTyt3q29DPPxWE4m6mGt1Fe4E1bTA9eC6xomZCDMRTtMuFeZsRyAgcxTk0mRQ_C-Sa7WkqnKBzMWAuf6XDKlQnaHo95jTOk1vWEdBL3sBw6t0fVXuDLYJdtNQBjd1hPZIxu-3Cc7y2ILUWN7B-QSrc-4eVQi3ETldBFZH_nSTQMwhYo5h-R50H_q3cdNdYMYWEYXMa6HFR4Sb7mxMgNfZBjtoD1xzFZTAyK1RuWJhUIBAqkVLpHKi8Iyw5Rwih2RVjkt_TGJmBNZOI4UgL0Nd9KAzR23zmBwI4ukTbrLtWpoqL9DBYo3jSlAkI4O0sFkQFPNdJBOm3RWPd5r2otf2t4F8a3aBcLq6geqUTdq1H-p8eQ_BjklW2FC1RUxcUZai9mHPyeb8Ll4nc8uqh2C39FX_xtCQ75P
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Monads+need+not+be+endofunctors&rft.jtitle=Logical+methods+in+computer+science&rft.au=Thosten+Altenkirch&rft.au=James+Chapman&rft.au=Tarmo+Uustalu&rft.date=2015-03-06&rft.pub=Logical+Methods+in+Computer+Science+e.V&rft.eissn=1860-5974&rft.volume=11%2C+Issue+1&rft_id=info:doi/10.2168%2FLMCS-11%281%3A3%292015&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a3688075add04e95ab4cc3c872a5867c
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1860-5974&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1860-5974&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1860-5974&client=summon