Looking Beyond Single Images for Weakly Supervised Semantic Segmentation Learning

This article studies the problem of learning weakly supervised semantic segmentation (WSSS) from image-level supervision only. Current popular solutions leverage object localization maps from classifiers as supervision for semantic segmentation learning, and struggle to make the localization maps ca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence Jg. 46; H. 3; S. 1635 - 1649
Hauptverfasser: Wang, Wenguan, Sun, Guolei, Van Gool, Luc
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 01.03.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0162-8828, 1939-3539, 2160-9292, 1939-3539
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This article studies the problem of learning weakly supervised semantic segmentation (WSSS) from image-level supervision only. Current popular solutions leverage object localization maps from classifiers as supervision for semantic segmentation learning, and struggle to make the localization maps capture more complete object content. Rather than previous efforts that primarily focus on intra-image information, we address the value of cross-image semantic relations for comprehensive object pattern mining. To achieve this, two neural co-attentions are incorporated into the classifier to complementarily capture cross-image semantic similarities and differences. In particular, given a pair of training images, one co-attention enforces the classifier to recognize the common semantics from co-attentive objects, while the other one, called contrastive co-attention, drives the classifier to identify the unique semantics from the rest, unshared objects. This helps the classifier discover more object patterns and better ground semantics in image regions. In addition to boosting object pattern learning, the co-attention can leverage context from other related images to improve localization map inference, hence eventually benefiting semantic segmentation learning. More importantly, our algorithm provides a unified framework that handles well different WSSS settings, i.e., learning WSSS with 1) precise image-level supervision only, 2) extra simple single-label data, and 3) extra noisy web data. Without bells and whistles, it sets new state-of-the-arts on all these settings. Moreover, our approach ranked 1st place in the Weakly-Supervised Semantic Segmentation Track of CVPR2020 Learning from Imperfect Data Challenge. The extensive experimental results demonstrate well the efficacy and high utility of our method.
AbstractList This article studies the problem of learning weakly supervised semantic segmentation (WSSS) from image-level supervision only. Current popular solutions leverage object localization maps from classifiers as supervision for semantic segmentation learning, and struggle to make the localization maps capture more complete object content. Rather than previous efforts that primarily focus on intra-image information, we address the value of cross-image semantic relations for comprehensive object pattern mining. To achieve this, two neural co-attentions are incorporated into the classifier to complementarily capture cross-image semantic similarities and differences. In particular, given a pair of training images, one co-attention enforces the classifier to recognize the common semantics from co-attentive objects, while the other one, called contrastive co-attention, drives the classifier to identify the unique semantics from the rest, unshared objects. This helps the classifier discover more object patterns and better ground semantics in image regions. In addition to boosting object pattern learning, the co-attention can leverage context from other related images to improve localization map inference, hence eventually benefiting semantic segmentation learning. More importantly, our algorithm provides a unified framework that handles well different WSSS settings, i.e., learning WSSS with 1) precise image-level supervision only, 2) extra simple single-label data, and 3) extra noisy web data. Without bells and whistles, it sets new state-of-the-arts on all these settings. Moreover, our approach ranked 1st place in the Weakly-Supervised Semantic Segmentation Track of CVPR2020 Learning from Imperfect Data Challenge. The extensive experimental results demonstrate well the efficacy and high utility of our method.
This article studies the problem of learning weakly supervised semantic segmentation (WSSS) from image-level supervision only. Current popular solutions leverage object localization maps from classifiers as supervision for semantic segmentation learning, and struggle to make the localization maps capture more complete object content. Rather than previous efforts that primarily focus on intra-image information, we address the value of cross-image semantic relations for comprehensive object pattern mining. To achieve this, two neural co-attentions are incorporated into the classifier to complementarily capture cross-image semantic similarities and differences. In particular, given a pair of training images, one co-attention enforces the classifier to recognize the common semantics from co-attentive objects, while the other one, called contrastive co-attention, drives the classifier to identify the unique semantics from the rest, unshared objects. This helps the classifier discover more object patterns and better ground semantics in image regions. In addition to boosting object pattern learning, the co-attention can leverage context from other related images to improve localization map inference, hence eventually benefiting semantic segmentation learning. More importantly, our algorithm provides a unified framework that handles well different WSSS settings, i.e., learning WSSS with 1) precise image-level supervision only, 2) extra simple single-label data, and 3) extra noisy web data. Without bells and whistles, it sets new state-of-the-arts on all these settings. Moreover, our approach ranked 1st place in the Weakly-Supervised Semantic Segmentation Track of CVPR2020 Learning from Imperfect Data Challenge. The extensive experimental results demonstrate well the efficacy and high utility of our method.This article studies the problem of learning weakly supervised semantic segmentation (WSSS) from image-level supervision only. Current popular solutions leverage object localization maps from classifiers as supervision for semantic segmentation learning, and struggle to make the localization maps capture more complete object content. Rather than previous efforts that primarily focus on intra-image information, we address the value of cross-image semantic relations for comprehensive object pattern mining. To achieve this, two neural co-attentions are incorporated into the classifier to complementarily capture cross-image semantic similarities and differences. In particular, given a pair of training images, one co-attention enforces the classifier to recognize the common semantics from co-attentive objects, while the other one, called contrastive co-attention, drives the classifier to identify the unique semantics from the rest, unshared objects. This helps the classifier discover more object patterns and better ground semantics in image regions. In addition to boosting object pattern learning, the co-attention can leverage context from other related images to improve localization map inference, hence eventually benefiting semantic segmentation learning. More importantly, our algorithm provides a unified framework that handles well different WSSS settings, i.e., learning WSSS with 1) precise image-level supervision only, 2) extra simple single-label data, and 3) extra noisy web data. Without bells and whistles, it sets new state-of-the-arts on all these settings. Moreover, our approach ranked 1st place in the Weakly-Supervised Semantic Segmentation Track of CVPR2020 Learning from Imperfect Data Challenge. The extensive experimental results demonstrate well the efficacy and high utility of our method.
Author Sun, Guolei
Van Gool, Luc
Wang, Wenguan
Author_xml – sequence: 1
  givenname: Wenguan
  orcidid: 0000-0002-0802-9567
  surname: Wang
  fullname: Wang, Wenguan
  email: wenguanwang.ai@gmail.com
  organization: ReLER, AAII, University of Technology Sydney, Ultimo, NSW, Australia
– sequence: 2
  givenname: Guolei
  orcidid: 0000-0001-8667-9656
  surname: Sun
  fullname: Sun, Guolei
  email: guolei.sun@vision.ee.ethz.ch
  organization: ETH Zurich, Zürich, Switzerland
– sequence: 3
  givenname: Luc
  orcidid: 0000-0002-3445-5711
  surname: Van Gool
  fullname: Van Gool, Luc
  email: vangool@vision.ee.ethz.ch
  organization: ETH Zurich, Zürich, Switzerland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35439127$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1PGzEQhi1EBYH2D4CEVuqFy6b-WHvtI0WlRErVVlD1aDn2bGTYtVN7t1L-fU0TOHDg5Dk8z4xn3hN0GGIAhM4InhOC1af7H1ffFnOKKZ0zIiRn-ADNKBG4VlTRQzTDRNBaSiqP0UnODxiThmN2hI4Zb5gitJ2hn8sYH31YV59hG4Or7krdQ7UYzBpy1cVU_Qbz2G-ru2kD6a_PUBgYTBi9LcV6gDCa0cdQLcGkUOz36F1n-gwf9u8p-nXz5f76tl5-_7q4vlrWlnEy1q7Mtwoba4DbTpmmka1yWDjbGtcRbFZglLAcnHINc63sRCOMYsSspAKh2Cm63PXdpPhngjzqwWcLfW8CxClrKjiVgjPCCvrxFfoQpxTK73Q5FCOUtFgW6mJPTasBnN4kP5i01c_HKoDcATbFnBN02vrd8mMyvtcE66dc9P9c9FMuep9LUekr9bn7m9L5TvIA8CKoVmDMW_YPsL6YTQ
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1016_j_neucom_2025_131131
crossref_primary_10_1049_gtd2_70104
crossref_primary_10_1109_TCSVT_2023_3347402
crossref_primary_10_1016_j_jvcir_2025_104576
crossref_primary_10_1016_j_neucom_2024_127829
crossref_primary_10_1109_TIP_2025_3543052
crossref_primary_10_1109_TIP_2022_3214092
crossref_primary_10_1016_j_asoc_2025_113653
crossref_primary_10_1109_TCSVT_2024_3413778
crossref_primary_10_1109_TII_2024_3385533
crossref_primary_10_1109_TIP_2022_3214332
crossref_primary_10_1109_TGRS_2024_3506630
crossref_primary_10_1016_j_neucom_2024_128540
crossref_primary_10_1016_j_neucom_2025_131204
crossref_primary_10_1109_TKDE_2024_3389668
crossref_primary_10_1109_TAI_2024_3376640
crossref_primary_10_1109_TPAMI_2024_3387116
crossref_primary_10_1109_TCSVT_2024_3375505
crossref_primary_10_1109_TIP_2024_3374130
crossref_primary_10_1088_1361_6501_acc198
crossref_primary_10_1007_s00530_025_01787_5
crossref_primary_10_1109_TPAMI_2025_3557047
crossref_primary_10_1016_j_jvcir_2024_104186
crossref_primary_10_1109_TMM_2024_3407679
crossref_primary_10_1109_TPAMI_2024_3404422
crossref_primary_10_1038_s41598_024_84181_x
crossref_primary_10_1007_s11263_024_02083_x
crossref_primary_10_1109_TETCI_2024_3380442
crossref_primary_10_1109_TIP_2024_3444190
crossref_primary_10_1016_j_neucom_2025_130091
crossref_primary_10_1080_1206212X_2024_2333122
crossref_primary_10_1109_TAI_2023_3333827
crossref_primary_10_1109_TCSVT_2022_3215979
crossref_primary_10_1109_TIM_2025_3571123
crossref_primary_10_1109_TNNLS_2024_3467132
crossref_primary_10_1016_j_neucom_2025_130762
crossref_primary_10_1109_TNNLS_2024_3497145
crossref_primary_10_1145_3624747
crossref_primary_10_1109_TCSVT_2022_3185252
crossref_primary_10_1016_j_eswa_2025_127004
crossref_primary_10_1016_j_neucom_2025_130504
Cites_doi 10.5244/c.31.17
10.1007/s11263-014-0733-5
10.1109/TPAMI.2020.3040258
10.1109/CVPR.2018.00139
10.1109/TPAMI.2016.2636150
10.1109/CVPR.2019.00644
10.1109/TPAMI.2018.2815688
10.1007/s11263-015-0816-y
10.1609/aaai.v35i3.16294
10.1109/ICCV.2019.00580
10.1109/TPAMI.2020.3012548
10.1007/978-3-319-46478-7_34
10.1109/CVPR42600.2020.00434
10.1109/ICCV.2019.00732
10.1109/CVPR.2019.00679
10.1109/CVPR.2017.687
10.1109/CVPR.2016.90
10.1109/CVPR.2016.319
10.1631/fitee.2100463
10.1007/978-3-319-46493-0_24
10.1109/ICCV.2019.00691
10.1007/978-3-319-46484-8_21
10.1007/978-3-030-01234-2_1
10.1109/CVPR.2018.00143
10.1109/CVPR.2016.344
10.1109/CVPR.2015.7298780
10.1007/978-3-030-58542-6_40
10.1109/CVPR.2017.185
10.1109/CVPR.2018.00637
10.1109/CVPR.2018.00733
10.1007/978-3-030-01270-0_49
10.1109/ICCV.2011.6126343
10.1109/ICCV.2017.381
10.1109/ICCV.2019.00530
10.1109/CVPR.2019.00231
10.1109/CVPR42600.2020.00901
10.1109/CVPR.2019.00404
10.1109/ICCV.2019.00216
10.1109/TPAMI.2017.2699184
10.1109/CVPR.2019.00541
10.1007/978-3-319-46493-0_42
10.1007/978-3-030-58574-7_21
10.1109/CVPR.2010.5539868
10.1109/CVPR.2018.00148
10.1109/CVPR.2018.00745
10.1007/978-3-030-58542-6_19
10.1007/978-3-030-58536-5_21
10.48550/arXiv.1802.02611
10.1016/j.patcog.2019.01.006
10.1109/CVPR.2019.00285
10.1109/CVPR.2018.00523
10.1007/978-3-319-10590-1_53
10.1109/CVPR.2018.00144
10.1109/tpami.2021.3115815
10.1609/aaai.v34i07.6854
10.1109/CVPR.2017.239
10.1109/CVPR.2017.631
10.1109/CVPR42600.2020.00432
10.1109/CVPR.2019.00683
10.1609/aaai.v33i01.33015345
10.1109/CVPR.2019.00245
10.1109/tpami.2021.3051099
10.1109/CVPR.2019.00326
10.18653/v1/d16-1053
10.1109/CVPR42600.2020.01229
10.1109/ICCV48922.2021.00721
10.1109/CVPR.2018.00147
10.1109/CVPR52688.2022.00261
10.1109/CVPR52688.2022.00131
10.1109/CVPR.2017.601
10.1109/CVPR42600.2020.00895
10.1109/ACPR.2015.7486476
10.1109/CVPR.2018.00813
10.18653/v1/D15-1166
10.1109/CVPR42600.2020.00898
10.1109/ICCV.2015.203
10.1109/ICCV.2019.00531
10.1109/CVPR.2018.00759
10.1609/aaai.v34i07.6705
10.1109/ICCV.2015.191
10.1007/978-3-030-01240-3_23
10.1109/TMM.2016.2545409
10.1109/CVPR.2018.00639
10.1109/CVPR.2018.00960
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TPAMI.2022.3168530
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2160-9292
1939-3539
EndPage 1649
ExternalDocumentID 35439127
10_1109_TPAMI_2022_3168530
9760057
Genre orig-research
Journal Article
GrantInformation_xml – fundername: ARC DECRA
  grantid: DE220101390
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ADRHT
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
FA8
HZ~
H~9
IBMZZ
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RXW
RZB
TAE
TN5
UHB
VH1
XJT
~02
AAYXX
CITATION
NPM
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c351t-d912c90acae5cf9a44879d06dc7adf10abea96c5ed9d43d78f646a931ab89e693
IEDL.DBID RIE
ISICitedReferencesCount 85
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001174191100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0162-8828
1939-3539
IngestDate Sun Sep 28 02:46:15 EDT 2025
Mon Jun 30 06:53:47 EDT 2025
Mon Jul 21 05:59:50 EDT 2025
Sat Nov 29 02:58:19 EST 2025
Tue Nov 18 22:30:36 EST 2025
Wed Aug 27 02:07:44 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-d912c90acae5cf9a44879d06dc7adf10abea96c5ed9d43d78f646a931ab89e693
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8667-9656
0000-0002-0802-9567
0000-0002-3445-5711
PMID 35439127
PQID 2923121708
PQPubID 85458
PageCount 15
ParticipantIDs crossref_citationtrail_10_1109_TPAMI_2022_3168530
crossref_primary_10_1109_TPAMI_2022_3168530
pubmed_primary_35439127
ieee_primary_9760057
proquest_journals_2923121708
proquest_miscellaneous_2652865313
PublicationCentury 2000
PublicationDate 2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref59
ref58
ref52
ref55
ref54
Zhang (ref51)
Lu (ref76)
Xiong (ref77)
ref50
ref46
ref45
ref48
ref47
ref41
ref43
ref49
Zhang (ref74)
ref8
ref7
Vaswani (ref53)
ref4
Santoro (ref71)
ref3
ref6
Paulus (ref57)
ref5
Gidaris (ref87)
ref100
ref101
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref39
ref38
Griffin (ref42) 2007
Wang (ref44) 2021
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref27
ref29
Lin (ref56)
ref13
ref12
ref15
ref14
ref97
ref96
ref11
ref99
ref10
ref17
ref16
ref19
ref18
ref93
ref92
ref91
ref90
ref85
ref88
Odena (ref86)
Simonyan (ref95) 2014
ref82
ref81
ref84
ref83
ref80
ref79
ref78
Krizhevsky (ref94)
ref75
ref104
ref102
ref103
ref2
ref1
Pathak (ref9) 2014
ref73
ref72
Hou (ref89)
ref68
ref67
ref69
ref64
ref63
ref66
ref65
Krähenbühl (ref98)
Battaglia (ref70)
Wei (ref28) 2020
ref60
ref62
ref61
References_xml – ident: ref22
  doi: 10.5244/c.31.17
– volume-title: Proc. Int. Conf. Learn. Representations
  ident: ref77
  article-title: Dynamic coattention networks for question answering
– ident: ref27
  doi: 10.1007/s11263-014-0733-5
– ident: ref84
  doi: 10.1109/TPAMI.2020.3040258
– ident: ref100
  doi: 10.1109/CVPR.2018.00139
– ident: ref25
  doi: 10.1109/TPAMI.2016.2636150
– ident: ref79
  doi: 10.1109/CVPR.2019.00644
– ident: ref91
  doi: 10.1109/TPAMI.2018.2815688
– ident: ref41
  doi: 10.1007/s11263-015-0816-y
– ident: ref52
  doi: 10.1609/aaai.v35i3.16294
– ident: ref69
  doi: 10.1109/ICCV.2019.00580
– start-page: 7354
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref74
  article-title: Self-attention generative adversarial networks
– ident: ref49
  doi: 10.1109/TPAMI.2020.3012548
– ident: ref8
  doi: 10.1007/978-3-319-46478-7_34
– ident: ref35
  doi: 10.1109/CVPR42600.2020.00434
– ident: ref90
  doi: 10.1109/ICCV.2019.00732
– ident: ref82
  doi: 10.1109/CVPR.2019.00679
– ident: ref18
  doi: 10.1109/CVPR.2017.687
– ident: ref96
  doi: 10.1109/CVPR.2016.90
– ident: ref11
  doi: 10.1109/CVPR.2016.319
– ident: ref63
  doi: 10.1631/fitee.2100463
– ident: ref26
  doi: 10.1007/978-3-319-46493-0_24
– start-page: 109
  volume-title: Proc. Int. Conf. Neural Inf. Process. Syst.
  ident: ref98
  article-title: Efficient inference in fully connected CRFs with Gaussian edge potentials
– start-page: 549
  volume-title: Proc. Int. Conf. Neural Inf. Process. Syst.
  ident: ref89
  article-title: Self-erasing network for integral object attention
– ident: ref43
  doi: 10.1109/ICCV.2019.00691
– ident: ref68
  doi: 10.1007/978-3-319-46484-8_21
– ident: ref62
  doi: 10.1007/978-3-030-01234-2_1
– ident: ref75
  doi: 10.1109/CVPR.2018.00143
– ident: ref7
  doi: 10.1109/CVPR.2016.344
– ident: ref20
  doi: 10.1109/CVPR.2015.7298780
– ident: ref33
  doi: 10.1007/978-3-030-58542-6_40
– ident: ref46
  doi: 10.1109/CVPR.2017.185
– volume-title: Proc. Int. Conf. Learn. Representations
  ident: ref56
  article-title: A structured self-attentive sentence embedding
– ident: ref78
  doi: 10.1109/CVPR.2018.00637
– ident: ref16
  doi: 10.1109/CVPR.2018.00733
– ident: ref59
  doi: 10.1007/978-3-030-01270-0_49
– start-page: 2642
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref86
  article-title: Conditional image synthesis with auxiliary classifier GANs
– ident: ref102
  doi: 10.1109/ICCV.2011.6126343
– ident: ref17
  doi: 10.1109/ICCV.2017.381
– start-page: 655
  volume-title: Proc. Int. Conf. Neural Inf. Process. Syst.
  ident: ref51
  article-title: Causal intervention for weakly-supervised semantic segmentation
– ident: ref21
  doi: 10.1109/ICCV.2019.00530
– year: 2021
  ident: ref44
  article-title: A survey on deep learning technique for video segmentation
– ident: ref36
  doi: 10.1109/CVPR.2019.00231
– volume-title: Proc. Int. Conf. Learn. Representations
  ident: ref87
  article-title: Unsupervised representation learning by predicting image rotations
– ident: ref34
  doi: 10.1109/CVPR42600.2020.00901
– ident: ref97
  doi: 10.1109/CVPR.2019.00404
– ident: ref32
  doi: 10.1109/ICCV.2019.00216
– ident: ref2
  doi: 10.1109/TPAMI.2017.2699184
– ident: ref19
  doi: 10.1109/CVPR.2019.00541
– ident: ref31
  doi: 10.1007/978-3-319-46493-0_42
– ident: ref40
  doi: 10.1007/978-3-030-58574-7_21
– ident: ref48
  doi: 10.1109/CVPR.2010.5539868
– ident: ref24
  doi: 10.1109/CVPR.2018.00148
– start-page: 289
  volume-title: Proc. Int. Conf. Neural Inf. Process. Syst.
  ident: ref76
  article-title: Hierarchical question-image co-attention for visual question answering
– volume-title: Proc. Int. Conf. Learn. Representations
  ident: ref57
  article-title: A deep reinforced model for abstractive summarization
– ident: ref61
  doi: 10.1109/CVPR.2018.00745
– ident: ref83
  doi: 10.1007/978-3-030-58542-6_19
– ident: ref1
  doi: 10.1007/978-3-030-58536-5_21
– ident: ref3
  doi: 10.48550/arXiv.1802.02611
– ident: ref103
  doi: 10.1016/j.patcog.2019.01.006
– ident: ref65
  doi: 10.1109/CVPR.2019.00285
– ident: ref14
  doi: 10.1109/CVPR.2018.00523
– ident: ref10
  doi: 10.1007/978-3-319-10590-1_53
– start-page: 5998
  volume-title: Proc. Int. Conf. Neural Inf. Process. Syst.
  ident: ref53
  article-title: Attention is all you need
– ident: ref93
  doi: 10.1109/CVPR.2018.00144
– ident: ref85
  doi: 10.1109/tpami.2021.3115815
– ident: ref92
  doi: 10.1609/aaai.v34i07.6854
– ident: ref23
  doi: 10.1109/CVPR.2017.239
– ident: ref30
  doi: 10.1109/CVPR.2017.631
– ident: ref72
  doi: 10.1109/CVPR42600.2020.00432
– ident: ref81
  doi: 10.1109/CVPR.2019.00683
– ident: ref64
  doi: 10.1609/aaai.v33i01.33015345
– ident: ref73
  doi: 10.1109/CVPR.2019.00245
– start-page: 4502
  volume-title: Proc. Int. Conf. Neural Inf. Process. Syst.
  ident: ref70
  article-title: Interaction networks for learning about objects, relations and physics
– start-page: 4967
  volume-title: Proc. Int. Conf. Neural Inf. Process. Syst.
  ident: ref71
  article-title: A simple neural network module for relational reasoning
– ident: ref38
  doi: 10.1109/tpami.2021.3051099
– ident: ref58
  doi: 10.1109/CVPR.2019.00326
– ident: ref55
  doi: 10.18653/v1/d16-1053
– year: 2014
  ident: ref9
  article-title: Fully convolutional multi-class multiple instance learning
– ident: ref12
  doi: 10.1109/CVPR42600.2020.01229
– ident: ref50
  doi: 10.1109/ICCV48922.2021.00721
– ident: ref101
  doi: 10.1109/CVPR.2018.00147
– ident: ref15
  doi: 10.1109/CVPR.2018.00147
– ident: ref5
  doi: 10.1109/CVPR52688.2022.00261
– ident: ref4
  doi: 10.1109/CVPR52688.2022.00131
– ident: ref67
  doi: 10.1109/CVPR.2017.601
– ident: ref66
  doi: 10.1109/CVPR42600.2020.00895
– year: 2014
  ident: ref95
  article-title: Very deep convolutional networks for large-scale image recognition
– ident: ref104
  doi: 10.1109/ACPR.2015.7486476
– ident: ref60
  doi: 10.1109/CVPR.2018.00813
– ident: ref54
  doi: 10.18653/v1/D15-1166
– start-page: 1097
  volume-title: Proc. Int. Conf. Neural Inf. Process. Syst.
  ident: ref94
  article-title: ImageNet classification with deep convolutional neural networks
– ident: ref45
  doi: 10.1109/CVPR42600.2020.00898
– ident: ref6
  doi: 10.1109/ICCV.2015.203
– year: 2007
  ident: ref42
  article-title: Caltech-256 object category dataset
– ident: ref99
  doi: 10.1109/ICCV.2019.00531
– year: 2020
  ident: ref28
  article-title: LID 2020: The learning from imperfect data challenge results
– ident: ref13
  doi: 10.1109/CVPR.2018.00759
– ident: ref39
  doi: 10.1609/aaai.v34i07.6705
– ident: ref29
  doi: 10.1109/ICCV.2015.191
– ident: ref47
  doi: 10.1007/978-3-030-01240-3_23
– ident: ref88
  doi: 10.1109/TMM.2016.2545409
– ident: ref80
  doi: 10.1109/CVPR.2018.00639
– ident: ref37
  doi: 10.1109/CVPR.2018.00960
SSID ssj0014503
Score 2.6575232
Snippet This article studies the problem of learning weakly supervised semantic segmentation (WSSS) from image-level supervision only. Current popular solutions...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1635
SubjectTerms Algorithms
Birds
Classifiers
co-attention
cross-image semantic relation
Data mining
Image segmentation
Localization
Location awareness
Machine learning
Noise measurement
Pattern analysis
Semantic segmentation
Semantics
Supervision
Training
Training data
weakly supervised learning
Title Looking Beyond Single Images for Weakly Supervised Semantic Segmentation Learning
URI https://ieeexplore.ieee.org/document/9760057
https://www.ncbi.nlm.nih.gov/pubmed/35439127
https://www.proquest.com/docview/2923121708
https://www.proquest.com/docview/2652865313
Volume 46
WOSCitedRecordID wos001174191100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2160-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014503
  issn: 0162-8828
  databaseCode: RIE
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4B4tAeSgt9pAXkSr21gSSOX0dUFRUJEBVU3VvkV1aou1nE7lbqv-_YcSIObSVulmInkb8Ze8bjmQ_gg-aqpVqaXNXC5bVxMjeOuRx3ksIYqpgzEelzcXkpJxN1tQGfxlwY7328fOaPQjPG8t3CrsNR2bEKUSQmNmFTCN7nao0Rg5pFFmS0YFDD0Y0YEmQKdXxzdXJxhq5gVR0FmiZGA_0bZSHnNJDJPNiPIsHKv23NuOec7jzub5_Ds2RbkpNeGF7Ahu92YWfgbSBJjXfh6YMihHvw7Twc4XZT0iezkGtszzw5m-NKsyRo05IfXv-c_SbX67uwsCw99vFzROTWYmM6T9lLHUm1Wqcv4fvpl5vPX_NEtJBbyspV7nAirCq01Z7ZVml02YRyBXdWaNeWhTZeK26Zd8rV1AnZ8pprRUttpPJc0Vew1S06_waI11Jp2zIeir5IHKYrwZVRwlNbWVlkUA7T3dhUhTyQYcya6I0UqoloNQGtJqGVwcdxzF1fg-O_vfcCFmPPBEMG-wOqTVLTZVMF8xadskJm8H58jAoWoia684s19uEsZO_SkmbwupeG8d2DEL39-zffwRP8s7q_srYPW6v7tT-Abftrdbu8P0QpnsjDKMV_ADU06-I
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Rb9MwED6NgQQ8MNhgCwwwEm-QzYljx36cENMqumpoRewtcuxLNdGm09oi8e-xHSfaAyDxZil2Evm7s-98vvsA3muhGqZlnaqitGlRW5nWltvU7SS0rpnitg5Ij8vJRF5dqYst-DjkwiBiuHyGR74ZYvl2aTb-qOxY-SgSL-_BfV4UOe2ytYaYQcEDD7KzYZyOO0eiT5Gh6nh6cXI-cs5gnh95oibOPAEc4z7r1NPJ3NmRAsXK363NsOuc7vzf_z6FJ9G6JCedODyDLWx3YadnbiBRkXfh8Z0yhHvwdewPcdsZ6dJZyKVrz5GMFm6tWRFn1ZLvqH_Mf5HLzY1fWlbo-uDCYXJtXGO2iPlLLYnVWmfP4dvp5-mnszRSLaSG8WydWjcRRlFtNHLTKO2ctlJZKqwptW0yqmvUShiOVtmC2VI2ohBasUzXUqFQ7AVst8sWD4Cglkqbhgtf9kW6YTovhapViczkRtIEsn66KxPrkHs6jHkV_BGqqoBW5dGqIloJfBjG3HRVOP7Ze89jMfSMMCRw2KNaRUVdVbk3cJ1bRmUC74bHTsV83ES3uNy4PoL7_F2WsQT2O2kY3t0L0cs_f_MtPDybno-r8Wjy5RU8cn9ZdBfYDmF7fbvB1_DA_Fxfr27fBFn-DRCg7kE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Looking+Beyond+Single+Images+for+Weakly+Supervised+Semantic+Segmentation+Learning&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Wang%2C+Wenguan&rft.au=Sun%2C+Guolei&rft.au=Van+Gool%2C+Luc&rft.date=2024-03-01&rft.pub=IEEE&rft.issn=0162-8828&rft.volume=46&rft.issue=3&rft.spage=1635&rft.epage=1649&rft_id=info:doi/10.1109%2FTPAMI.2022.3168530&rft_id=info%3Apmid%2F35439127&rft.externalDocID=9760057
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon