Policy-Iteration-Based Finite-Horizon Approximate Dynamic Programming for Continuous-Time Nonlinear Optimal Control

The Hamilton-Jacobi-Bellman (HJB) equation serves as the necessary and sufficient condition for the optimal solution to the continuous-time (CT) optimal control problem (OCP). Compared with the infinite-horizon HJB equation, the solving of the finite-horizon (FH) HJB equation has been a long-standin...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transaction on neural networks and learning systems Vol. 34; no. 9; pp. 1 - 13
Main Authors: Lin, Ziyu, Duan, Jingliang, Li, Shengbo Eben, Ma, Haitong, Li, Jie, Chen, Jianyu, Cheng, Bo, Ma, Jun
Format: Journal Article
Language:English
Published: United States IEEE 01.09.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2162-237X, 2162-2388, 2162-2388
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The Hamilton-Jacobi-Bellman (HJB) equation serves as the necessary and sufficient condition for the optimal solution to the continuous-time (CT) optimal control problem (OCP). Compared with the infinite-horizon HJB equation, the solving of the finite-horizon (FH) HJB equation has been a long-standing challenge, because the partial time derivative of the value function is involved as an additional unknown term. To address this problem, this study first-time bridges the link between the partial time derivative and the terminal-time utility function, and thus it facilitates the use of the policy iteration (PI) technique to solve the CT FH OCPs. Based on this key finding, the FH approximate dynamic programming (ADP) algorithm is proposed leveraging an actor-critic framework. It is shown that the algorithm exhibits important properties in terms of convergence and optimality. Rather importantly, with the use of multilayer neural networks (NNs) in the actor-critic architecture, the algorithm is suitable for CT FH OCPs toward more general nonlinear and complex systems. Finally, the effectiveness of the proposed algorithm is demonstrated by conducting a series of simulations on both a linear quadratic regulator (LQR) problem and a nonlinear vehicle tracking problem.
AbstractList The Hamilton–Jacobi–Bellman (HJB) equation serves as the necessary and sufficient condition for the optimal solution to the continuous-time (CT) optimal control problem (OCP). Compared with the infinite-horizon HJB equation, the solving of the finite-horizon (FH) HJB equation has been a long-standing challenge, because the partial time derivative of the value function is involved as an additional unknown term. To address this problem, this study first-time bridges the link between the partial time derivative and the terminal-time utility function, and thus it facilitates the use of the policy iteration (PI) technique to solve the CT FH OCPs. Based on this key finding, the FH approximate dynamic programming (ADP) algorithm is proposed leveraging an actor–critic framework. It is shown that the algorithm exhibits important properties in terms of convergence and optimality. Rather importantly, with the use of multilayer neural networks (NNs) in the actor–critic architecture, the algorithm is suitable for CT FH OCPs toward more general nonlinear and complex systems. Finally, the effectiveness of the proposed algorithm is demonstrated by conducting a series of simulations on both a linear quadratic regulator (LQR) problem and a nonlinear vehicle tracking problem.
The Hamilton-Jacobi-Bellman (HJB) equation serves as the necessary and sufficient condition for the optimal solution to the continuous-time (CT) optimal control problem (OCP). Compared with the infinite-horizon HJB equation, the solving of the finite-horizon (FH) HJB equation has been a long-standing challenge, because the partial time derivative of the value function is involved as an additional unknown term. To address this problem, this study first-time bridges the link between the partial time derivative and the terminal-time utility function, and thus it facilitates the use of the policy iteration (PI) technique to solve the CT FH OCPs. Based on this key finding, the FH approximate dynamic programming (ADP) algorithm is proposed leveraging an actor-critic framework. It is shown that the algorithm exhibits important properties in terms of convergence and optimality. Rather importantly, with the use of multilayer neural networks (NNs) in the actor-critic architecture, the algorithm is suitable for CT FH OCPs toward more general nonlinear and complex systems. Finally, the effectiveness of the proposed algorithm is demonstrated by conducting a series of simulations on both a linear quadratic regulator (LQR) problem and a nonlinear vehicle tracking problem.The Hamilton-Jacobi-Bellman (HJB) equation serves as the necessary and sufficient condition for the optimal solution to the continuous-time (CT) optimal control problem (OCP). Compared with the infinite-horizon HJB equation, the solving of the finite-horizon (FH) HJB equation has been a long-standing challenge, because the partial time derivative of the value function is involved as an additional unknown term. To address this problem, this study first-time bridges the link between the partial time derivative and the terminal-time utility function, and thus it facilitates the use of the policy iteration (PI) technique to solve the CT FH OCPs. Based on this key finding, the FH approximate dynamic programming (ADP) algorithm is proposed leveraging an actor-critic framework. It is shown that the algorithm exhibits important properties in terms of convergence and optimality. Rather importantly, with the use of multilayer neural networks (NNs) in the actor-critic architecture, the algorithm is suitable for CT FH OCPs toward more general nonlinear and complex systems. Finally, the effectiveness of the proposed algorithm is demonstrated by conducting a series of simulations on both a linear quadratic regulator (LQR) problem and a nonlinear vehicle tracking problem.
Author Duan, Jingliang
Chen, Jianyu
Li, Shengbo Eben
Ma, Haitong
Li, Jie
Cheng, Bo
Ma, Jun
Lin, Ziyu
Author_xml – sequence: 1
  givenname: Ziyu
  orcidid: 0000-0003-0532-0030
  surname: Lin
  fullname: Lin, Ziyu
  organization: School of Vehicle and Mobility, Tsinghua University, Beijing, China
– sequence: 2
  givenname: Jingliang
  orcidid: 0000-0002-3697-1576
  surname: Duan
  fullname: Duan, Jingliang
  organization: School of Mechanical Engineering, University of Science and Technology Beijing, Beijing, China
– sequence: 3
  givenname: Shengbo Eben
  orcidid: 0000-0003-4923-3633
  surname: Li
  fullname: Li, Shengbo Eben
  organization: School of Vehicle and Mobility, Tsinghua University, Beijing, China
– sequence: 4
  givenname: Haitong
  orcidid: 0000-0002-9943-0638
  surname: Ma
  fullname: Ma, Haitong
  organization: School of Vehicle and Mobility, Tsinghua University, Beijing, China
– sequence: 5
  givenname: Jie
  orcidid: 0000-0002-3718-5593
  surname: Li
  fullname: Li, Jie
  organization: School of Vehicle and Mobility, Tsinghua University, Beijing, China
– sequence: 6
  givenname: Jianyu
  orcidid: 0000-0003-0282-8621
  surname: Chen
  fullname: Chen, Jianyu
  organization: Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
– sequence: 7
  givenname: Bo
  surname: Cheng
  fullname: Cheng, Bo
  organization: School of Vehicle and Mobility, Tsinghua University, Beijing, China
– sequence: 8
  givenname: Jun
  orcidid: 0000-0002-9405-8232
  surname: Ma
  fullname: Ma, Jun
  organization: Robotics and Autonomous Systems Thrust, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37015565$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1v1DAQhi1UREvpHwAJReLCJYs_4jg-tgullVbbSiwSN8trTypXib3YjsTy6_F-tIce8MVzeJ7RzLxv0YkPHhB6T_CMECy_rJbLxY8ZxZTOGKUcS_wKnVHS0pqyrjt5rsWvU3SR0iMur8W8beQbdMoEJpy3_Ayl-zA4s61vM0SdXfD1lU5gq2vnXYb6JkT3N_jqcrOJ4Y8bdYbq69br0ZnqPoaHqMfR-YeqD7GaB5-dn8KU6pUboVoGPzgPOlZ3m1zUYU_EMLxDr3s9JLg4_ufo5_W31fymXtx9v51fLmrDOMm1bVjf6QZMb0zfcAABtjcWr4UVtrNUUiFbateacSaoNG0LgoKWXPak1Jydo8-HvmX23xOkrEaXDAyD9lCmVDuftFg2sqCfXqCPYYq-TKdox6UgRMq2UB-P1LQewapNLGvFrXo6ZwG6A2BiSClCr4zL-7PmqN2gCFa78NQ-PLULTx3DKyp9oT51_6_04SA5AHgWpBS4wYz9A3yVpqE
CODEN ITNNAL
CitedBy_id crossref_primary_10_1109_TASE_2025_3600553
crossref_primary_10_1016_j_jfranklin_2025_107834
crossref_primary_10_1007_s00521_023_09244_y
crossref_primary_10_1016_j_cnsns_2025_109196
crossref_primary_10_1109_TITS_2024_3489019
crossref_primary_10_1002_aic_18542
crossref_primary_10_1016_j_neucom_2025_129685
crossref_primary_10_1016_j_dche_2025_100231
crossref_primary_10_1109_TITS_2023_3237568
Cites_doi 10.1002/int.22491
10.1109/TNNLS.2017.2669944
10.1002/9780470182963
10.1016/j.automatica.2004.11.034
10.1049/iet-cta.2008.0288
10.1109/TNNLS.2015.2511658
10.2514/6.2022-1584
10.4271/870421
10.1007/978-981-19-7784-8
10.1002/rnc.5350
10.1016/j.jprocont.2018.01.010
10.1109/ICUS50048.2020.9274944
10.1007/978-3-030-44184-5_100063
10.1016/j.automatica.2016.08.004
10.1137/19M1288802
10.1109/TITS.2021.3094215
10.1109/TIV.2019.2904385
10.1109/ICCCR49711.2021.9349412
10.1109/TITS.2020.3010620
10.1109/TNNLS.2015.2461452
10.1016/j.automatica.2006.09.021
10.1016/j.automatica.2017.03.022
10.1109/TNNLS.2021.3053269
10.1109/TNNLS.2019.2905715
10.1016/j.ins.2019.04.027
10.1007/978-3-319-50815-3
10.1109/TITS.2022.3194571
10.1109/TNN.2007.905848
10.1109/TNNLS.2019.2899594
10.1038/nature14539
10.1016/j.neunet.2013.07.002
10.1007/s12532-018-0139-4
10.1016/j.automatica.2010.02.018
10.1109/TNNLS.2016.2539366
10.1016/j.automatica.2008.08.017
10.1109/TNNLS.2015.2399020
10.1109/ChiCC.2014.6896497
10.1002/9781118122631
10.1080/00423114.2020.1717553
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2022.3225090
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList Materials Research Database
PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 13
ExternalDocumentID 37015565
10_1109_TNNLS_2022_3225090
9970403
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Tsinghua University-Toyota Joint Research Center for AI Technology of Automated Vehicle
– fundername: International Science and Technology Cooperation Program of China
  grantid: 2019YFE0100200
– fundername: NSF China
  grantid: 51575293; U20A20334; 52202487
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AASAJ
AAWTH
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
AGSQL
CITATION
EJD
ABAZT
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
AARMG
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c351t-d43f8a4ecfccf45ee7edfcd0b7d7d8d2927962dba353729c66e72ea959f166e53
IEDL.DBID RIE
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000912844100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2162-237X
2162-2388
IngestDate Sun Sep 28 00:52:19 EDT 2025
Mon Jun 30 05:11:19 EDT 2025
Thu Jan 02 22:52:21 EST 2025
Sat Nov 29 01:40:23 EST 2025
Tue Nov 18 22:11:38 EST 2025
Tue Nov 25 14:44:28 EST 2025
IsPeerReviewed false
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-d43f8a4ecfccf45ee7edfcd0b7d7d8d2927962dba353729c66e72ea959f166e53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3718-5593
0000-0003-4923-3633
0000-0002-9405-8232
0000-0002-3697-1576
0000-0003-0282-8621
0000-0003-0532-0030
0000-0002-9943-0638
PMID 37015565
PQID 2859711996
PQPubID 85436
PageCount 13
ParticipantIDs proquest_miscellaneous_2796160949
proquest_journals_2859711996
ieee_primary_9970403
pubmed_primary_37015565
crossref_citationtrail_10_1109_TNNLS_2022_3225090
crossref_primary_10_1109_TNNLS_2022_3225090
PublicationCentury 2000
PublicationDate 2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
duan (ref11) 2019
ref31
ref30
ref33
ref32
werbos (ref6) 1992
ref2
powell (ref8) 2007; 703
ref1
ref17
ref39
ref16
ref19
ref18
kwakernaak (ref48) 1972; 1
howard (ref10) 1960
ref24
ref23
ref45
ref26
ref47
ref20
ref42
ref22
ref44
ref21
ref43
ma (ref25) 2022
ref28
ref27
ref29
ref7
allen-zhu (ref40) 2019
lecun (ref38) 2015; 521
ref9
ref4
ref3
bertsekas (ref5) 1995; 1
mnih (ref46) 2016
du (ref41) 2019
References_xml – ident: ref34
  doi: 10.1002/int.22491
– year: 2019
  ident: ref11
  article-title: Generalized policy iteration for optimal control in continuous time
  publication-title: arXiv 1909 05402
– ident: ref22
  doi: 10.1109/TNNLS.2017.2669944
– volume: 703
  year: 2007
  ident: ref8
  publication-title: Approximate Dynamic Programming Solving the Curses of Dimensionality
  doi: 10.1002/9780470182963
– ident: ref30
  doi: 10.1016/j.automatica.2004.11.034
– ident: ref32
  doi: 10.1049/iet-cta.2008.0288
– ident: ref24
  doi: 10.1109/TNNLS.2015.2511658
– ident: ref19
  doi: 10.2514/6.2022-1584
– year: 1992
  ident: ref6
  article-title: Approximate dynamic programming for realtime control and neural modeling
  publication-title: Handbook of Intelligent Control Neural Fuzzy and Adaptive Approaches
– ident: ref43
  doi: 10.4271/870421
– ident: ref7
  doi: 10.1007/978-981-19-7784-8
– year: 1960
  ident: ref10
  publication-title: Dynamic Programming and Markov Processes
– ident: ref18
  doi: 10.1002/rnc.5350
– ident: ref26
  doi: 10.1016/j.jprocont.2018.01.010
– ident: ref42
  doi: 10.1109/ICUS50048.2020.9274944
– ident: ref9
  doi: 10.1007/978-3-030-44184-5_100063
– year: 2022
  ident: ref25
  article-title: Local learning enabled iterative linear quadratic regulator for constrained trajectory planning
  publication-title: IEEE Trans Neural Netw Learn Syst
– volume: 1
  year: 1995
  ident: ref5
  publication-title: Dynamic Programming and Optimal Control
– ident: ref15
  doi: 10.1016/j.automatica.2016.08.004
– ident: ref37
  doi: 10.1137/19M1288802
– start-page: 242
  year: 2019
  ident: ref40
  article-title: A convergence theory for deep learning via over-parameterization
  publication-title: Proc Int Conf Mach Learn
– ident: ref4
  doi: 10.1109/TITS.2021.3094215
– ident: ref2
  doi: 10.1109/TIV.2019.2904385
– ident: ref20
  doi: 10.1109/ICCCR49711.2021.9349412
– ident: ref44
  doi: 10.1109/TITS.2020.3010620
– ident: ref14
  doi: 10.1109/TNNLS.2015.2461452
– ident: ref29
  doi: 10.1016/j.automatica.2006.09.021
– ident: ref27
  doi: 10.1016/j.automatica.2017.03.022
– ident: ref35
  doi: 10.1109/TNNLS.2021.3053269
– ident: ref17
  doi: 10.1109/TNNLS.2019.2905715
– ident: ref16
  doi: 10.1016/j.ins.2019.04.027
– ident: ref39
  doi: 10.1007/978-3-319-50815-3
– ident: ref3
  doi: 10.1109/TITS.2022.3194571
– ident: ref31
  doi: 10.1109/TNN.2007.905848
– ident: ref36
  doi: 10.1109/TNNLS.2019.2899594
– volume: 521
  start-page: 436
  year: 2015
  ident: ref38
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– start-page: 1928
  year: 2016
  ident: ref46
  article-title: Asynchronous methods for deep reinforcement learning
  publication-title: Proc Int Conf Mach Learn
– ident: ref28
  doi: 10.1016/j.neunet.2013.07.002
– ident: ref47
  doi: 10.1007/s12532-018-0139-4
– ident: ref12
  doi: 10.1016/j.automatica.2010.02.018
– ident: ref21
  doi: 10.1109/TNNLS.2016.2539366
– ident: ref13
  doi: 10.1016/j.automatica.2008.08.017
– ident: ref23
  doi: 10.1109/TNNLS.2015.2399020
– volume: 1
  year: 1972
  ident: ref48
  publication-title: Linear Optimal Control Systems
– ident: ref33
  doi: 10.1109/ChiCC.2014.6896497
– start-page: 1675
  year: 2019
  ident: ref41
  article-title: Gradient descent finds global minima of deep neural networks
  publication-title: Proc Int Conf Mach Learn
– ident: ref1
  doi: 10.1002/9781118122631
– ident: ref45
  doi: 10.1080/00423114.2020.1717553
SSID ssj0000605649
Score 2.4748611
Snippet The Hamilton-Jacobi-Bellman (HJB) equation serves as the necessary and sufficient condition for the optimal solution to the continuous-time (CT) optimal...
The Hamilton–Jacobi–Bellman (HJB) equation serves as the necessary and sufficient condition for the optimal solution to the continuous-time (CT) optimal...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Actor critic
Algorithms
approximate dynamic programming (ADP)
Approximation algorithms
Artificial neural networks
Complex systems
Dynamic programming
finite-horizon (FH)
Hamilton–Jacobi–Bellman (HJB) equation
Heuristic algorithms
Horizon
Linear quadratic regulator
Mathematical models
Multilayers
Neural networks
Nonlinear control
Nonlinear dynamical systems
Optimal control
Optimization
policy iteration (PI)
System effectiveness
Tracking problem
Title Policy-Iteration-Based Finite-Horizon Approximate Dynamic Programming for Continuous-Time Nonlinear Optimal Control
URI https://ieeexplore.ieee.org/document/9970403
https://www.ncbi.nlm.nih.gov/pubmed/37015565
https://www.proquest.com/docview/2859711996
https://www.proquest.com/docview/2796160949
Volume 34
WOSCitedRecordID wos000912844100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2162-2388
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605649
  issn: 2162-237X
  databaseCode: RIE
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1da9YwFD5swwtvnDo_OueI4J1ma5MmaS7n9GWC1IET3ruS5gMKrpX3Q4a_3pOmb_FCBe8CTdu0z0nOk-TkOQCvQ4U-2QlBkQsYWhZlS7UxOS1Fztsq8KB5Sjah6rpaLvX1Hrydz8J478fgM38Wi-NevhvsNi6VnWut0Ob4PuwrJdNZrXk9JUdeLke2ywrJKONquTsjk-vzm7r-9AVng4ydRQvO4xD8mx8aE6v8nWOOvmZx-H-tfAgPJk5JLpIRPII93z-Gw12-BjJ13yNYJxFg-nFUUkZA6Dv0YY4sukg86dWw6n4OPbmIMuN3HVJZT96nhPXkOoVx3aKjI0hzSRS16vrtsF3TeIiE1Elxw6zIZxyDbrE1lykG_gl8XXy4ubyiU9IFarkoNtSVPFSm9DZYG0rhvfIuWJe3yilXOaaZ0pK51nARd_yslF4xb7TQocCy4E_hoB96_xxIMD4Y3RpXVq50jLXKcqzUCumRiBieQbGDoLGTInlMjPGtGWcmuW5G2JoIWzPBlsGb-Z7vSY_jn7WPIj5zzQmaDE52SDdTl103UclPFTEoO4NX82XsbHEHxfQe_2gTv72QOCPWGTxLFjI_m6tIP6U4_vM7X8D9mKk-haedwMFmtfUv4Z79senWq1O06GV1Olr0L1c185o
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB2VggQXCpTShQJG4gZuEzuO42MprLZiCZVYpL1Fjj-kSDRB-1Ehfj2eOBtxACRuluIkTmbsebbH7wG89kWIyVYIGrCAplma1VRpndBMJLwuPPeKR7EJWZbFcqmu9uDteBbGOdcnn7lTLPZ7-bYzW1wqO1NKBp_jt-A2KmcNp7XGFZUkIPO8x7sszRllXC53p2QSdbYoy_mXMB9k7BR9OMFB-LdI1Eur_B1l9tFmevB_7XwA9wdUSc6jGzyEPdc-goOdYgMZOvAhrCMNML3suZSDSei7EMUsmTYIPemsWzU_u5acI9H4jyaAWUfeR8l6chUTua5DqCMB6BKktWrabbddUzxGQsrIuaFX5HMYha5Day5iFvxj-Dr9sLiY0UF2gRou0g21GfeFzpzxxvhMOCed9cYmtbTSFpYpJlXObK25wD0_k-dOMqeVUD4NZcGPYL_tWncMxGvntaq1zQqbWcZqaXioVIvcBSii-QTSnQkqM3CSozTGt6qfmySq6s1WodmqwWwTeDPe8z0ycvyz9iHaZ6w5mGYCJztLV0OnXVfI5SdTTMuewKvxcuhuuIeiWxf-aIXfnuZhTqwm8CR6yPhsLhGA5uLpn9_5Eu7OFp_m1fyy_PgM7qFufUxWO4H9zWrrnsMdc7Np1qsXvV__AmjK9fs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Policy-Iteration-Based+Finite-Horizon+Approximate+Dynamic+Programming+for+Continuous-Time+Nonlinear+Optimal+Control&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Lin%2C+Ziyu&rft.au=Duan%2C+Jingliang&rft.au=Li%2C+Shengbo+Eben&rft.au=Ma%2C+Haitong&rft.date=2023-09-01&rft.pub=IEEE&rft.issn=2162-237X&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1109%2FTNNLS.2022.3225090&rft.externalDocID=9970403
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon