Policy-Iteration-Based Finite-Horizon Approximate Dynamic Programming for Continuous-Time Nonlinear Optimal Control
The Hamilton-Jacobi-Bellman (HJB) equation serves as the necessary and sufficient condition for the optimal solution to the continuous-time (CT) optimal control problem (OCP). Compared with the infinite-horizon HJB equation, the solving of the finite-horizon (FH) HJB equation has been a long-standin...
Saved in:
| Published in: | IEEE transaction on neural networks and learning systems Vol. 34; no. 9; pp. 1 - 13 |
|---|---|
| Main Authors: | , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
IEEE
01.09.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 2162-237X, 2162-2388, 2162-2388 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The Hamilton-Jacobi-Bellman (HJB) equation serves as the necessary and sufficient condition for the optimal solution to the continuous-time (CT) optimal control problem (OCP). Compared with the infinite-horizon HJB equation, the solving of the finite-horizon (FH) HJB equation has been a long-standing challenge, because the partial time derivative of the value function is involved as an additional unknown term. To address this problem, this study first-time bridges the link between the partial time derivative and the terminal-time utility function, and thus it facilitates the use of the policy iteration (PI) technique to solve the CT FH OCPs. Based on this key finding, the FH approximate dynamic programming (ADP) algorithm is proposed leveraging an actor-critic framework. It is shown that the algorithm exhibits important properties in terms of convergence and optimality. Rather importantly, with the use of multilayer neural networks (NNs) in the actor-critic architecture, the algorithm is suitable for CT FH OCPs toward more general nonlinear and complex systems. Finally, the effectiveness of the proposed algorithm is demonstrated by conducting a series of simulations on both a linear quadratic regulator (LQR) problem and a nonlinear vehicle tracking problem. |
|---|---|
| AbstractList | The Hamilton–Jacobi–Bellman (HJB) equation serves as the necessary and sufficient condition for the optimal solution to the continuous-time (CT) optimal control problem (OCP). Compared with the infinite-horizon HJB equation, the solving of the finite-horizon (FH) HJB equation has been a long-standing challenge, because the partial time derivative of the value function is involved as an additional unknown term. To address this problem, this study first-time bridges the link between the partial time derivative and the terminal-time utility function, and thus it facilitates the use of the policy iteration (PI) technique to solve the CT FH OCPs. Based on this key finding, the FH approximate dynamic programming (ADP) algorithm is proposed leveraging an actor–critic framework. It is shown that the algorithm exhibits important properties in terms of convergence and optimality. Rather importantly, with the use of multilayer neural networks (NNs) in the actor–critic architecture, the algorithm is suitable for CT FH OCPs toward more general nonlinear and complex systems. Finally, the effectiveness of the proposed algorithm is demonstrated by conducting a series of simulations on both a linear quadratic regulator (LQR) problem and a nonlinear vehicle tracking problem. The Hamilton-Jacobi-Bellman (HJB) equation serves as the necessary and sufficient condition for the optimal solution to the continuous-time (CT) optimal control problem (OCP). Compared with the infinite-horizon HJB equation, the solving of the finite-horizon (FH) HJB equation has been a long-standing challenge, because the partial time derivative of the value function is involved as an additional unknown term. To address this problem, this study first-time bridges the link between the partial time derivative and the terminal-time utility function, and thus it facilitates the use of the policy iteration (PI) technique to solve the CT FH OCPs. Based on this key finding, the FH approximate dynamic programming (ADP) algorithm is proposed leveraging an actor-critic framework. It is shown that the algorithm exhibits important properties in terms of convergence and optimality. Rather importantly, with the use of multilayer neural networks (NNs) in the actor-critic architecture, the algorithm is suitable for CT FH OCPs toward more general nonlinear and complex systems. Finally, the effectiveness of the proposed algorithm is demonstrated by conducting a series of simulations on both a linear quadratic regulator (LQR) problem and a nonlinear vehicle tracking problem.The Hamilton-Jacobi-Bellman (HJB) equation serves as the necessary and sufficient condition for the optimal solution to the continuous-time (CT) optimal control problem (OCP). Compared with the infinite-horizon HJB equation, the solving of the finite-horizon (FH) HJB equation has been a long-standing challenge, because the partial time derivative of the value function is involved as an additional unknown term. To address this problem, this study first-time bridges the link between the partial time derivative and the terminal-time utility function, and thus it facilitates the use of the policy iteration (PI) technique to solve the CT FH OCPs. Based on this key finding, the FH approximate dynamic programming (ADP) algorithm is proposed leveraging an actor-critic framework. It is shown that the algorithm exhibits important properties in terms of convergence and optimality. Rather importantly, with the use of multilayer neural networks (NNs) in the actor-critic architecture, the algorithm is suitable for CT FH OCPs toward more general nonlinear and complex systems. Finally, the effectiveness of the proposed algorithm is demonstrated by conducting a series of simulations on both a linear quadratic regulator (LQR) problem and a nonlinear vehicle tracking problem. |
| Author | Duan, Jingliang Chen, Jianyu Li, Shengbo Eben Ma, Haitong Li, Jie Cheng, Bo Ma, Jun Lin, Ziyu |
| Author_xml | – sequence: 1 givenname: Ziyu orcidid: 0000-0003-0532-0030 surname: Lin fullname: Lin, Ziyu organization: School of Vehicle and Mobility, Tsinghua University, Beijing, China – sequence: 2 givenname: Jingliang orcidid: 0000-0002-3697-1576 surname: Duan fullname: Duan, Jingliang organization: School of Mechanical Engineering, University of Science and Technology Beijing, Beijing, China – sequence: 3 givenname: Shengbo Eben orcidid: 0000-0003-4923-3633 surname: Li fullname: Li, Shengbo Eben organization: School of Vehicle and Mobility, Tsinghua University, Beijing, China – sequence: 4 givenname: Haitong orcidid: 0000-0002-9943-0638 surname: Ma fullname: Ma, Haitong organization: School of Vehicle and Mobility, Tsinghua University, Beijing, China – sequence: 5 givenname: Jie orcidid: 0000-0002-3718-5593 surname: Li fullname: Li, Jie organization: School of Vehicle and Mobility, Tsinghua University, Beijing, China – sequence: 6 givenname: Jianyu orcidid: 0000-0003-0282-8621 surname: Chen fullname: Chen, Jianyu organization: Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China – sequence: 7 givenname: Bo surname: Cheng fullname: Cheng, Bo organization: School of Vehicle and Mobility, Tsinghua University, Beijing, China – sequence: 8 givenname: Jun orcidid: 0000-0002-9405-8232 surname: Ma fullname: Ma, Jun organization: Robotics and Autonomous Systems Thrust, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37015565$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kU1v1DAQhi1UREvpHwAJReLCJYs_4jg-tgullVbbSiwSN8trTypXib3YjsTy6_F-tIce8MVzeJ7RzLxv0YkPHhB6T_CMECy_rJbLxY8ZxZTOGKUcS_wKnVHS0pqyrjt5rsWvU3SR0iMur8W8beQbdMoEJpy3_Ayl-zA4s61vM0SdXfD1lU5gq2vnXYb6JkT3N_jqcrOJ4Y8bdYbq69br0ZnqPoaHqMfR-YeqD7GaB5-dn8KU6pUboVoGPzgPOlZ3m1zUYU_EMLxDr3s9JLg4_ufo5_W31fymXtx9v51fLmrDOMm1bVjf6QZMb0zfcAABtjcWr4UVtrNUUiFbateacSaoNG0LgoKWXPak1Jydo8-HvmX23xOkrEaXDAyD9lCmVDuftFg2sqCfXqCPYYq-TKdox6UgRMq2UB-P1LQewapNLGvFrXo6ZwG6A2BiSClCr4zL-7PmqN2gCFa78NQ-PLULTx3DKyp9oT51_6_04SA5AHgWpBS4wYz9A3yVpqE |
| CODEN | ITNNAL |
| CitedBy_id | crossref_primary_10_1109_TASE_2025_3600553 crossref_primary_10_1016_j_jfranklin_2025_107834 crossref_primary_10_1007_s00521_023_09244_y crossref_primary_10_1016_j_cnsns_2025_109196 crossref_primary_10_1109_TITS_2024_3489019 crossref_primary_10_1002_aic_18542 crossref_primary_10_1016_j_neucom_2025_129685 crossref_primary_10_1016_j_dche_2025_100231 crossref_primary_10_1109_TITS_2023_3237568 |
| Cites_doi | 10.1002/int.22491 10.1109/TNNLS.2017.2669944 10.1002/9780470182963 10.1016/j.automatica.2004.11.034 10.1049/iet-cta.2008.0288 10.1109/TNNLS.2015.2511658 10.2514/6.2022-1584 10.4271/870421 10.1007/978-981-19-7784-8 10.1002/rnc.5350 10.1016/j.jprocont.2018.01.010 10.1109/ICUS50048.2020.9274944 10.1007/978-3-030-44184-5_100063 10.1016/j.automatica.2016.08.004 10.1137/19M1288802 10.1109/TITS.2021.3094215 10.1109/TIV.2019.2904385 10.1109/ICCCR49711.2021.9349412 10.1109/TITS.2020.3010620 10.1109/TNNLS.2015.2461452 10.1016/j.automatica.2006.09.021 10.1016/j.automatica.2017.03.022 10.1109/TNNLS.2021.3053269 10.1109/TNNLS.2019.2905715 10.1016/j.ins.2019.04.027 10.1007/978-3-319-50815-3 10.1109/TITS.2022.3194571 10.1109/TNN.2007.905848 10.1109/TNNLS.2019.2899594 10.1038/nature14539 10.1016/j.neunet.2013.07.002 10.1007/s12532-018-0139-4 10.1016/j.automatica.2010.02.018 10.1109/TNNLS.2016.2539366 10.1016/j.automatica.2008.08.017 10.1109/TNNLS.2015.2399020 10.1109/ChiCC.2014.6896497 10.1002/9781118122631 10.1080/00423114.2020.1717553 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| DOI | 10.1109/TNNLS.2022.3225090 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
| DatabaseTitleList | Materials Research Database PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2162-2388 |
| EndPage | 13 |
| ExternalDocumentID | 37015565 10_1109_TNNLS_2022_3225090 9970403 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: Tsinghua University-Toyota Joint Research Center for AI Technology of Automated Vehicle – fundername: International Science and Technology Cooperation Program of China grantid: 2019YFE0100200 – fundername: NSF China grantid: 51575293; U20A20334; 52202487 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AASAJ AAWTH ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX AGSQL CITATION EJD ABAZT NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD AARMG F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| ID | FETCH-LOGICAL-c351t-d43f8a4ecfccf45ee7edfcd0b7d7d8d2927962dba353729c66e72ea959f166e53 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 10 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000912844100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2162-237X 2162-2388 |
| IngestDate | Sun Sep 28 00:52:19 EDT 2025 Mon Jun 30 05:11:19 EDT 2025 Thu Jan 02 22:52:21 EST 2025 Sat Nov 29 01:40:23 EST 2025 Tue Nov 18 22:11:38 EST 2025 Tue Nov 25 14:44:28 EST 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c351t-d43f8a4ecfccf45ee7edfcd0b7d7d8d2927962dba353729c66e72ea959f166e53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-3718-5593 0000-0003-4923-3633 0000-0002-9405-8232 0000-0002-3697-1576 0000-0003-0282-8621 0000-0003-0532-0030 0000-0002-9943-0638 |
| PMID | 37015565 |
| PQID | 2859711996 |
| PQPubID | 85436 |
| PageCount | 13 |
| ParticipantIDs | proquest_miscellaneous_2796160949 proquest_journals_2859711996 ieee_primary_9970403 pubmed_primary_37015565 crossref_citationtrail_10_1109_TNNLS_2022_3225090 crossref_primary_10_1109_TNNLS_2022_3225090 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-09-01 |
| PublicationDateYYYYMMDD | 2023-09-01 |
| PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Piscataway |
| PublicationTitle | IEEE transaction on neural networks and learning systems |
| PublicationTitleAbbrev | TNNLS |
| PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 duan (ref11) 2019 ref31 ref30 ref33 ref32 werbos (ref6) 1992 ref2 powell (ref8) 2007; 703 ref1 ref17 ref39 ref16 ref19 ref18 kwakernaak (ref48) 1972; 1 howard (ref10) 1960 ref24 ref23 ref45 ref26 ref47 ref20 ref42 ref22 ref44 ref21 ref43 ma (ref25) 2022 ref28 ref27 ref29 ref7 allen-zhu (ref40) 2019 lecun (ref38) 2015; 521 ref9 ref4 ref3 bertsekas (ref5) 1995; 1 mnih (ref46) 2016 du (ref41) 2019 |
| References_xml | – ident: ref34 doi: 10.1002/int.22491 – year: 2019 ident: ref11 article-title: Generalized policy iteration for optimal control in continuous time publication-title: arXiv 1909 05402 – ident: ref22 doi: 10.1109/TNNLS.2017.2669944 – volume: 703 year: 2007 ident: ref8 publication-title: Approximate Dynamic Programming Solving the Curses of Dimensionality doi: 10.1002/9780470182963 – ident: ref30 doi: 10.1016/j.automatica.2004.11.034 – ident: ref32 doi: 10.1049/iet-cta.2008.0288 – ident: ref24 doi: 10.1109/TNNLS.2015.2511658 – ident: ref19 doi: 10.2514/6.2022-1584 – year: 1992 ident: ref6 article-title: Approximate dynamic programming for realtime control and neural modeling publication-title: Handbook of Intelligent Control Neural Fuzzy and Adaptive Approaches – ident: ref43 doi: 10.4271/870421 – ident: ref7 doi: 10.1007/978-981-19-7784-8 – year: 1960 ident: ref10 publication-title: Dynamic Programming and Markov Processes – ident: ref18 doi: 10.1002/rnc.5350 – ident: ref26 doi: 10.1016/j.jprocont.2018.01.010 – ident: ref42 doi: 10.1109/ICUS50048.2020.9274944 – ident: ref9 doi: 10.1007/978-3-030-44184-5_100063 – year: 2022 ident: ref25 article-title: Local learning enabled iterative linear quadratic regulator for constrained trajectory planning publication-title: IEEE Trans Neural Netw Learn Syst – volume: 1 year: 1995 ident: ref5 publication-title: Dynamic Programming and Optimal Control – ident: ref15 doi: 10.1016/j.automatica.2016.08.004 – ident: ref37 doi: 10.1137/19M1288802 – start-page: 242 year: 2019 ident: ref40 article-title: A convergence theory for deep learning via over-parameterization publication-title: Proc Int Conf Mach Learn – ident: ref4 doi: 10.1109/TITS.2021.3094215 – ident: ref2 doi: 10.1109/TIV.2019.2904385 – ident: ref20 doi: 10.1109/ICCCR49711.2021.9349412 – ident: ref44 doi: 10.1109/TITS.2020.3010620 – ident: ref14 doi: 10.1109/TNNLS.2015.2461452 – ident: ref29 doi: 10.1016/j.automatica.2006.09.021 – ident: ref27 doi: 10.1016/j.automatica.2017.03.022 – ident: ref35 doi: 10.1109/TNNLS.2021.3053269 – ident: ref17 doi: 10.1109/TNNLS.2019.2905715 – ident: ref16 doi: 10.1016/j.ins.2019.04.027 – ident: ref39 doi: 10.1007/978-3-319-50815-3 – ident: ref3 doi: 10.1109/TITS.2022.3194571 – ident: ref31 doi: 10.1109/TNN.2007.905848 – ident: ref36 doi: 10.1109/TNNLS.2019.2899594 – volume: 521 start-page: 436 year: 2015 ident: ref38 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – start-page: 1928 year: 2016 ident: ref46 article-title: Asynchronous methods for deep reinforcement learning publication-title: Proc Int Conf Mach Learn – ident: ref28 doi: 10.1016/j.neunet.2013.07.002 – ident: ref47 doi: 10.1007/s12532-018-0139-4 – ident: ref12 doi: 10.1016/j.automatica.2010.02.018 – ident: ref21 doi: 10.1109/TNNLS.2016.2539366 – ident: ref13 doi: 10.1016/j.automatica.2008.08.017 – ident: ref23 doi: 10.1109/TNNLS.2015.2399020 – volume: 1 year: 1972 ident: ref48 publication-title: Linear Optimal Control Systems – ident: ref33 doi: 10.1109/ChiCC.2014.6896497 – start-page: 1675 year: 2019 ident: ref41 article-title: Gradient descent finds global minima of deep neural networks publication-title: Proc Int Conf Mach Learn – ident: ref1 doi: 10.1002/9781118122631 – ident: ref45 doi: 10.1080/00423114.2020.1717553 |
| SSID | ssj0000605649 |
| Score | 2.4748611 |
| Snippet | The Hamilton-Jacobi-Bellman (HJB) equation serves as the necessary and sufficient condition for the optimal solution to the continuous-time (CT) optimal... The Hamilton–Jacobi–Bellman (HJB) equation serves as the necessary and sufficient condition for the optimal solution to the continuous-time (CT) optimal... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1 |
| SubjectTerms | Actor critic Algorithms approximate dynamic programming (ADP) Approximation algorithms Artificial neural networks Complex systems Dynamic programming finite-horizon (FH) Hamilton–Jacobi–Bellman (HJB) equation Heuristic algorithms Horizon Linear quadratic regulator Mathematical models Multilayers Neural networks Nonlinear control Nonlinear dynamical systems Optimal control Optimization policy iteration (PI) System effectiveness Tracking problem |
| Title | Policy-Iteration-Based Finite-Horizon Approximate Dynamic Programming for Continuous-Time Nonlinear Optimal Control |
| URI | https://ieeexplore.ieee.org/document/9970403 https://www.ncbi.nlm.nih.gov/pubmed/37015565 https://www.proquest.com/docview/2859711996 https://www.proquest.com/docview/2796160949 |
| Volume | 34 |
| WOSCitedRecordID | wos000912844100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2162-2388 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000605649 issn: 2162-237X databaseCode: RIE dateStart: 20120101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1da9YwFD5swwtvnDo_OueI4J1ma5MmaS7n9GWC1IET3ruS5gMKrpX3Q4a_3pOmb_FCBe8CTdu0z0nOk-TkOQCvQ4U-2QlBkQsYWhZlS7UxOS1Fztsq8KB5Sjah6rpaLvX1Hrydz8J478fgM38Wi-NevhvsNi6VnWut0Ob4PuwrJdNZrXk9JUdeLke2ywrJKONquTsjk-vzm7r-9AVng4ydRQvO4xD8mx8aE6v8nWOOvmZx-H-tfAgPJk5JLpIRPII93z-Gw12-BjJ13yNYJxFg-nFUUkZA6Dv0YY4sukg86dWw6n4OPbmIMuN3HVJZT96nhPXkOoVx3aKjI0hzSRS16vrtsF3TeIiE1Elxw6zIZxyDbrE1lykG_gl8XXy4ubyiU9IFarkoNtSVPFSm9DZYG0rhvfIuWJe3yilXOaaZ0pK51nARd_yslF4xb7TQocCy4E_hoB96_xxIMD4Y3RpXVq50jLXKcqzUCumRiBieQbGDoLGTInlMjPGtGWcmuW5G2JoIWzPBlsGb-Z7vSY_jn7WPIj5zzQmaDE52SDdTl103UclPFTEoO4NX82XsbHEHxfQe_2gTv72QOCPWGTxLFjI_m6tIP6U4_vM7X8D9mKk-haedwMFmtfUv4Z79senWq1O06GV1Olr0L1c185o |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB2VggQXCpTShQJG4gZuEzuO42MprLZiCZVYpL1Fjj-kSDRB-1Ehfj2eOBtxACRuluIkTmbsebbH7wG89kWIyVYIGrCAplma1VRpndBMJLwuPPeKR7EJWZbFcqmu9uDteBbGOdcnn7lTLPZ7-bYzW1wqO1NKBp_jt-A2KmcNp7XGFZUkIPO8x7sszRllXC53p2QSdbYoy_mXMB9k7BR9OMFB-LdI1Eur_B1l9tFmevB_7XwA9wdUSc6jGzyEPdc-goOdYgMZOvAhrCMNML3suZSDSei7EMUsmTYIPemsWzU_u5acI9H4jyaAWUfeR8l6chUTua5DqCMB6BKktWrabbddUzxGQsrIuaFX5HMYha5Day5iFvxj-Dr9sLiY0UF2gRou0g21GfeFzpzxxvhMOCed9cYmtbTSFpYpJlXObK25wD0_k-dOMqeVUD4NZcGPYL_tWncMxGvntaq1zQqbWcZqaXioVIvcBSii-QTSnQkqM3CSozTGt6qfmySq6s1WodmqwWwTeDPe8z0ycvyz9iHaZ6w5mGYCJztLV0OnXVfI5SdTTMuewKvxcuhuuIeiWxf-aIXfnuZhTqwm8CR6yPhsLhGA5uLpn9_5Eu7OFp_m1fyy_PgM7qFufUxWO4H9zWrrnsMdc7Np1qsXvV__AmjK9fs |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Policy-Iteration-Based+Finite-Horizon+Approximate+Dynamic+Programming+for+Continuous-Time+Nonlinear+Optimal+Control&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Lin%2C+Ziyu&rft.au=Duan%2C+Jingliang&rft.au=Li%2C+Shengbo+Eben&rft.au=Ma%2C+Haitong&rft.date=2023-09-01&rft.pub=IEEE&rft.issn=2162-237X&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1109%2FTNNLS.2022.3225090&rft.externalDocID=9970403 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |