Transductive Zero-Shot Hashing for Multilabel Image Retrieval

Hash coding has been widely used in the approximate nearest neighbor search for large-scale image retrieval. Given semantic annotations such as class labels and pairwise similarities of the training data, hashing methods can learn and generate effective and compact binary codes. While some newly int...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transaction on neural networks and learning systems Ročník 33; číslo 4; s. 1673 - 1687
Hlavní autori: Zou, Qin, Cao, Ling, Zhang, Zheng, Chen, Long, Wang, Song
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States IEEE 01.04.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:2162-237X, 2162-2388, 2162-2388
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Hash coding has been widely used in the approximate nearest neighbor search for large-scale image retrieval. Given semantic annotations such as class labels and pairwise similarities of the training data, hashing methods can learn and generate effective and compact binary codes. While some newly introduced images may contain undefined semantic labels, which we call unseen images, zero-shot hashing (ZSH) techniques have been studied for retrieval. However, existing ZSH methods mainly focus on the retrieval of single-label images and cannot handle multilabel ones. In this article, for the first time, a novel transductive ZSH method is proposed for multilabel unseen image retrieval. In order to predict the labels of the unseen/target data, a visual-semantic bridge is built via instance-concept coherence ranking on the seen/source data. Then, pairwise similarity loss and focal quantization loss are constructed for training a hashing model using both the seen/source and unseen/target data. Extensive evaluations on three popular multilabel data sets demonstrate that the proposed hashing method achieves significantly better results than the comparison methods.
AbstractList Hash coding has been widely used in the approximate nearest neighbor search for large-scale image retrieval. Given semantic annotations such as class labels and pairwise similarities of the training data, hashing methods can learn and generate effective and compact binary codes. While some newly introduced images may contain undefined semantic labels, which we call unseen images, zero-shot hashing (ZSH) techniques have been studied for retrieval. However, existing ZSH methods mainly focus on the retrieval of single-label images and cannot handle multilabel ones. In this article, for the first time, a novel transductive ZSH method is proposed for multilabel unseen image retrieval. In order to predict the labels of the unseen/target data, a visual-semantic bridge is built via instance-concept coherence ranking on the seen/source data. Then, pairwise similarity loss and focal quantization loss are constructed for training a hashing model using both the seen/source and unseen/target data. Extensive evaluations on three popular multilabel data sets demonstrate that the proposed hashing method achieves significantly better results than the comparison methods.Hash coding has been widely used in the approximate nearest neighbor search for large-scale image retrieval. Given semantic annotations such as class labels and pairwise similarities of the training data, hashing methods can learn and generate effective and compact binary codes. While some newly introduced images may contain undefined semantic labels, which we call unseen images, zero-shot hashing (ZSH) techniques have been studied for retrieval. However, existing ZSH methods mainly focus on the retrieval of single-label images and cannot handle multilabel ones. In this article, for the first time, a novel transductive ZSH method is proposed for multilabel unseen image retrieval. In order to predict the labels of the unseen/target data, a visual-semantic bridge is built via instance-concept coherence ranking on the seen/source data. Then, pairwise similarity loss and focal quantization loss are constructed for training a hashing model using both the seen/source and unseen/target data. Extensive evaluations on three popular multilabel data sets demonstrate that the proposed hashing method achieves significantly better results than the comparison methods.
Hash coding has been widely used in the approximate nearest neighbor search for large-scale image retrieval. Given semantic annotations such as class labels and pairwise similarities of the training data, hashing methods can learn and generate effective and compact binary codes. While some newly introduced images may contain undefined semantic labels, which we call unseen images, zero-shot hashing (ZSH) techniques have been studied for retrieval. However, existing ZSH methods mainly focus on the retrieval of single-label images and cannot handle multilabel ones. In this article, for the first time, a novel transductive ZSH method is proposed for multilabel unseen image retrieval. In order to predict the labels of the unseen/target data, a visual-semantic bridge is built via instance-concept coherence ranking on the seen/source data. Then, pairwise similarity loss and focal quantization loss are constructed for training a hashing model using both the seen/source and unseen/target data. Extensive evaluations on three popular multilabel data sets demonstrate that the proposed hashing method achieves significantly better results than the comparison methods.
Author Cao, Ling
Chen, Long
Zou, Qin
Wang, Song
Zhang, Zheng
Author_xml – sequence: 1
  givenname: Qin
  orcidid: 0000-0001-7955-0782
  surname: Zou
  fullname: Zou, Qin
  email: qzou@whu.edu.cn
  organization: School of Computer Science, Wuhan University, Wuhan, China
– sequence: 2
  givenname: Ling
  orcidid: 0000-0002-5566-1186
  surname: Cao
  fullname: Cao, Ling
  email: lingcao@whu.edu.cn
  organization: School of Computer Science, Wuhan University, Wuhan, China
– sequence: 3
  givenname: Zheng
  surname: Zhang
  fullname: Zhang, Zheng
  email: zhengzhang@whu.edu.cn
  organization: School of Computer Science, Wuhan University, Wuhan, China
– sequence: 4
  givenname: Long
  orcidid: 0000-0003-4925-0572
  surname: Chen
  fullname: Chen, Long
  email: chenl46@mail.sysu.edu.cn
  organization: School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China
– sequence: 5
  givenname: Song
  orcidid: 0000-0003-4152-5295
  surname: Wang
  fullname: Wang, Song
  email: songwang@cec.sc.edu
  organization: Department of Computer Science and Engineering, University of South Carolina, Columbia, SC, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33361006$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1LAzEQhoMoVmv_gIIsePGyNV-b3Rw8iPhRqAq2gngJaXZWI9uNJtmC_97Vth56MJfJwPMMw7z7aLtxDSB0SPCQECzPpvf348mQYoqHDHNGZbGF9igRNKWsKLb__vlzDw1CeMfdEzgTXO6iHmNMkK7fQ-dTr5tQtibaBSQv4F06eXMxudXhzTavSeV8ctfW0dZ6BnUymutXSB4hegsLXR-gnUrXAQar2kdP11fTy9t0_HAzurwYp4ZlJKYGCOWZEdhkIq_IjGssZtCtIykvqWSlLrXMNZOcZ5oYXhasIExLafKy4lCyPjpdzv3w7rOFENXcBgN1rRtwbVCU54xTnPGiQ0820HfX-qbbTlHBc06FwKyjjldUO5tDqT68nWv_pdaH6YBiCRjvQvBQKWOjjtY10WtbK4LVTwzqNwb1E4NaxdCpdENdT_9XOlpKFgD-BMmwxISybyYokJw
CODEN ITNNAL
CitedBy_id crossref_primary_10_1109_TIP_2023_3251028
crossref_primary_10_1016_j_knosys_2022_109306
crossref_primary_10_1109_ACCESS_2025_3597396
crossref_primary_10_1016_j_neucom_2022_09_037
crossref_primary_10_1109_TNNLS_2024_3363163
crossref_primary_10_1145_3734871
crossref_primary_10_1007_s11432_022_3748_5
crossref_primary_10_1007_s13369_025_10135_8
Cites_doi 10.1109/CVPR.2015.7298947
10.1109/TIP.2016.2592800
10.1109/TIP.2019.2913079
10.1007/s11263-016-0893-6
10.1109/TIP.2018.2878966
10.1109/TPAMI.2011.219
10.1109/CVPR.2008.4587633
10.1109/TKDE.2009.191
10.1145/2964284.2964319
10.1109/CVPR.2015.7298965
10.1145/3293318
10.1016/j.patrec.2018.04.011
10.1145/997817.997857
10.1109/CVPR.2017.572
10.1109/CVPR.2018.00379
10.1109/CVPR.2019.01022
10.1109/ICCV.2017.598
10.1145/1646396.1646452
10.1109/CVPR.2019.01200
10.1007/978-3-642-33715-4_25
10.1109/TPAMI.2015.2408363
10.1007/s11263-009-0275-4
10.1109/CVPR.2018.00111
10.1109/TMM.2018.2838320
10.1109/TIP.2017.2696747
10.1109/TPAMI.2020.3008694
10.1109/ICCV.2019.00994
10.1007/s11263-016-0983-5
10.1109/TNNLS.2015.2495345
10.1145/582415.582418
10.1109/CVPR.2018.00581
10.1109/TMM.2020.2967645
10.1109/CVPR.2015.7298911
10.1016/j.neucom.2017.10.061
10.1109/CVPR.2019.00722
10.1109/TNNLS.2016.2636870
10.3115/v1/D14-1162
10.1109/ICCV.2019.00312
10.1109/TMM.2017.2697824
10.1109/TIP.2017.2781422
10.1109/CVPR.2019.00928
10.1109/CVPR.2014.313
10.1109/TPAMI.2018.2861000
10.1109/ACCESS.2020.2988923
10.1109/TMM.2019.2929957
10.1109/CVPR.2013.205
10.1109/TNNLS.2018.2890550
10.1109/CVPR.2009.5206594
10.1109/TPAMI.2015.2408354
10.1109/CVPR.2016.227
10.1109/CVPR.2011.5995590
10.1109/TPAMI.2018.2789887
10.1109/TMM.2016.2625260
10.1109/TCSVT.2017.2723302
10.1109/TCSVT.2019.2897980
10.1109/CVPR.2014.272
10.1109/TPAMI.2018.2858826
10.24963/ijcai.2017/245
10.1109/TMM.2019.2903448
10.1109/CVPR.2015.7298598
10.1145/3206025.3206026
10.1109/TIP.2015.2467315
10.3115/v1/P14-1132
10.1109/CVPR.2018.00134
10.24963/ijcai.2017/246
10.1109/TNNLS.2018.2797248
10.1109/TITS.2019.2949005
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2020.3043298
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Materials Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 1687
ExternalDocumentID 33361006
10_1109_TNNLS_2020_3043298
9309012
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Key Research Development Program of China
  grantid: 2019QY(Y)0206
  funderid: 10.13039/501100012166
– fundername: Key R&D Program of Hubei Province
  grantid: 2020BAB018
– fundername: National Natural Science Foundation of China
  grantid: 61872277; 61672376; U1803264
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c351t-ce1245c60c567f1b4a06be060924d293dada97a39445a1c4d83813a99c7df4ed3
IEDL.DBID RIE
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000778930100028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2162-237X
2162-2388
IngestDate Sat Sep 27 22:17:10 EDT 2025
Sun Nov 30 04:14:16 EST 2025
Thu Jan 02 22:58:29 EST 2025
Sat Nov 29 01:40:10 EST 2025
Tue Nov 18 21:01:01 EST 2025
Wed Aug 27 02:40:50 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-ce1245c60c567f1b4a06be060924d293dada97a39445a1c4d83813a99c7df4ed3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7955-0782
0000-0003-4152-5295
0000-0002-5566-1186
0000-0003-4925-0572
PMID 33361006
PQID 2647426603
PQPubID 85436
PageCount 15
ParticipantIDs ieee_primary_9309012
pubmed_primary_33361006
crossref_citationtrail_10_1109_TNNLS_2020_3043298
crossref_primary_10_1109_TNNLS_2020_3043298
proquest_miscellaneous_2473420548
proquest_journals_2647426603
PublicationCentury 2000
PublicationDate 2022-04-01
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
wang (ref78) 2017
ref56
ref59
ref15
ref58
ref53
ref52
ref55
ref10
ref17
ref19
ref18
jialin pan (ref74) 2010; 22
ren (ref54) 2015
ref51
ref50
guo (ref46) 2017
yan (ref27) 2020
ref45
ref48
ref47
ref85
ref44
ref43
wang (ref70) 2015
krizhevsky (ref13) 2012
ref49
liu (ref8) 2011
ref7
ref9
ref4
ref3
ref6
ref5
jiang (ref82) 2018
ref81
ref40
ref84
ref83
ref80
ref79
ref35
ref34
ref37
ref36
ref75
ref31
ref30
ref77
ref33
ref76
ref32
ref1
frome (ref42) 2013
ref39
zhao (ref23) 2015
ref38
lin (ref14) 2014
xia (ref22) 2014
sun (ref16) 2014
ref71
ref73
liu (ref2) 2012
ref72
ref68
ref67
weiss (ref11) 2009
ref26
ref69
ref25
ref64
ref20
ref63
ref66
mikolov (ref41) 2013
ref65
ref21
ref28
zhu (ref24) 2016
liong (ref12) 2015
ref29
ref60
ref62
ref61
References_xml – ident: ref5
  doi: 10.1109/CVPR.2015.7298947
– start-page: 1753
  year: 2009
  ident: ref11
  article-title: Spectral hashing
  publication-title: Proc NIPS
– ident: ref71
  doi: 10.1109/TIP.2016.2592800
– ident: ref15
  doi: 10.1109/TIP.2019.2913079
– ident: ref44
  doi: 10.1007/s11263-016-0893-6
– ident: ref21
  doi: 10.1109/TIP.2018.2878966
– ident: ref1
  doi: 10.1109/TPAMI.2011.219
– ident: ref57
  doi: 10.1109/CVPR.2008.4587633
– volume: 22
  start-page: 1345
  year: 2010
  ident: ref74
  article-title: A survey on transfer learning
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2009.191
– ident: ref30
  doi: 10.1145/2964284.2964319
– start-page: 2415
  year: 2016
  ident: ref24
  article-title: Deep hashing network for efficient similarity retrieval
  publication-title: Proc AAAI
– ident: ref20
  doi: 10.1109/CVPR.2015.7298965
– ident: ref38
  doi: 10.1145/3293318
– ident: ref34
  doi: 10.1016/j.patrec.2018.04.011
– ident: ref9
  doi: 10.1145/997817.997857
– ident: ref76
  doi: 10.1109/CVPR.2017.572
– ident: ref77
  doi: 10.1109/CVPR.2018.00379
– start-page: 1556
  year: 2015
  ident: ref23
  article-title: Deep semantic ranking based hashing for multi-label image retrieval
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit (CVPR)
– ident: ref53
  doi: 10.1109/CVPR.2019.01022
– year: 2020
  ident: ref27
  article-title: Deep multi-view enhancement hashing for image retrieval
  publication-title: IEEE Trans Pattern Anal Mach Intell
– ident: ref26
  doi: 10.1109/ICCV.2017.598
– ident: ref80
  doi: 10.1145/1646396.1646452
– ident: ref51
  doi: 10.1109/CVPR.2019.01200
– ident: ref58
  doi: 10.1007/978-3-642-33715-4_25
– ident: ref10
  doi: 10.1109/TPAMI.2015.2408363
– ident: ref81
  doi: 10.1007/s11263-009-0275-4
– ident: ref48
  doi: 10.1109/CVPR.2018.00111
– ident: ref36
  doi: 10.1109/TMM.2018.2838320
– ident: ref45
  doi: 10.1109/TIP.2017.2696747
– ident: ref61
  doi: 10.1109/TPAMI.2020.3008694
– ident: ref50
  doi: 10.1109/ICCV.2019.00994
– ident: ref39
  doi: 10.1007/s11263-016-0983-5
– ident: ref62
  doi: 10.1109/TNNLS.2015.2495345
– ident: ref85
  doi: 10.1145/582415.582418
– ident: ref47
  doi: 10.1109/CVPR.2018.00581
– ident: ref37
  doi: 10.1109/TMM.2020.2967645
– ident: ref43
  doi: 10.1109/CVPR.2015.7298911
– start-page: 2475
  year: 2015
  ident: ref12
  article-title: Deep hashing for compact binary codes learning
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit (CVPR)
– ident: ref32
  doi: 10.1016/j.neucom.2017.10.061
– ident: ref52
  doi: 10.1109/CVPR.2019.00722
– ident: ref64
  doi: 10.1109/TNNLS.2016.2636870
– ident: ref29
  doi: 10.3115/v1/D14-1162
– ident: ref69
  doi: 10.1109/ICCV.2019.00312
– start-page: 2121
  year: 2013
  ident: ref42
  article-title: Devise: A deep visual-semantic embedding model
  publication-title: Proc NIPS
– ident: ref60
  doi: 10.1109/TMM.2017.2697824
– ident: ref72
  doi: 10.1109/TIP.2017.2781422
– start-page: 1097
  year: 2012
  ident: ref13
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Proc NIPS
– ident: ref83
  doi: 10.1109/CVPR.2019.00928
– ident: ref55
  doi: 10.1109/CVPR.2014.313
– ident: ref67
  doi: 10.1109/TPAMI.2018.2861000
– ident: ref68
  doi: 10.1109/ACCESS.2020.2988923
– start-page: 1
  year: 2014
  ident: ref22
  article-title: Supervised hashing for image retrieval via image representation learning
  publication-title: Proc AAAI
– ident: ref7
  doi: 10.1109/TMM.2019.2929957
– ident: ref3
  doi: 10.1109/CVPR.2013.205
– ident: ref17
  doi: 10.1109/TNNLS.2018.2890550
– ident: ref28
  doi: 10.1109/CVPR.2009.5206594
– year: 2015
  ident: ref54
  article-title: Multi-instance visual-semantic embedding
  publication-title: arXiv 1512 06963
– start-page: 3890
  year: 2015
  ident: ref70
  article-title: Semantic topic multimodal hashing for cross-media retrieval
  publication-title: Proc IJCAI
– ident: ref75
  doi: 10.1109/TPAMI.2015.2408354
– ident: ref25
  doi: 10.1109/CVPR.2016.227
– ident: ref84
  doi: 10.1109/CVPR.2011.5995590
– ident: ref73
  doi: 10.1109/TPAMI.2018.2789887
– ident: ref59
  doi: 10.1109/TMM.2016.2625260
– start-page: 740
  year: 2014
  ident: ref14
  article-title: Microsoft COCO: Common objects in context
  publication-title: Proc ECCV
– ident: ref66
  doi: 10.1109/TCSVT.2017.2723302
– ident: ref18
  doi: 10.1109/TCSVT.2019.2897980
– ident: ref56
  doi: 10.1109/CVPR.2014.272
– ident: ref79
  doi: 10.1109/TPAMI.2018.2858826
– start-page: 1
  year: 2017
  ident: ref46
  article-title: Zero-shot recognition via direct classifier learning with transferred samples and pseudo labels
  publication-title: Proc AAAI
– year: 2017
  ident: ref78
  article-title: Multi-label zero-shot human action recognition via joint latent ranking embedding
  publication-title: arXiv 1709 05107
– ident: ref31
  doi: 10.24963/ijcai.2017/245
– ident: ref35
  doi: 10.1109/TMM.2019.2903448
– start-page: 3342
  year: 2018
  ident: ref82
  article-title: Asymmetric deep supervised hashing
  publication-title: Proc AAAI
– ident: ref4
  doi: 10.1109/CVPR.2015.7298598
– year: 2013
  ident: ref41
  article-title: Exploiting similarities among languages for machine translation
  publication-title: arXiv 1309 4168
– ident: ref33
  doi: 10.1145/3206025.3206026
– start-page: 1988
  year: 2014
  ident: ref16
  article-title: Deep learning face representation by joint identification-verification
  publication-title: Proc NIPS
– ident: ref6
  doi: 10.1109/TIP.2015.2467315
– ident: ref40
  doi: 10.3115/v1/P14-1132
– ident: ref65
  doi: 10.1109/CVPR.2018.00134
– start-page: 1
  year: 2011
  ident: ref8
  article-title: Hashing with graphs
  publication-title: Proc ICML
– ident: ref49
  doi: 10.24963/ijcai.2017/246
– ident: ref63
  doi: 10.1109/TNNLS.2018.2797248
– start-page: 2074
  year: 2012
  ident: ref2
  article-title: Supervised hashing with kernels
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– ident: ref19
  doi: 10.1109/TITS.2019.2949005
SSID ssj0000605649
Score 2.4283767
Snippet Hash coding has been widely used in the approximate nearest neighbor search for large-scale image retrieval. Given semantic annotations such as class labels...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1673
SubjectTerms Annotations
Binary codes
Data models
Deep hashing
Hash functions
Image coding
Image management
Image retrieval
Labels
multilabel image
Quantization (signal)
Semantics
Training
transductive learning
Visualization
zero-shot learning
Title Transductive Zero-Shot Hashing for Multilabel Image Retrieval
URI https://ieeexplore.ieee.org/document/9309012
https://www.ncbi.nlm.nih.gov/pubmed/33361006
https://www.proquest.com/docview/2647426603
https://www.proquest.com/docview/2473420548
Volume 33
WOSCitedRecordID wos000778930100028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2162-2388
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605649
  issn: 2162-237X
  databaseCode: RIE
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5W8eDF92N1XSJ402jbpE1zFHFZQRbRFRYvJU1SFHQr666_30n6wIMK3gpN0jIzyXyTZOYDOJEsDwxTBQ21LihPtaQqUpoWJpeGMR4JWXiyCTEapZOJvOvAWZsLY631l8_suXv0Z_mm1Au3VXYhWYDuCxfcJSGSKler3U8JEJcnHu1GYRLRiIlJkyMTyIvxaHT7gNFghEGqK0InHU8fYwzBg-M6-uaSPMfK73DTu53B-v9-eAPWanhJLit72ISOnW7BekPdQOqZvA2Vj3K1XnG1I092VtKH53JOhhW3EkEoS3xuLhqJfSU3b7jskHvPvoWmuQOPg-vx1ZDWTApUszicU23Rjcc6CXSciCLMuQqS3KLIMPoy6PCNMkoK5ZJkYxVqblJ05ExJqYUpuDVsF5an5dTuA7EqNHGscs1EylNuFDeo5SJXPMytFXEXwkaYma7LjDu2i9fMhxuBzLwuMqeLrNZFF07bPu9VkY0_W287SbctayF3odfoLKvn4UeGcE84DBKwLhy3r3EGuWMRNbXlAttwgTaJ0BVH3qt03Y7dmMjBz988hNXIpUP4mzw9WJ7PFvYIVvTn_OVj1kcznaR9b6ZfWrTg5g
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS-QwEB9EhbsXv0_Xzwj3dsZtm7RpHkWUFdciugeLLyVNUhR0K-uuf7-T9AMf9ODeCk3SMjPJ_CbJzA_gt2RFYJgqaah1SXmqJVWR0rQ0hTSM8UjI0pNNiCxLx2N5uwAnXS6MtdZfPrOn7tGf5ZtKz91WWV-yAN0XLrhLjjmrydbqdlQCROaJx7tRmEQ0YmLcZskEsj_KsuE9xoMRhqmuDJ10TH2MMYQPju3ok1PyLCvfA07veC5X_--X12ClAZjkrLaIdViwkw1YbckbSDOXN6H2Uq7aK6535MFOK3r_WM3IoGZXIghmic_ORTOxz-TqBRcecuf5t9A4t-Dv5cXofEAbLgWqWRzOqLboyGOdBDpORBkWXAVJYVFkGH8ZdPlGGSWFcmmysQo1Nym6cqak1MKU3Br2CxYn1cTuALEqNHGsCs1EylNuFDeo57JQPCysFXEPwlaYuW4KjTu-i-fcBxyBzL0ucqeLvNFFD_50fV7rMhv_bL3pJN21bITcg_1WZ3kzE99yBHzCoZCA9eC4e41zyB2MqImt5tiGC7RKBK848nat627s1kR2v_7mEfwYjG6G-fAqu96Dn5FLjvD3evZhcTad2wNY1u-zp7fpoTfWD-7740c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transductive+Zero-Shot+Hashing+for+Multilabel+Image+Retrieval&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Zou%2C+Qin&rft.au=Cao%2C+Ling&rft.au=Zhang%2C+Zheng&rft.au=Long%2C+Chen&rft.date=2022-04-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=33&rft.issue=4&rft.spage=1673&rft_id=info:doi/10.1109%2FTNNLS.2020.3043298&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon