Robust Point Cloud Registration Framework Based on Deep Graph Matching

3D point cloud registration is a fundamental problem in computer vision and robotics. Recently, learning-based point cloud registration methods have made great progress. However, these methods are sensitive to outliers, which lead to more incorrect correspondences. In this paper, we propose a novel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence Jg. 45; H. 5; S. 1 - 13
Hauptverfasser: Fu, Kexue, Luo, Jiazheng, Luo, Xiaoyuan, Liu, Shaolei, Zhang, Chenxi, Wang, Manning
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 01.05.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0162-8828, 1939-3539, 2160-9292, 1939-3539
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract 3D point cloud registration is a fundamental problem in computer vision and robotics. Recently, learning-based point cloud registration methods have made great progress. However, these methods are sensitive to outliers, which lead to more incorrect correspondences. In this paper, we propose a novel deep graph matching-based framework for point cloud registration. Specifically, we first transform point clouds into graphs and extract deep features for each point. Then, we develop a module based on deep graph matching to calculate a soft correspondence matrix. By using graph matching, not only the local geometry of each point but also its structure and topology in a larger range are considered in establishing correspondences, so that more correct correspondences are found. We train the network with a loss directly defined on the correspondences, and in the test stage the soft correspondences are transformed into hard one-to-one correspondences so that registration can be performed by a correspondence-based solver. Furthermore, we introduce a transformer-based method to generate edges for graph construction, which further improves the quality of the correspondences. Extensive experiments on object-level and scene-level benchmark datasets show that the proposed method achieves state-of-the-art performance. The code is available at: https://github.com/fukexue/RGM .
AbstractList 3D point cloud registration is a fundamental problem in computer vision and robotics. Recently, learning-based point cloud registration methods have made great progress. However, these methods are sensitive to outliers, which lead to more incorrect correspondences. In this paper, we propose a novel deep graph matching-based framework for point cloud registration. Specifically, we first transform point clouds into graphs and extract deep features for each point. Then, we develop a module based on deep graph matching to calculate a soft correspondence matrix. By using graph matching, not only the local geometry of each point but also its structure and topology in a larger range are considered in establishing correspondences, so that more correct correspondences are found. We train the network with a loss directly defined on the correspondences, and in the test stage the soft correspondences are transformed into hard one-to-one correspondences so that registration can be performed by a correspondence-based solver. Furthermore, we introduce a transformer-based method to generate edges for graph construction, which further improves the quality of the correspondences. Extensive experiments on object-level and scene-level benchmark datasets show that the proposed method achieves state-of-the-art performance. The code is available at: https://github.com/fukexue/RGM .
3D point cloud registration is a fundamental problem in computer vision and robotics. Recently, learning-based point cloud registration methods have made great progress. However, these methods are sensitive to outliers, which lead to more incorrect correspondences. In this paper, we propose a novel deep graph matching-based framework for point cloud registration. Specifically, we first transform point clouds into graphs and extract deep features for each point. Then, we develop a module based on deep graph matching to calculate a soft correspondence matrix. By using graph matching, not only the local geometry of each point but also its structure and topology in a larger range are considered in establishing correspondences, so that more correct correspondences are found. We train the network with a loss directly defined on the correspondences, and in the test stage the soft correspondences are transformed into hard one-to-one correspondences so that registration can be performed by a correspondence-based solver. Furthermore, we introduce a transformer-based method to generate edges for graph construction, which further improves the quality of the correspondences. Extensive experiments on object-level and scene-level benchmark datasets show that the proposed method achieves state-of-the-art performance.
3D point cloud registration is a fundamental problem in computer vision and robotics. Recently, learning-based point cloud registration methods have made great progress. However, these methods are sensitive to outliers, which lead to more incorrect correspondences. In this paper, we propose a novel deep graph matching-based framework for point cloud registration. Specifically, we first transform point clouds into graphs and extract deep features for each point. Then, we develop a module based on deep graph matching to calculate a soft correspondence matrix. By using graph matching, not only the local geometry of each point but also its structure and topology in a larger range are considered in establishing correspondences, so that more correct correspondences are found. We train the network with a loss directly defined on the correspondences, and in the test stage the soft correspondences are transformed into hard one-to-one correspondences so that registration can be performed by a correspondence-based solver. Furthermore, we introduce a transformer-based method to generate edges for graph construction, which further improves the quality of the correspondences. Extensive experiments on object-level and scene-level benchmark datasets show that the proposed method achieves state-of-the-art performance.3D point cloud registration is a fundamental problem in computer vision and robotics. Recently, learning-based point cloud registration methods have made great progress. However, these methods are sensitive to outliers, which lead to more incorrect correspondences. In this paper, we propose a novel deep graph matching-based framework for point cloud registration. Specifically, we first transform point clouds into graphs and extract deep features for each point. Then, we develop a module based on deep graph matching to calculate a soft correspondence matrix. By using graph matching, not only the local geometry of each point but also its structure and topology in a larger range are considered in establishing correspondences, so that more correct correspondences are found. We train the network with a loss directly defined on the correspondences, and in the test stage the soft correspondences are transformed into hard one-to-one correspondences so that registration can be performed by a correspondence-based solver. Furthermore, we introduce a transformer-based method to generate edges for graph construction, which further improves the quality of the correspondences. Extensive experiments on object-level and scene-level benchmark datasets show that the proposed method achieves state-of-the-art performance.
Author Luo, Jiazheng
Luo, Xiaoyuan
Zhang, Chenxi
Liu, Shaolei
Fu, Kexue
Wang, Manning
Author_xml – sequence: 1
  givenname: Kexue
  orcidid: 0000-0002-7094-503X
  surname: Fu
  fullname: Fu, Kexue
  organization: Digital Medical Research Center, School of Basic Medical Science, Fudan University, Shanghai, China
– sequence: 2
  givenname: Jiazheng
  orcidid: 0000-0003-4111-5413
  surname: Luo
  fullname: Luo, Jiazheng
  organization: Digital Medical Research Center, School of Basic Medical Science, Fudan University, Shanghai, China
– sequence: 3
  givenname: Xiaoyuan
  surname: Luo
  fullname: Luo, Xiaoyuan
  organization: Digital Medical Research Center, School of Basic Medical Science, Fudan University, Shanghai, China
– sequence: 4
  givenname: Shaolei
  surname: Liu
  fullname: Liu, Shaolei
  organization: Digital Medical Research Center, School of Basic Medical Science, Fudan University, Shanghai, China
– sequence: 5
  givenname: Chenxi
  orcidid: 0000-0003-0248-8495
  surname: Zhang
  fullname: Zhang, Chenxi
  organization: Digital Medical Research Center, School of Basic Medical Science, Fudan University, Shanghai, China
– sequence: 6
  givenname: Manning
  surname: Wang
  fullname: Wang, Manning
  organization: Digital Medical Research Center, School of Basic Medical Science, Fudan University, Shanghai, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36067105$$D View this record in MEDLINE/PubMed
BookMark eNp9kUFLAzEQhYMo2qp_QEEWvHjZOpm0m-So1aqgKKLnkM1mNbrd1GQX8d8bbfXgwdPAzPeGmfeGZL31rSVkj8KIUpDHD3cnN1cjBMQRQxhzytbIAGkBuUSJ62QAtMBcCBRbZBjjCwAdT4Btki1WQMEpTAZkdu_LPnbZnXdtl00b31fZvX1ysQu6c77NZkHP7bsPr9mpjrbKUuvM2kV2EfTiObvRnXl27dMO2ah1E-3uqm6Tx9n5w_Qyv769uJqeXOeGTWiXG1noqpJQlpKKWhiNSCkaBMPMmI9rKLkAqouyLjnSOnUrVolaasM0K0zNtsnRcu8i-Lfexk7NXTS2aXRrfR8Vpq8kh_RaQg__oC--D226LlFywjkiskQdrKi-nNtKLYKb6_ChfhxKgFgCJvgYg62Vcd23Nckh1ygK6isM9R2G-gpDrcJIUvwj_dn-r2h_KXLW2l-BFFxgmn4C39aTXw
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1109_TGRS_2024_3434436
crossref_primary_10_1109_TGRS_2024_3355707
crossref_primary_10_56977_jicce_2025_23_2_129
crossref_primary_10_1109_TMI_2023_3318006
crossref_primary_10_1002_rob_22417
crossref_primary_10_1016_j_compag_2024_109435
crossref_primary_10_1007_s10044_024_01351_3
crossref_primary_10_1007_s11042_024_18660_8
crossref_primary_10_1080_01431161_2024_2343434
crossref_primary_10_1109_TCSVT_2024_3369468
crossref_primary_10_1109_TCSVT_2024_3457575
Cites_doi 10.1007/978-3-030-01267-0_43
10.1109/CVPR.2018.00028
10.1109/CVPR42600.2020.00639
10.1007/978-3-319-46475-6_47
10.1145/3326362
10.1145/358669.358692
10.1109/CVPR.2019.01207
10.1109/CVPR.2017.29
10.1109/CVPR.2012.6247667
10.1109/ICRA.2018.8460653
10.1007/BF02278710
10.1109/ICCV.2019.00362
10.1023/B:VISI.0000011205.11775.fd
10.1109/ICCV.2011.6126445
10.1109/ICCV.2019.00651
10.1109/TPAMI.2010.223
10.1117/12.57955
10.1109/DSW.2018.8439919
10.1109/ROBOT.2009.5152473
10.1109/CVPR46437.2021.01158
10.1002/nav.3800020109
10.1109/CVPR.2017.628
10.1109/ICCV.2017.324
10.1109/TPAMI.2015.2513405
10.1007/978-3-030-01258-8_28
10.1109/ICCV.2007.4409077
10.1109/CVPR46437.2021.00038
10.1145/3306346.3323037
10.1109/CVPR.2019.00569
10.1109/ICCV.2019.00905
10.1109/CVPR.2019.00733
10.1109/ICCV.2019.00315
10.1109/ICCV48922.2021.00312
10.15607/RSS.2009.V.021
10.1109/CVPR46437.2021.00878
10.1007/s12206-020-0540-6
10.1109/ICRA.2018.8461224
10.1214/aoms/1177703591
10.1007/978-3-030-01228-1_37
10.1109/CVPR.2017.16
10.1109/IM.2001.924423
10.1109/CVPR.2019.00655
10.1109/CVPR46437.2021.00425
10.1109/CVPR.2016.613
10.1561/2300000035
10.1109/CVPR.2015.7298801
10.1109/cvpr.2017.29
10.1109/CVPR46437.2021.01257
10.1109/CVPR42600.2020.00499
10.1142/9789812797926_0003
10.1109/CVPR42600.2020.01184
10.1016/j.cviu.2014.04.011
10.1109/TNNLS.2020.3015992
10.1007/978-3-030-58586-0_23
10.1109/TRO.2018.2882730
10.1109/CVPR.2019.00110
10.1109/CVPR.2018.00284
10.1109/ICCV.2013.11
10.1007/978-3-030-58558-7_43
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TPAMI.2022.3204713
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2160-9292
1939-3539
EndPage 13
ExternalDocumentID 36067105
10_1109_TPAMI_2022_3204713
9878213
Genre orig-research
Journal Article
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
9M8
AAJGR
AASAJ
AAWTH
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ADRHT
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
FA8
HZ~
H~9
IBMZZ
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RXW
RZB
TAE
TN5
UHB
VH1
~02
AAYXX
CITATION
AAYOK
ABAZT
NPM
PKN
RIC
RIG
XJT
Z5M
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c351t-c96add90bb918f8ca22112c20c3c474f0b7801a6bfb721fc3cd3d8f9ac3a36cf3
IEDL.DBID RIE
ISICitedReferencesCount 234
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000964792800054&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0162-8828
1939-3539
IngestDate Mon Sep 29 02:40:57 EDT 2025
Sun Nov 09 06:10:51 EST 2025
Wed Feb 19 02:23:56 EST 2025
Sat Nov 29 02:58:21 EST 2025
Tue Nov 18 22:34:45 EST 2025
Tue Nov 25 14:44:27 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-c96add90bb918f8ca22112c20c3c474f0b7801a6bfb721fc3cd3d8f9ac3a36cf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0248-8495
0000-0002-7094-503X
0000-0003-4111-5413
PMID 36067105
PQID 2795772223
PQPubID 85458
PageCount 13
ParticipantIDs crossref_citationtrail_10_1109_TPAMI_2022_3204713
proquest_journals_2795772223
proquest_miscellaneous_2710970105
crossref_primary_10_1109_TPAMI_2022_3204713
pubmed_primary_36067105
ieee_primary_9878213
PublicationCentury 2000
PublicationDate 2023-05-01
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref59
ref14
Wang (ref45)
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
Vaswani (ref44)
ref51
ref50
ref46
ref48
ref47
ref41
ref49
ref8
ref7
ref9
Chang (ref63) 2015
ref4
ref3
ref6
ref5
Yu (ref25) 2021; 34
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
Ulyanov (ref61) 2016
Devlin (ref43) 2018
ref24
ref68
ref23
ref67
ref26
ref69
ref20
ref64
ref22
ref66
ref21
ref28
ref27
Sarode (ref15)
ref29
Lucas (ref42)
ref60
ref62
Zhou (ref65) 2018
References_xml – ident: ref36
  doi: 10.1007/978-3-030-01267-0_43
– year: 2015
  ident: ref63
  article-title: Shapenet: An information-rich 3D model repository
– ident: ref48
  doi: 10.1109/CVPR.2018.00028
– ident: ref23
  doi: 10.1109/CVPR42600.2020.00639
– ident: ref38
  doi: 10.1007/978-3-319-46475-6_47
– ident: ref40
  doi: 10.1145/3326362
– ident: ref26
  doi: 10.1145/358669.358692
– ident: ref12
  doi: 10.1109/CVPR.2019.01207
– ident: ref24
  doi: 10.1109/CVPR.2017.29
– ident: ref55
  doi: 10.1109/CVPR.2012.6247667
– ident: ref6
  doi: 10.1109/ICRA.2018.8460653
– start-page: 8814
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref45
  article-title: PRNet: Self-supervised learning for partial-to-partial registration
– ident: ref28
  doi: 10.1007/BF02278710
– ident: ref18
  doi: 10.1109/ICCV.2019.00362
– ident: ref41
  doi: 10.1023/B:VISI.0000011205.11775.fd
– ident: ref53
  doi: 10.1109/ICCV.2011.6126445
– ident: ref15
  article-title: PCRNet: Point cloud registration network using pointnet encoding
– ident: ref51
  doi: 10.1109/ICCV.2019.00651
– ident: ref35
  doi: 10.1109/TPAMI.2010.223
– ident: ref8
  doi: 10.1117/12.57955
– ident: ref58
  doi: 10.1109/DSW.2018.8439919
– ident: ref13
  doi: 10.1109/ROBOT.2009.5152473
– start-page: 5998
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref44
  article-title: Attention is all you need
– volume: 34
  start-page: 23872
  year: 2021
  ident: ref25
  article-title: Cofinet: Reliable coarse-to-fine correspondences for robust pointcloud registration
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: ref68
  doi: 10.1109/CVPR46437.2021.01158
– ident: ref29
  doi: 10.1002/nav.3800020109
– ident: ref69
  doi: 10.1109/ROBOT.2009.5152473
– ident: ref54
  doi: 10.1109/CVPR.2017.628
– ident: ref31
  doi: 10.1109/ICCV.2017.324
– ident: ref10
  doi: 10.1109/TPAMI.2015.2513405
– ident: ref37
  doi: 10.1007/978-3-030-01258-8_28
– ident: ref7
  doi: 10.1109/ICCV.2007.4409077
– ident: ref52
  doi: 10.1109/CVPR46437.2021.00038
– ident: ref32
  doi: 10.1145/3306346.3323037
– ident: ref67
  doi: 10.1109/CVPR.2019.00569
– ident: ref22
  doi: 10.1109/ICCV.2019.00905
– year: 2016
  ident: ref61
  article-title: Instance normalization: The missing ingredient for fast stylization
– ident: ref16
  doi: 10.1109/CVPR.2019.00733
– ident: ref27
  doi: 10.1109/ICCV.2019.00315
– ident: ref64
  doi: 10.1109/ICCV48922.2021.00312
– ident: ref9
  doi: 10.15607/RSS.2009.V.021
– ident: ref30
  doi: 10.1109/CVPR46437.2021.00878
– ident: ref4
  doi: 10.1007/s12206-020-0540-6
– start-page: 121
  volume-title: Proc. Imag. Understanding Workshop
  ident: ref42
  article-title: An iterative image registration technique with an application to stereo vision
– year: 2018
  ident: ref65
  article-title: Open3D: A modern library for 3D data processing
– ident: ref3
  doi: 10.1109/ICRA.2018.8461224
– ident: ref47
  doi: 10.1214/aoms/1177703591
– ident: ref49
  doi: 10.1007/978-3-030-01228-1_37
– ident: ref39
  doi: 10.1109/CVPR.2017.16
– ident: ref34
  doi: 10.1109/IM.2001.924423
– ident: ref1
  doi: 10.1109/CVPR.2019.00655
– ident: ref21
  doi: 10.1109/CVPR46437.2021.00425
– ident: ref11
  doi: 10.1109/CVPR.2016.613
– ident: ref33
  doi: 10.1561/2300000035
– ident: ref62
  doi: 10.1109/CVPR.2015.7298801
– ident: ref66
  doi: 10.1109/cvpr.2017.29
– ident: ref17
  doi: 10.1109/CVPR46437.2021.01257
– ident: ref57
  doi: 10.1109/CVPR42600.2020.00499
– ident: ref60
  doi: 10.1142/9789812797926_0003
– ident: ref19
  doi: 10.1109/CVPR42600.2020.01184
– ident: ref14
  doi: 10.1016/j.cviu.2014.04.011
– ident: ref2
  doi: 10.1109/TNNLS.2020.3015992
– ident: ref20
  doi: 10.1007/978-3-030-58586-0_23
– ident: ref5
  doi: 10.1109/TRO.2018.2882730
– ident: ref50
  doi: 10.1109/CVPR.2019.00110
– ident: ref59
  doi: 10.1109/CVPR.2018.00284
– ident: ref56
  doi: 10.1109/ICCV.2013.11
– ident: ref46
  doi: 10.1007/978-3-030-58558-7_43
– year: 2018
  ident: ref43
  article-title: Bert: Pre-training of deep bidirectional transformers for language understanding
SSID ssj0014503
Score 2.7174025
Snippet 3D point cloud registration is a fundamental problem in computer vision and robotics. Recently, learning-based point cloud registration methods have made great...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Computer vision
Correspondence
Deep learning
Feature extraction
Geometry
Graph Matching
Graph theory
Neural networks
Outliers (statistics)
Point cloud compression
Point Cloud Registration
Prediction algorithms
Registration
Robotics
Three dimensional models
Topology
Transformers
Title Robust Point Cloud Registration Framework Based on Deep Graph Matching
URI https://ieeexplore.ieee.org/document/9878213
https://www.ncbi.nlm.nih.gov/pubmed/36067105
https://www.proquest.com/docview/2795772223
https://www.proquest.com/docview/2710970105
Volume 45
WOSCitedRecordID wos000964792800054&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2160-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014503
  issn: 0162-8828
  databaseCode: RIE
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5R1EN7KJSlNC0gI3ErAcdx1vaR1wIHVqvVIu0tih0HrYQSxCb9_R07D1GJVuIWOc5DnhnPfB57PoBjaiNJuTYh50qGPDFZKLmioRYaYY9Gp8eMJ5sQ06lcLtVsA06GszDWWr_5zJ66S5_LzyvTuKWyM8THkjmK2g9CjNuzWkPGgCeeBRkjGLRwhBH9ARmqzhaz8_s7hIKMncaM4mzsyHNijNzRuyZ_-SNPsPLvWNP7nMnW-_52G750sSU5b5XhK2zYcge2et4G0pnxDnx-VYRwBJN5pZt1TWbVqqzJ5VPV5GRuH4eCumTS798iF-jycoJNV9Y-kxtX65rc41zuVrF24WFyvbi8DTt2hdDESVSHRo1xblNUaxXJQpqMIRZkhlETGy54QbVA75WNdaERJRbYmse5LFRm4iwemyL-BptlVdrvQHiirUKwmxUy4oURGcYoOWpArqTMqWABRP0Yp6YrPe4YMJ5SD0GoSr2IUieitBNRAL-GZ57bwhv_7T1yAhh6dmMfwH4vyrSzzXXKhEoQU2BcFMDRcButyqVKstJWjevjMvOOPTSAvVYFhnf3mvPj7W_-hE-Okr7dFLkPm_VLYw_go_ldr9Yvh6i6S3noVfcPCuTlwA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4hqEQ5sAUKhNJipN5oFsdxNvYRaLcg2NUKLRK3KHYchIQStJvw-xk7D1GpVOotcpyHPDOe-Tz2fADfqQkE5Ur7nEvh80invuCS-ipWCHsUOj2mHdlEPJ2K-3s5W4Ef_VkYY4zbfGaG9tLl8rNS13ap7BTxsWCWonYt4pzR5rRWnzPgkeNBxhgGbRyBRHdEhsrT-exscoVgkLFhyCjOx5Y-J8TYHf1r9IdHchQr70ebzuuMB__3v59gs40uyVmjDluwYoptGHTMDaQ15G3YeFOGcAfGt6WqlxWZlY9FRS6eyjojt-ahL6lLxt0OLnKOTi8j2PTTmGfy21a7JhOcze061me4G_-aX1z6Lb-Cr8MoqHwtRzi7SaqUDEQudMoQDTLNqA41j3lOVYz-Kx2pXCFOzLE1CzORy1SHaTjSebgLq0VZmH0gPFJGItxNcxHwXMcpRikZ6kAmhchozDwIujFOdFt83HJgPCUOhFCZOBElVkRJKyIPTvpnnpvSG__svWMF0Pdsx96Dw06USWudy4TFMkJUgZGRB8f9bbQrmyxJC1PWto_NzVv-UA_2GhXo391pzsHfv3kE65fzyU1yczW9_gIfLUF9s0XyEFarRW2-wgf9Uj0uF9-cAr8Cu3ToHw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Point+Cloud+Registration+Framework+Based+on+Deep+Graph+Matching&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Fu%2C+Kexue&rft.au=Luo%2C+Jiazheng&rft.au=Luo%2C+Xiaoyuan&rft.au=Liu%2C+Shaolei&rft.date=2023-05-01&rft.issn=0162-8828&rft.eissn=2160-9292&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1109%2FTPAMI.2022.3204713&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TPAMI_2022_3204713
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon