Critical heat flux function approximation using genetic algorithms

Function approximation is the problem of finding a system that best explains the relationship between input variables and an output variable. We propose two hybrid genetic algorithms (GAs) of parametric and nonparametric models for function approximation. The former GA is a genetic nonlinear Levenbe...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on nuclear science Ročník 52; číslo 2; s. 535 - 545
Hlavní autori: Kwon, Yung-Keun, Moon, Byung-Ro, Hong, Sung-Deok
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.04.2005
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:0018-9499, 1558-1578
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Function approximation is the problem of finding a system that best explains the relationship between input variables and an output variable. We propose two hybrid genetic algorithms (GAs) of parametric and nonparametric models for function approximation. The former GA is a genetic nonlinear Levenberg-Marquardt algorithm of parametric model. We designed the chromosomes in a way that geographically exploits the relationships between parameters. The latter one is another GA of nonparametric model that is combined with a feedforward neural network. The neuro-genetic hybrid here differs from others in that it evolves diverse input features instead of connection weights. We tested the two GAs with the problem of finding a better critical heat flux (CHF) function of nuclear fuel bundle which is directly related to the nuclear-reactor thermal margin and operation. The experimental result improved the existing CHF function originated from the KRB-1 CHF correlation at the Korea Atomic Energy Research Institute (KAERI) and achieved the correlation uncertainty reduction of 15.4% that would notably contribute to increasing the thermal margin of the nuclear power plants.
AbstractList The experimental result improved the existing CHF function originated from the KRB-1 CHF correlation at the Korea Atomic Energy Research Institute (KAERI) and achieved the correlation uncertainty reduction of 15.4% that would notably contribute to increasing the thermal margin of the nuclear power plants.
Function approximation is the problem of finding a system that best explains the relationship between input variables and an output variable. We propose two hybrid genetic algorithms (GAs) of parametric and nonparametric models for function approximation. The former GA is a genetic nonlinear Levenberg-Marquardt algorithm of parametric model. We designed the chromosomes in a way that geographically exploits the relationships between parameters. The latter one is another GA of nonparametric model that is combined with a feedforward neural network. The neuro-genetic hybrid here differs from others in that it evolves diverse input features instead of connection weights. We tested the two GAs with the problem of finding a better critical heat flux (CHF) function of nuclear fuel bundle which is directly related to the nuclear-reactor thermal margin and operation. The experimental result improved the existing CHF function originated from the KRB-1 CHF correlation at the Korea Atomic Energy Research Institute (KAERI) and achieved the correlation uncertainty reduction of 15.4% that would notably contribute to increasing the thermal margin of the nuclear power plants.
Author Sung-Deok Hong
Yung-Keun Kwon
Byung-Ro Moon
Author_xml – sequence: 1
  givenname: Yung-Keun
  surname: Kwon
  fullname: Kwon, Yung-Keun
– sequence: 2
  givenname: Byung-Ro
  surname: Moon
  fullname: Moon, Byung-Ro
– sequence: 3
  givenname: Sung-Deok
  surname: Hong
  fullname: Hong, Sung-Deok
BookMark eNp9kU1PAjEQhhuDiYCePXjZeNDTQrv9PirxKyF6EM9Nt7RQsnRxu5vgv7eAiQkHTpNJnmcyM-8A9EIdLADXCI4QgnI8e_8cFRDSkSBMYHIG-ohSkSPKRQ_0IUQil0TKCzCIcZVaQiHtg8dJ41tvdJUtrW4zV3XbzHXBtL4Omd5smnrr13rfddGHRbawwSYh09WiTupyHS_BudNVtFd_dQi-np9mk9d8-vHyNnmY5gZT1OaGMyI0doaUiGshiJMcSeeYngtZQlGQUthSImgLwozGem7LQjJouGFzTTkegvvD3LTUd2djq9Y-GltVOti6i0pIhjhPNyfy7iRZCAgJFjiBt0fgqu6akK5QEiHJJWa7afQAmaaOsbFOGd_uX9I22lcKQbULQKUA1C4AdQggeeMjb9OkXzY_J4ybg-Gttf80KSDHBf4FV-uSfA
CODEN IETNAE
CitedBy_id crossref_primary_10_1109_TCAPT_2006_885944
crossref_primary_10_1016_j_anucene_2012_09_020
crossref_primary_10_1016_j_nucengdes_2011_07_029
crossref_primary_10_1016_j_rser_2017_10_040
crossref_primary_10_1016_j_ijheatmasstransfer_2013_03_025
crossref_primary_10_1016_j_nucengdes_2024_113587
crossref_primary_10_1016_j_pnucene_2013_07_004
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125441
crossref_primary_10_1007_s11004_014_9577_3
Cites_doi 10.1007/3-540-58484-6_255
10.1109/72.774236
10.3327/jnst.39.564
10.1016/S0893-6080(03)00014-5
10.1016/0029-5493(95)01154-4
10.1016/0167-8191(90)90086-O
10.1080/01621459.1981.10477729
10.1109/3477.537319
10.1109/43.700718
10.1016/S0035-3159(97)87750-1
10.1016/S0735-1933(97)00078-X
10.1016/S0017-9310(98)00286-5
10.13182/NSE97-A1937
10.1109/TSMCB.2003.816922
10.1016/0029-5493(95)01178-1
10.1109/91.580801
10.1109/ICEC.1997.592288
10.1214/aos/1176347115
10.1137/0111030
10.1016/0167-8655(89)90037-8
10.13182/NSE68-A20912
10.1007/978-3-642-56927-2
10.13182/NT98-A2923
10.1109/4235.850656
10.1109/12.508322
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005
DBID 97E
RIA
RIE
AAYXX
CITATION
7QF
7QL
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H94
JG9
JQ2
KR7
L7M
L~C
L~D
M7N
P64
DOI 10.1109/TNS.2005.846834
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Aluminium Industry Abstracts
Bacteriology Abstracts (Microbiology B)
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Engineered Materials Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
DatabaseTitleList Materials Research Database
Solid State and Superconductivity Abstracts
Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-1578
EndPage 545
ExternalDocumentID 2543176491
10_1109_TNS_2005_846834
1420732
Genre orig-research
GroupedDBID .DC
.GJ
0R~
29I
3O-
4.4
53G
5GY
5RE
5VS
6IK
8WZ
97E
A6W
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AETEA
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
VOH
AAYXX
CITATION
7QF
7QL
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H94
JG9
JQ2
KR7
L7M
L~C
L~D
M7N
P64
RIG
ID FETCH-LOGICAL-c351t-c7648a3fc4b17a884f9719ff6ad89b0824b8eb910e246ca3adeb2960c7c6da573
IEDL.DBID RIE
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000228367500006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9499
IngestDate Thu Oct 02 21:06:44 EDT 2025
Sun Nov 09 11:40:15 EST 2025
Mon Jun 30 08:34:18 EDT 2025
Tue Nov 18 22:32:08 EST 2025
Sat Nov 29 04:14:53 EST 2025
Tue Aug 26 16:40:05 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-c7648a3fc4b17a884f9719ff6ad89b0824b8eb910e246ca3adeb2960c7c6da573
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PQID 911979368
PQPubID 23500
PageCount 11
ParticipantIDs crossref_citationtrail_10_1109_TNS_2005_846834
proquest_miscellaneous_896177558
proquest_miscellaneous_28004383
proquest_journals_911979368
crossref_primary_10_1109_TNS_2005_846834
ieee_primary_1420732
PublicationCentury 2000
PublicationDate 2005-04-01
PublicationDateYYYYMMDD 2005-04-01
PublicationDate_xml – month: 04
  year: 2005
  text: 2005-04-01
  day: 01
PublicationDecade 2000
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on nuclear science
PublicationTitleAbbrev TNS
PublicationYear 2005
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
fujita (ref5) 1997
goldberg (ref38) 1989
ref14
kohavi (ref42) 1995
ref31
bowring (ref4) 1972
ref30
ref11
ref10
yapo (ref9) 1992; 2
bremermann (ref36) 1962
ref17
ref16
ref19
hwang (ref2) 1995; 27
ref18
tu (ref32) 1998; 124
miller (ref24) 1989
weinberg (ref37) 1970
harp (ref43) 1989
kim (ref45) 2002
ref23
bui (ref15) 1996; 45
ref26
ref25
ref20
ref44
hwang (ref35) 1991
tong (ref1) 1968; 33
(ref33) 1986
efron (ref41) 1995
brown (ref22) 1994
kwon (ref46) 2003
kohonen (ref27) 2001
ref29
kim (ref7) 1997; 127
ref8
breiman (ref21) 1984
holland (ref39) 1975
lee (ref34) 1991
ref3
ref6
ref40
duda (ref28) 1973
levenberg (ref13) 1944; 2
References_xml – volume: 2
  start-page: 853
  year: 1992
  ident: ref9
  article-title: prediction of critical heat fluxes using a hybrid kohonen-backpropagation neural network
  publication-title: Intell Eng Syst Art Neural Networks
– ident: ref40
  doi: 10.1007/3-540-58484-6_255
– ident: ref44
  doi: 10.1109/72.774236
– ident: ref11
  doi: 10.3327/jnst.39.564
– ident: ref25
  doi: 10.1016/S0893-6080(03)00014-5
– start-page: 379
  year: 1989
  ident: ref24
  article-title: designing neural networks using genetic algorithms
  publication-title: Proc Int Conf Genetic Algorithm
– year: 1970
  ident: ref37
  publication-title: Computer simulation of a living cell
– ident: ref6
  doi: 10.1016/0029-5493(95)01154-4
– ident: ref18
  doi: 10.1016/0167-8191(90)90086-O
– ident: ref20
  doi: 10.1080/01621459.1981.10477729
– ident: ref23
  doi: 10.1109/3477.537319
– ident: ref16
  doi: 10.1109/43.700718
– ident: ref12
  doi: 10.1016/S0035-3159(97)87750-1
– ident: ref8
  doi: 10.1016/S0735-1933(97)00078-X
– ident: ref3
  doi: 10.1016/S0017-9310(98)00286-5
– start-page: 360
  year: 1989
  ident: ref43
  article-title: toward the genetic synthesis of neural networks
  publication-title: Proc Int Conf Genetic Algorithm
– year: 1991
  ident: ref35
  publication-title: Study on the critical heat flux
– start-page: 831
  year: 1997
  ident: ref5
  article-title: predictive methods of heat transfer coefficient and critical heat flux in mixture boiling
  publication-title: Exp Heat Transfer Fluid Mech Thermodyna
– year: 1989
  ident: ref38
  publication-title: Genetic Algorithms in Search Optimization and Machine Learning
– volume: 27
  start-page: 518
  year: 1995
  ident: ref2
  article-title: evaluation of the thermal margin in a kofa-loaded core by a multichannel analysis methodology
  publication-title: J Korea Nucl Soc
– volume: 127
  start-page: 300
  year: 1997
  ident: ref7
  article-title: development of a generalized critical heat flux correlation through the alternating conditional expectation algorithm
  publication-title: Nucl Sci Eng
  doi: 10.13182/NSE97-A1937
– start-page: 93
  year: 1962
  ident: ref36
  article-title: optimization through evolution and recombination
  publication-title: Self-Organizing Syst
– start-page: 1137
  year: 1995
  ident: ref42
  article-title: a study of cross-validation and bootstrap of accuracy estimation and model selection
  publication-title: Proc Int Joint Conf Neural Networks
– ident: ref31
  doi: 10.1109/TSMCB.2003.816922
– ident: ref10
  doi: 10.1016/0029-5493(95)01178-1
– ident: ref26
  doi: 10.1109/91.580801
– ident: ref17
  doi: 10.1109/ICEC.1997.592288
– ident: ref19
  doi: 10.1214/aos/1176347115
– start-page: 789
  year: 1972
  ident: ref4
  article-title: a simple but accurate round tube, uniform heat flux, dryout correlation over the pressure range 0.7-17 mn/m
  publication-title: AEEW-R
– volume: 2
  start-page: 164
  year: 1944
  ident: ref13
  article-title: a method for the solution of certain problems in least squares
  publication-title: Appl Math
– ident: ref14
  doi: 10.1137/0111030
– ident: ref29
  doi: 10.1016/0167-8655(89)90037-8
– volume: 33
  start-page: 7
  year: 1968
  ident: ref1
  article-title: an evaluation of the departure from nucleate boiling in bundles of reactor fuel rods
  publication-title: Nucl Sci Eng
  doi: 10.13182/NSE68-A20912
– year: 1991
  ident: ref34
  publication-title: Improvement of CHF analysis system Vol 1 Compilation of CHF experimental data base
– year: 2001
  ident: ref27
  publication-title: Self-Organizing Maps
  doi: 10.1007/978-3-642-56927-2
– start-page: 407
  year: 2002
  ident: ref45
  article-title: neuron reordering for better neuro-genetic hybrids
  publication-title: Proc Genetic Evolutionary Computation Conf
– volume: 124
  start-page: 243
  year: 1998
  ident: ref32
  article-title: a new mechanistic critical heat flux model at low-pressure and low-flow conditions
  publication-title: Nucl Technol
  doi: 10.13182/NT98-A2923
– ident: ref30
  doi: 10.1109/4235.850656
– start-page: 2203
  year: 2003
  ident: ref46
  article-title: daily stock prediction using neuro-genetic hybrids
  publication-title: Proceedings of the Genetic and Evolutionary Computation Conference
– year: 1994
  ident: ref22
  publication-title: Neural Fuzzy Adaptive Modeling and Control
– year: 1975
  ident: ref39
  publication-title: Adaptations in Natural and Artificial Systems
– volume: 45
  start-page: 841
  year: 1996
  ident: ref15
  article-title: genetic algorithm and graph partitioning
  publication-title: IEEE Trans Comput
  doi: 10.1109/12.508322
– year: 1995
  ident: ref41
  publication-title: Cross-validation and the bootstrap Estimating the error rate of a prediction rule
– year: 1986
  ident: ref33
  publication-title: A Computer Code for Determining the Thermal Margin of a Reactor Core TORC
– year: 1973
  ident: ref28
  publication-title: Pattern Classification and Scene Analysis
– year: 1984
  ident: ref21
  publication-title: Classification and Regression Trees
SSID ssj0014505
Score 1.8116361
Snippet Function approximation is the problem of finding a system that best explains the relationship between input variables and an output variable. We propose two...
The experimental result improved the existing CHF function originated from the KRB-1 CHF correlation at the Korea Atomic Energy Research Institute (KAERI) and...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 535
SubjectTerms Approximation
Biological cells
Correlation
Critical heat flux (CHF)
Energy research
feature extraction
Feedforward neural networks
Function approximation
genetic algorithm (GA)
Genetic algorithms
Heat flux
Heat transfer
Input variables
Levenberg-Marquardt algorithm
Mathematical analysis
Mathematical models
Neural networks
Nuclear fuels
Nuclear power generation
Nuclear power plants
Parametric statistics
Studies
system identification
Testing
Uncertainty
Title Critical heat flux function approximation using genetic algorithms
URI https://ieeexplore.ieee.org/document/1420732
https://www.proquest.com/docview/911979368
https://www.proquest.com/docview/28004383
https://www.proquest.com/docview/896177558
Volume 52
WOSCitedRecordID wos000228367500006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-1578
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014505
  issn: 0018-9499
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLbGxAEOvBFlPHLgwIGyPtImOQJi4oAmJEDiVqVuOiaNDbEN8fNx0m6AYAdulZqolR3Hn-P4M8BJoMmaKcDxizQqfJ4j-iqS2g8w1VFuSbRy17XkVnS78ulJ3TXgbF4LY4xxl8_MuX10ufxihFN7VNYOeUQrkjbcJSHSqlZrnjHgSVB3KyADJhhf0_iEgWo_dO-rwxPytTLmPzyQa6nyax92zqWz_r_f2oC1GkSyi0rrm9Awwy1Y_UYtuA2Xsx4GzO62rBxMP5j1YVYPzBGJf_SrqkVmr773GC0kW8_I9KA3oqnPL-MdeOxcP1zd-HW_BB_jJJz4KFIudVwiz0OhpeSlEqEqy1QXUuXk63kuTU74wEQ8RR3rgsJqimBQYFroRMS70ByOhmYPWJwTDsEIDSYEWQqjBApNSKuQBMdMgB6cz2SYYU0mbntaDDIXVAQqI6HbFpdJVgndg9P5hNeKR2Px0G0r469hlXg9aM2UlNV2Ns6UzYKqOJUeHM_fkoHYrIcemtF0nEWy4mP1gC0YIRXBOJEkcv_vL7dgxRG2uvs6B9CcvE3NISzj-6Q_fjtyy_AT2Xbb3Q
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLYmQAIOvBFlPHLgwIFCH2mTHAGBQIwJiSFxq1I3BaSxIbYhfj5O2g0QcOAWqYlSOXH8OY4_A-wFmrSZHBy_SKPC5zmiryKp_QBTHeWWRCt3VUtaot2W9_fqpgEHk1wYY4x7fGYObdPF8os-juxV2VHII9qRdOBOJ5yaVbbWJGbAk6CuV0AqTEC-JvIJA3XUad9W1ydkbWXMv9kgV1Tlx0nszMv54v9-bAkWahjJjqt1X4aG6a3A_BdywVU4GVcxYPa8ZWV39M6sFbMrwRyV-PtTlbfI7OP3B0ZbyWY0Mt196NPQx-fBGtydn3VOL_y6YoKPcRIOfRQplzoukeeh0FLyUolQlWWqC6lysvY8lyYnhGAinqKOdUGONfkwKDAtdCLidZjq9XtmA1icExLBCA0mBFoKowQKTVirkATITIAeHI5lmGFNJ26rWnQz51YEKiOh2yKXSVYJ3YP9yYCXiknj766rVsaf3SrxetAcL1JWa9ogUzYOquJUerA7-UoqYuMeumf6o0EWyYqR1QP2Rw-pCMiJJJGbv8-8C7MXnetW1rpsXzVhztG3utc7WzA1fB2ZbZjBt-HT4HXHbckPbk_fJA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Critical+heat+flux+function+approximation+using+genetic+algorithms&rft.jtitle=IEEE+transactions+on+nuclear+science&rft.au=Yung-Keun+Kwon&rft.au=Byung-Ro+Moon&rft.au=Sung-Deok+Hong&rft.date=2005-04-01&rft.issn=0018-9499&rft.volume=52&rft.issue=2&rft.spage=535&rft.epage=545&rft_id=info:doi/10.1109%2FTNS.2005.846834&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNS_2005_846834
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9499&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9499&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9499&client=summon