Classification with Noisy Labels by Importance Reweighting

In this paper, we study a classification problem in which sample labels are randomly corrupted. In this scenario, there is an unobservable sample with noise-free labels. However, before being observed, the true labels are independently flipped with a probability <inline-formula><tex-math>...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on pattern analysis and machine intelligence Ročník 38; číslo 3; s. 447 - 461
Hlavní autoři: Liu, Tongliang, Tao, Dacheng
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.03.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0162-8828, 1939-3539, 2160-9292, 1939-3539
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper, we study a classification problem in which sample labels are randomly corrupted. In this scenario, there is an unobservable sample with noise-free labels. However, before being observed, the true labels are independently flipped with a probability <inline-formula><tex-math>\rho \in [0,0.5)</tex-math> <inline-graphic xlink:type="simple" xlink:href="tao-ieq1-2456899.gif"/> </inline-formula>, and the random label noise can be class-conditional. Here, we address two fundamental problems raised by this scenario. The first is how to best use the abundant surrogate loss functions designed for the traditional classification problem when there is label noise. We prove that any surrogate loss function can be used for classification with noisy labels by using importance reweighting, with consistency assurance that the label noise does not ultimately hinder the search for the optimal classifier of the noise-free sample. The other is the open problem of how to obtain the noise rate <inline-formula> <tex-math>\rho</tex-math> <inline-graphic xlink:type="simple" xlink:href="tao-ieq2-2456899.gif"/> </inline-formula>. We show that the rate is upper bounded by the conditional probability <inline-formula><tex-math> P(\hat{Y}|X)</tex-math> <inline-graphic xlink:type="simple" xlink:href="tao-ieq3-2456899.gif"/> </inline-formula> of the noisy sample. Consequently, the rate can be estimated, because the upper bound can be easily reached in classification problems. Experimental results on synthetic and real datasets confirm the efficiency of our methods.
AbstractList In this paper, we study a classification problem in which sample labels are randomly corrupted. In this scenario, there is an unobservable sample with noise-free labels. However, before being observed, the true labels are independently flipped with a probability ρ ∈ [0,0.5), and the random label noise can be class-conditional. Here, we address two fundamental problems raised by this scenario. The first is how to best use the abundant surrogate loss functions designed for the traditional classification problem when there is label noise. We prove that any surrogate loss function can be used for classification with noisy labels by using importance reweighting, with consistency assurance that the label noise does not ultimately hinder the search for the optimal classifier of the noise-free sample. The other is the open problem of how to obtain the noise rate ρ. We show that the rate is upper bounded by the conditional probability P(∧Y|X) of the noisy sample. Consequently, the rate can be estimated, because the upper bound can be easily reached in classification problems. Experimental results on synthetic and real datasets confirm the efficiency of our methods.In this paper, we study a classification problem in which sample labels are randomly corrupted. In this scenario, there is an unobservable sample with noise-free labels. However, before being observed, the true labels are independently flipped with a probability ρ ∈ [0,0.5), and the random label noise can be class-conditional. Here, we address two fundamental problems raised by this scenario. The first is how to best use the abundant surrogate loss functions designed for the traditional classification problem when there is label noise. We prove that any surrogate loss function can be used for classification with noisy labels by using importance reweighting, with consistency assurance that the label noise does not ultimately hinder the search for the optimal classifier of the noise-free sample. The other is the open problem of how to obtain the noise rate ρ. We show that the rate is upper bounded by the conditional probability P(∧Y|X) of the noisy sample. Consequently, the rate can be estimated, because the upper bound can be easily reached in classification problems. Experimental results on synthetic and real datasets confirm the efficiency of our methods.
In this paper, we study a classification problem in which sample labels are randomly corrupted. In this scenario, there is an unobservable sample with noise-free labels. However, before being observed, the true labels are independently flipped with a probability <inline-formula><tex-math>\rho \in [0,0.5)</tex-math> <inline-graphic xlink:type="simple" xlink:href="tao-ieq1-2456899.gif"/> </inline-formula>, and the random label noise can be class-conditional. Here, we address two fundamental problems raised by this scenario. The first is how to best use the abundant surrogate loss functions designed for the traditional classification problem when there is label noise. We prove that any surrogate loss function can be used for classification with noisy labels by using importance reweighting, with consistency assurance that the label noise does not ultimately hinder the search for the optimal classifier of the noise-free sample. The other is the open problem of how to obtain the noise rate <inline-formula> <tex-math>\rho</tex-math> <inline-graphic xlink:type="simple" xlink:href="tao-ieq2-2456899.gif"/> </inline-formula>. We show that the rate is upper bounded by the conditional probability <inline-formula><tex-math> P(\hat{Y}|X)</tex-math> <inline-graphic xlink:type="simple" xlink:href="tao-ieq3-2456899.gif"/> </inline-formula> of the noisy sample. Consequently, the rate can be estimated, because the upper bound can be easily reached in classification problems. Experimental results on synthetic and real datasets confirm the efficiency of our methods.
In this paper, we study a classification problem in which sample labels are randomly corrupted. In this scenario, there is an unobservable sample with noise-free labels. However, before being observed, the true labels are independently flipped with a probability ρ ∈ [0,0.5), and the random label noise can be class-conditional. Here, we address two fundamental problems raised by this scenario. The first is how to best use the abundant surrogate loss functions designed for the traditional classification problem when there is label noise. We prove that any surrogate loss function can be used for classification with noisy labels by using importance reweighting, with consistency assurance that the label noise does not ultimately hinder the search for the optimal classifier of the noise-free sample. The other is the open problem of how to obtain the noise rate ρ. We show that the rate is upper bounded by the conditional probability P(∧Y|X) of the noisy sample. Consequently, the rate can be estimated, because the upper bound can be easily reached in classification problems. Experimental results on synthetic and real datasets confirm the efficiency of our methods.
In this paper, we study a classification problem in which sample labels are randomly corrupted. In this scenario, there is an unobservable sample with noise-free labels. However, before being observed, the true labels are independently flipped with a probability [Formula Omitted], and the random label noise can be class-conditional. Here, we address two fundamental problems raised by this scenario. The first is how to best use the abundant surrogate loss functions designed for the traditional classification problem when there is label noise. We prove that any surrogate loss function can be used for classification with noisy labels by using importance reweighting, with consistency assurance that the label noise does not ultimately hinder the search for the optimal classifier of the noise-free sample. The other is the open problem of how to obtain the noise rate [Formula Omitted]. We show that the rate is upper bounded by the conditional probability [Formula Omitted] of the noisy sample. Consequently, the rate can be estimated, because the upper bound can be easily reached in classification problems. Experimental results on synthetic and real datasets confirm the efficiency of our methods.
Author Liu, Tongliang
Tao, Dacheng
Author_xml – sequence: 1
  givenname: Tongliang
  surname: Liu
  fullname: Liu, Tongliang
  email: tliang.liu@gmail.com
  organization: Centre for Quantum Computation & Intelligent Systems and the Faculty of Engineering and Information Technology, University of Technology, Sydney, 81 Broadway Street, Ultimo, NSW 2007, Australia
– sequence: 2
  givenname: Dacheng
  surname: Tao
  fullname: Tao, Dacheng
  email: dacheng.tao@uts.edu.au
  organization: Centre for Quantum Computation & Intelligent Systems and the Faculty of Engineering and Information Technology, University of Technology, Sydney, 81 Broadway Street, Ultimo, NSW 2007, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27046490$$D View this record in MEDLINE/PubMed
BookMark eNp9kMlOwzAQQC1URMvyAyChSFy4pHiLY3OrKpZKZRGCc2Q7Y-oqS4kTof49KS0cOHDy5b2Z8TtEg6quAKFTgseEYHX1-jx5mI0pJsmY8kRIpfbQiBKBY0UVHaARJoLGUlI5RIchLDEmPMHsAA1pirngCo_Q9bTQIXjnrW59XUWfvl1Ej7UP62iuDRQhMutoVq7qptWVhegFPsG_L1pfvR-jfaeLACe79wi93d68Tu_j-dPdbDqZx5YlpI0tVc5yYE4rKRQz3CXUyFwzh1Ojmci1A6WtTAFyK4RlxnJDnHGA85xix47Q5Xbuqqk_OghtVvpgoSh0BXUXMpKmivc_E6xHL_6gy7prqv66DSU5TURCeup8R3WmhDxbNb7UzTr7qdIDdAvYpg6hAfeLEJxt0mff6bNN-myXvpfkH8n69jtq22hf_K-ebVUPAL-7UpIogjH7AmBjkTc
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1016_j_neucom_2018_11_009
crossref_primary_10_1088_1361_6560_ad4083
crossref_primary_10_1109_TNNLS_2016_2598744
crossref_primary_10_1016_j_neucom_2019_05_019
crossref_primary_10_1109_ACCESS_2019_2918794
crossref_primary_10_1007_s11042_018_6277_x
crossref_primary_10_1109_ACCESS_2017_2767907
crossref_primary_10_1007_s11081_025_10014_z
crossref_primary_10_1016_j_ins_2023_119644
crossref_primary_10_1007_s11263_024_02205_5
crossref_primary_10_1109_TPAMI_2024_3462996
crossref_primary_10_1007_s11063_017_9721_4
crossref_primary_10_1109_LGRS_2017_2764042
crossref_primary_10_1155_2018_5381962
crossref_primary_10_1109_TIP_2024_3374221
crossref_primary_10_1016_j_knosys_2023_110819
crossref_primary_10_1016_j_epsr_2019_03_009
crossref_primary_10_1109_TCYB_2016_2533430
crossref_primary_10_1016_j_neunet_2025_107464
crossref_primary_10_1109_TCYB_2018_2816984
crossref_primary_10_1109_TKDE_2021_3049540
crossref_primary_10_1016_j_fmre_2022_09_019
crossref_primary_10_1109_TIP_2015_2495116
crossref_primary_10_1088_1742_6596_2433_1_012039
crossref_primary_10_1002_mp_70007
crossref_primary_10_1109_TIP_2016_2598654
crossref_primary_10_1109_TNNLS_2022_3190528
crossref_primary_10_1109_TMM_2016_2608780
crossref_primary_10_1109_TPAMI_2024_3360623
crossref_primary_10_1109_TETCI_2019_2917704
crossref_primary_10_3390_rs12182957
crossref_primary_10_1109_TNNLS_2023_3271140
crossref_primary_10_1007_s11263_018_1075_5
crossref_primary_10_1109_TIP_2016_2549360
crossref_primary_10_1109_TNNLS_2020_3009417
crossref_primary_10_1109_TPAMI_2017_2772235
crossref_primary_10_1016_j_neunet_2024_107041
crossref_primary_10_1109_JSTARS_2020_2994162
crossref_primary_10_1109_TIP_2016_2570553
crossref_primary_10_1002_sim_10315
crossref_primary_10_1145_2943785
crossref_primary_10_1016_j_patcog_2021_108198
crossref_primary_10_1109_TIP_2016_2613686
crossref_primary_10_1016_j_swevo_2017_11_003
crossref_primary_10_1109_TPAMI_2022_3180545
crossref_primary_10_1016_j_neunet_2020_02_010
crossref_primary_10_1109_TNNLS_2020_3047046
crossref_primary_10_1007_s11227_020_03480_y
crossref_primary_10_1016_j_neucom_2022_01_031
crossref_primary_10_1109_TCYB_2019_2950560
crossref_primary_10_1109_TIE_2016_2552147
crossref_primary_10_1016_j_image_2017_05_001
crossref_primary_10_1016_j_eswa_2017_09_057
crossref_primary_10_1109_TNNLS_2017_2682179
crossref_primary_10_1007_s10994_020_05877_5
crossref_primary_10_1016_j_neunet_2024_107044
crossref_primary_10_1109_TMI_2022_3219126
crossref_primary_10_1109_TNNLS_2021_3111871
crossref_primary_10_1007_s00138_018_0941_z
crossref_primary_10_1109_TGRS_2018_2861992
crossref_primary_10_1016_j_ins_2016_02_030
crossref_primary_10_1007_s10994_021_06081_9
crossref_primary_10_1038_s41598_021_84499_w
crossref_primary_10_1109_TPAMI_2022_3178690
crossref_primary_10_1109_LSP_2024_3496584
crossref_primary_10_1109_TIP_2018_2877939
crossref_primary_10_1109_TMM_2024_3390113
crossref_primary_10_1109_TPAMI_2025_3536845
crossref_primary_10_3390_rs13214194
crossref_primary_10_1109_TCYB_2016_2626295
crossref_primary_10_1145_3749177
crossref_primary_10_1016_j_patcog_2019_01_033
crossref_primary_10_1016_j_artint_2025_104363
crossref_primary_10_1016_j_patcog_2022_109210
crossref_primary_10_3390_rs15102543
crossref_primary_10_1109_TNNLS_2021_3105984
crossref_primary_10_1016_j_knosys_2025_113783
crossref_primary_10_1007_s10115_020_01466_z
crossref_primary_10_1109_TIFS_2021_3058771
crossref_primary_10_1109_TPAMI_2022_3141240
crossref_primary_10_1109_ACCESS_2025_3526332
crossref_primary_10_1007_s11042_016_3370_x
crossref_primary_10_1007_s00357_023_09430_6
crossref_primary_10_1109_JSTARS_2022_3230625
crossref_primary_10_1145_3365672
crossref_primary_10_1016_j_foodres_2025_116741
crossref_primary_10_3233_JIFS_200432
crossref_primary_10_1007_s11704_021_1208_9
crossref_primary_10_1631_FITEE_2200514
crossref_primary_10_1080_01621459_2021_2016423
crossref_primary_10_3389_fnbot_2022_1083835
crossref_primary_10_1109_TNNLS_2017_2699783
crossref_primary_10_1007_s11263_024_02012_y
crossref_primary_10_1109_TIP_2016_2556940
crossref_primary_10_1186_s12859_015_0844_1
crossref_primary_10_1109_TCSVT_2016_2539778
crossref_primary_10_1109_TVCG_2023_3345340
crossref_primary_10_1007_s11063_020_10346_0
crossref_primary_10_1109_TCYB_2015_2496974
crossref_primary_10_1007_s11042_018_5703_4
crossref_primary_10_1109_TNNLS_2024_3417433
crossref_primary_10_1016_j_optlaseng_2023_107798
crossref_primary_10_1007_s10489_025_06594_z
crossref_primary_10_1016_j_ins_2017_01_011
crossref_primary_10_1109_TPAMI_2017_2751607
crossref_primary_10_1016_j_neunet_2021_07_024
crossref_primary_10_1109_TNNLS_2019_2935384
crossref_primary_10_1016_j_inffus_2024_102702
crossref_primary_10_1109_TKDE_2023_3328645
crossref_primary_10_1109_TGRS_2015_2506612
crossref_primary_10_1109_TIP_2019_2933724
crossref_primary_10_1109_TPAMI_2021_3094662
crossref_primary_10_1145_2956556
crossref_primary_10_1109_TNNLS_2016_2643286
crossref_primary_10_3390_rs16193568
crossref_primary_10_1214_16_EJS1193
crossref_primary_10_3390_e21100924
crossref_primary_10_1109_TCSVT_2022_3220669
crossref_primary_10_1109_TIP_2015_2473662
crossref_primary_10_1109_TPAMI_2021_3114089
crossref_primary_10_1109_TVT_2021_3066210
crossref_primary_10_1109_JAS_2023_124083
crossref_primary_10_1016_j_patrec_2018_09_008
crossref_primary_10_1016_j_media_2020_101759
crossref_primary_10_1007_s11760_024_03591_6
crossref_primary_10_1109_ACCESS_2020_3022672
crossref_primary_10_1109_ACCESS_2021_3109989
crossref_primary_10_1007_s12559_016_9446_0
crossref_primary_10_1007_s40745_024_00552_1
crossref_primary_10_1007_s00521_019_04627_6
crossref_primary_10_1016_j_jvcir_2016_03_007
crossref_primary_10_1109_TCYB_2016_2616119
crossref_primary_10_1016_j_knosys_2021_106771
crossref_primary_10_1109_TIP_2016_2573581
crossref_primary_10_1109_TMM_2021_3137752
crossref_primary_10_1109_TPAMI_2023_3301876
crossref_primary_10_1109_TIP_2019_2902115
crossref_primary_10_1111_coin_12638
crossref_primary_10_1109_ACCESS_2020_2968934
crossref_primary_10_1007_s10115_025_02595_z
crossref_primary_10_1016_j_artint_2021_103451
crossref_primary_10_1109_TPAMI_2024_3489217
crossref_primary_10_1007_s10845_020_01608_8
crossref_primary_10_1016_j_ins_2021_08_008
crossref_primary_10_1007_s11222_023_10283_7
crossref_primary_10_1109_TNNLS_2017_2734812
crossref_primary_10_1109_TPAMI_2023_3247629
crossref_primary_10_1109_TII_2022_3229130
crossref_primary_10_1109_JIOT_2016_2561962
crossref_primary_10_1007_s10707_020_00399_7
crossref_primary_10_1007_s11704_023_2709_5
crossref_primary_10_1007_s00530_025_01701_z
crossref_primary_10_1109_TCYB_2023_3339629
crossref_primary_10_1016_j_patcog_2025_111681
crossref_primary_10_1155_2018_2179049
crossref_primary_10_1007_s42967_020_00084_4
crossref_primary_10_1109_ACCESS_2021_3085114
crossref_primary_10_1109_TIP_2017_2651372
crossref_primary_10_1016_j_patcog_2024_111132
crossref_primary_10_1109_TSMC_2020_3018102
crossref_primary_10_1016_j_neucom_2022_02_030
crossref_primary_10_1109_TCYB_2019_2953337
crossref_primary_10_1109_ACCESS_2020_3041873
crossref_primary_10_1109_TIP_2016_2564638
crossref_primary_10_1007_s10994_024_06678_w
crossref_primary_10_1109_TCBB_2022_3224934
crossref_primary_10_1109_COMST_2022_3200740
crossref_primary_10_1080_00401706_2022_2078413
crossref_primary_10_1109_TCSVT_2022_3231887
crossref_primary_10_1145_3644391
crossref_primary_10_1016_j_future_2023_03_007
crossref_primary_10_1109_LGRS_2017_2755541
crossref_primary_10_1145_3627157
crossref_primary_10_1109_TPAMI_2023_3347850
crossref_primary_10_1109_TCAD_2022_3218239
crossref_primary_10_1109_TIP_2018_2881928
crossref_primary_10_1109_TMI_2021_3091178
crossref_primary_10_1109_TMM_2022_3181439
crossref_primary_10_1016_j_neunet_2021_06_012
crossref_primary_10_1109_JPROC_2020_2989782
crossref_primary_10_1109_TCSVT_2024_3371513
crossref_primary_10_1016_j_displa_2023_102370
crossref_primary_10_3233_IDA_230818
crossref_primary_10_1016_j_asoc_2024_111400
crossref_primary_10_1016_j_knosys_2025_113499
crossref_primary_10_1016_j_ins_2016_08_040
crossref_primary_10_3233_IDA_184024
crossref_primary_10_1007_s11063_018_9963_9
crossref_primary_10_1109_TPAMI_2023_3275249
crossref_primary_10_1109_TPAMI_2025_3584051
crossref_primary_10_1007_s11063_016_9542_x
crossref_primary_10_1109_TNNLS_2018_2792062
crossref_primary_10_1016_j_sigpro_2017_09_002
crossref_primary_10_1109_TKDE_2017_2654250
crossref_primary_10_1109_TNNLS_2019_2899045
crossref_primary_10_1145_3342241
crossref_primary_10_1109_TIP_2021_3089942
crossref_primary_10_1109_TMM_2021_3115635
crossref_primary_10_1145_3687468
crossref_primary_10_1109_TIP_2016_2612883
crossref_primary_10_1109_TCYB_2016_2608906
crossref_primary_10_1109_TPAMI_2024_3355402
crossref_primary_10_1016_j_isprsjprs_2022_03_005
crossref_primary_10_1109_TNNLS_2022_3152527
crossref_primary_10_1109_TIP_2024_3430539
crossref_primary_10_1109_TKDE_2023_3313604
crossref_primary_10_1016_j_neunet_2025_107977
crossref_primary_10_1109_TMC_2025_3558874
crossref_primary_10_1109_ACCESS_2020_3019465
crossref_primary_10_1145_3429447
crossref_primary_10_1145_3665895
crossref_primary_10_1016_j_arcontrol_2018_09_003
crossref_primary_10_1016_j_jvcir_2016_10_001
crossref_primary_10_1007_s11263_024_02324_z
crossref_primary_10_1016_j_neucom_2020_03_002
crossref_primary_10_3390_app122211406
crossref_primary_10_1109_TIP_2016_2614132
crossref_primary_10_1109_TIP_2017_2722224
crossref_primary_10_1109_TPAMI_2024_3357814
crossref_primary_10_1109_JSTARS_2022_3168799
crossref_primary_10_1109_TCYB_2017_2739423
crossref_primary_10_1109_TPAMI_2020_3044997
crossref_primary_10_1109_TPAMI_2023_3271451
crossref_primary_10_3390_math10111892
crossref_primary_10_1109_JBHI_2020_3008601
crossref_primary_10_1007_s11263_025_02494_4
crossref_primary_10_1016_j_engappai_2023_107714
crossref_primary_10_1109_TCSVT_2025_3526449
crossref_primary_10_1109_TIP_2016_2563981
crossref_primary_10_1007_s10115_021_01643_8
crossref_primary_10_1007_s10618_018_0592_8
crossref_primary_10_1016_j_eswa_2023_122506
crossref_primary_10_1016_j_neucom_2016_09_016
crossref_primary_10_1117_1_JEI_33_1_013055
crossref_primary_10_1016_j_imavis_2020_104000
crossref_primary_10_1109_TCSVT_2023_3321733
crossref_primary_10_1109_TMM_2022_3152567
crossref_primary_10_1016_j_patcog_2023_110072
crossref_primary_10_1145_3551636
crossref_primary_10_1109_TIP_2017_2771408
crossref_primary_10_1093_jamia_ocae108
crossref_primary_10_1016_j_neunet_2022_08_014
crossref_primary_10_1016_j_neucom_2016_10_073
crossref_primary_10_1016_j_artmed_2018_08_001
crossref_primary_10_1016_j_est_2024_114928
crossref_primary_10_1007_s11263_025_02467_7
crossref_primary_10_1109_TIP_2016_2553446
crossref_primary_10_1109_TIP_2018_2886807
crossref_primary_10_1080_09500340_2017_1380854
crossref_primary_10_1109_TMM_2015_2477042
crossref_primary_10_1109_TNNLS_2021_3073248
crossref_primary_10_1145_3644076
crossref_primary_10_1002_mp_13966
crossref_primary_10_1109_TMI_2024_3353762
crossref_primary_10_1109_TPAMI_2020_3046486
crossref_primary_10_1016_j_asoc_2018_10_035
crossref_primary_10_1109_TCSVT_2025_3546031
crossref_primary_10_1007_s11045_017_0505_9
crossref_primary_10_1016_j_patcog_2021_108467
crossref_primary_10_1109_TPAMI_2024_3382138
crossref_primary_10_1371_journal_pone_0295678
crossref_primary_10_1016_j_sigpro_2018_01_013
crossref_primary_10_1016_j_patrec_2025_04_039
crossref_primary_10_3390_math10203736
crossref_primary_10_1109_TPAMI_2016_2578323
crossref_primary_10_1109_TGRS_2020_3023112
crossref_primary_10_1016_j_imavis_2017_09_004
crossref_primary_10_1109_TNNLS_2018_2836969
crossref_primary_10_1016_j_compeleceng_2024_109156
crossref_primary_10_1109_ACCESS_2025_3548510
crossref_primary_10_1080_00036846_2021_1958141
crossref_primary_10_1145_3643675
crossref_primary_10_1049_iet_cvi_2018_5096
crossref_primary_10_1007_s00138_018_0928_9
crossref_primary_10_1093_biomet_asaa011
crossref_primary_10_1109_TCYB_2024_3357213
crossref_primary_10_1007_s40747_024_01360_z
crossref_primary_10_1016_j_eswa_2024_125551
crossref_primary_10_1016_j_watres_2023_120773
crossref_primary_10_1109_JSEN_2021_3140081
crossref_primary_10_1109_TNNLS_2016_2551724
crossref_primary_10_1109_TCYB_2016_2572306
crossref_primary_10_1016_j_sigpro_2017_01_021
crossref_primary_10_1016_j_neucom_2016_08_018
crossref_primary_10_1109_TIP_2019_2893066
crossref_primary_10_1109_TMM_2021_3056879
crossref_primary_10_1016_j_ins_2023_119852
crossref_primary_10_1016_j_patcog_2024_110902
crossref_primary_10_1007_s11432_015_5424_5
crossref_primary_10_1109_TCYB_2017_2774266
crossref_primary_10_1109_TKDE_2018_2873791
crossref_primary_10_1007_s10618_018_0603_9
crossref_primary_10_1007_s10994_023_06478_8
crossref_primary_10_1109_TCYB_2021_3070005
crossref_primary_10_3390_w17030401
crossref_primary_10_1007_s11263_024_02064_0
crossref_primary_10_1109_TKDE_2025_3530916
crossref_primary_10_1080_01431161_2024_2339201
crossref_primary_10_1109_TNNLS_2023_3347633
crossref_primary_10_1109_TNSE_2024_3483295
crossref_primary_10_1016_j_ress_2025_111369
crossref_primary_10_1109_JSTARS_2019_2954865
crossref_primary_10_1016_j_procs_2023_08_049
crossref_primary_10_1109_TMM_2021_3116417
crossref_primary_10_1109_TNNLS_2022_3202989
crossref_primary_10_1007_s10044_023_01180_w
crossref_primary_10_1007_s11063_016_9550_x
crossref_primary_10_1109_TAFFC_2021_3131621
crossref_primary_10_1109_TPAMI_2020_3013379
crossref_primary_10_1103_PhysRevApplied_14_064026
crossref_primary_10_1016_j_patcog_2022_109080
crossref_primary_10_1109_TPAMI_2024_3466182
crossref_primary_10_1109_TCYB_2019_2891577
crossref_primary_10_1109_TBDATA_2016_2515640
crossref_primary_10_1109_TKDE_2021_3061215
crossref_primary_10_1016_j_knosys_2020_106652
crossref_primary_10_1109_TIP_2016_2615423
crossref_primary_10_1109_TMM_2016_2597007
crossref_primary_10_1109_TPAMI_2023_3296156
crossref_primary_10_1109_TKDE_2023_3312109
crossref_primary_10_1109_TPAMI_2024_3388209
crossref_primary_10_1038_s41598_023_43864_7
crossref_primary_10_1109_TIP_2016_2612829
crossref_primary_10_3390_rs13091689
crossref_primary_10_1109_ACCESS_2020_2974779
crossref_primary_10_1007_s00521_020_05343_2
crossref_primary_10_1093_jamia_ocz170
crossref_primary_10_1109_TPAMI_2021_3094362
crossref_primary_10_1109_TPAMI_2023_3236459
crossref_primary_10_1016_j_knosys_2024_112101
crossref_primary_10_1016_j_knosys_2021_107234
crossref_primary_10_1109_TPAMI_2019_2941684
crossref_primary_10_1016_j_cmpb_2021_106327
crossref_primary_10_1016_j_knosys_2017_09_003
crossref_primary_10_1109_TMI_2023_3279110
crossref_primary_10_1109_TIP_2018_2812083
crossref_primary_10_1155_2017_1735176
crossref_primary_10_1109_TIP_2016_2612827
crossref_primary_10_3390_rs11091116
crossref_primary_10_1109_TIP_2016_2593344
crossref_primary_10_1109_TKDE_2023_3279139
crossref_primary_10_3390_make7030095
crossref_primary_10_1007_s11042_017_5172_1
crossref_primary_10_1002_mp_15799
crossref_primary_10_1007_s10994_025_06841_x
crossref_primary_10_1109_ACCESS_2021_3088901
crossref_primary_10_1016_j_autcon_2018_11_013
crossref_primary_10_1109_TNNLS_2021_3131377
crossref_primary_10_1007_s13369_020_04869_w
crossref_primary_10_1016_j_ijar_2021_04_002
crossref_primary_10_1109_TCYB_2016_2521428
crossref_primary_10_1016_j_neucom_2025_130985
crossref_primary_10_1016_j_sigpro_2017_05_030
crossref_primary_10_1145_3641285
crossref_primary_10_1016_j_eswa_2023_120013
crossref_primary_10_1007_s11517_024_03035_w
crossref_primary_10_1016_j_knosys_2021_107907
crossref_primary_10_1109_TPAMI_2024_3387349
Cites_doi 10.1006/jcom.2002.0642
10.1145/1968.1972
10.1587/transfun.E93.A.787
10.1214/12-EJS699
10.1007/s10107-004-0552-5
10.1007/978-1-4757-3264-1
10.1198/016214505000000907
10.1145/324133.324221
10.1007/BF00116829
10.1109/TIT.2011.2164053
10.1016/S0304-3975(01)00403-0
10.1109/TPAMI.2010.220
10.1111/j.1467-9868.2005.00503.x
10.1214/009053605000000282
10.1007/978-3-540-75225-7_27
10.1109/TPAMI.2008.225
10.1109/TSMCB.2012.2223460
10.1109/SFCS.1997.646140
10.1145/180139.181176
10.1016/0020-0190(96)00006-3
10.1007/PL00013833
10.1137/090763184
10.1109/TPAMI.2009.57
10.1162/NECO_a_00442
10.1145/293347.293351
10.1109/TSP.2007.896065
10.1137/0222052
10.1109/TNNLS.2013.2292894
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TPAMI.2015.2456899
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2160-9292
1939-3539
EndPage 461
ExternalDocumentID 4010178461
27046490
10_1109_TPAMI_2015_2456899
7159100
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Australian Research Council Projects
  grantid: DP-140102164; FT-130101457
  funderid: 10.13039/501100000923
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AGSQL
AHBIQ
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
~02
AAYXX
CITATION
5VS
9M8
ABFSI
ADRHT
AETEA
AETIX
AI.
AIBXA
AKJIK
ALLEH
FA8
H~9
IBMZZ
ICLAB
IFJZH
NPM
RIG
RNI
RZB
VH1
XJT
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c351t-c29fc4e3fa98693b4f52b8da3f07ba36dafe9ac87eedc66c3bc4b1fbfe0dd20f3
IEDL.DBID RIE
ISICitedReferencesCount 673
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000370738900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0162-8828
1939-3539
IngestDate Wed Oct 01 14:45:54 EDT 2025
Sun Nov 09 07:38:33 EST 2025
Mon Jul 21 06:01:45 EDT 2025
Sat Nov 29 05:15:56 EST 2025
Tue Nov 18 21:58:06 EST 2025
Wed Aug 27 02:22:29 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords label noise
noise rate estimation
importance reweighting
consistency
Classification
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-c29fc4e3fa98693b4f52b8da3f07ba36dafe9ac87eedc66c3bc4b1fbfe0dd20f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 27046490
PQID 1778425651
PQPubID 85458
PageCount 15
ParticipantIDs crossref_primary_10_1109_TPAMI_2015_2456899
proquest_journals_1778425651
pubmed_primary_27046490
crossref_citationtrail_10_1109_TPAMI_2015_2456899
proquest_miscellaneous_1779414563
ieee_primary_7159100
PublicationCentury 2000
PublicationDate 2016-March-1
2016-3-1
2016-Mar
20160301
PublicationDateYYYYMMDD 2016-03-01
PublicationDate_xml – month: 03
  year: 2016
  text: 2016-March-1
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2016
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref15
gretton (ref39) 2009
ref14
ref11
moore (ref29) 0
belkin (ref13) 2006; 7
ref16
ref19
ref18
yang (ref6) 0
ref51
biggio (ref5) 0
vapnik (ref45) 0
klivans (ref22) 2009; 10
lawrence (ref4) 0
ref47
ref42
he (ref31) 2011; 33
bartlett (ref41) 2003; 3
ref44
ref43
anthony (ref37) 2009
ref8
crammer (ref32) 0
ref7
long (ref21) 0
ref9
ref3
scott (ref33) 0
ref36
sun (ref50) 0
mohri (ref40) 2012
ref30
huang (ref48) 0
sugiyama (ref46) 2010
ref2
ref1
ref38
natarajan (ref10) 0
sugiyama (ref52) 0
ref24
ref23
ref26
khardon (ref28) 2007; 8
ref25
kanamori (ref49) 2009; 10
ref20
ref27
blanchard (ref34) 2010; 11
gong (ref17) 0
scott (ref35) 0
References_xml – year: 0
  ident: ref29
  publication-title: Robust Regression Using Maximum-Likelihood Weighting and Assuming Cauchy-Distributed Random Error
– volume: 11
  start-page: 2973
  year: 2010
  ident: ref34
  article-title: Semi-supervised novelty detection
  publication-title: J Mach Learn Res
– start-page: 1433
  year: 0
  ident: ref52
  article-title: Direct importance estimation with model selection and its application to covariate shift adaptation
  publication-title: Proc Adv Neural Inf Process Syst 20
– ident: ref43
  doi: 10.1006/jcom.2002.0642
– start-page: 306
  year: 0
  ident: ref4
  article-title: Estimating a kernel Fisher discriminant in the presence of label noise
  publication-title: Proc 8th Int Conf Mach Learn
– ident: ref2
  doi: 10.1145/1968.1972
– volume: 10
  start-page: 2715
  year: 2009
  ident: ref22
  article-title: Learning halfspaces with malicious noise
  publication-title: J Mach Learn Res
– ident: ref47
  doi: 10.1587/transfun.E93.A.787
– ident: ref12
  doi: 10.1214/12-EJS699
– ident: ref16
  doi: 10.1007/s10107-004-0552-5
– start-page: 97
  year: 0
  ident: ref5
  article-title: Support vector machines under adversarial label noise
  publication-title: Proc Asian Conf Mach Learn
– ident: ref36
  doi: 10.1007/978-1-4757-3264-1
– volume: 8
  start-page: 227
  year: 2007
  ident: ref28
  article-title: Noise tolerant variants of the perceptron algorithm
  publication-title: J Mach Learn Res
– ident: ref11
  doi: 10.1198/016214505000000907
– ident: ref19
  doi: 10.1145/324133.324221
– volume: 3
  start-page: 463
  year: 2003
  ident: ref41
  article-title: Rademacher and Gaussian complexities: Risk bounds and structural results
  publication-title: J Mach Learn Res
– ident: ref1
  doi: 10.1007/BF00116829
– ident: ref23
  doi: 10.1109/TIT.2011.2164053
– ident: ref20
  doi: 10.1016/S0304-3975(01)00403-0
– start-page: 838
  year: 0
  ident: ref35
  article-title: A rate of convergence for mixture proportion estimation, with application to learning from noisy labels
  publication-title: Proc 18th Int Conf Artif Intell Statist
– volume: 33
  start-page: 1561
  year: 2011
  ident: ref31
  article-title: Maximum correntropy criterion for robust face recognition
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2010.220
– start-page: 91
  year: 0
  ident: ref21
  article-title: Learning large-margin halfspaces with more malicious noise
  publication-title: Proc 25th Annu Conf Neural Inf Process Syst
– ident: ref14
  doi: 10.1111/j.1467-9868.2005.00503.x
– ident: ref42
  doi: 10.1214/009053605000000282
– start-page: 1196
  year: 0
  ident: ref10
  article-title: Learning with noisy labels
  publication-title: Proc Neural Inf Process Syst
– ident: ref27
  doi: 10.1007/978-3-540-75225-7_27
– start-page: 37
  year: 0
  ident: ref17
  article-title: A general iterative shrinkage and thresholding algorithm for non-convex regularized optimization problems
  publication-title: Proc Int Conf Mach Learn
– start-page: 601
  year: 0
  ident: ref48
  article-title: Correcting sample selection bias by unlabeled data
  publication-title: Proc Adv Neural Inf Process Syst 19
– start-page: 489
  year: 0
  ident: ref33
  article-title: Classification with asymmetric label noise: Consistency and maximal denoising
  publication-title: Proc Conf Learn Theory
– ident: ref51
  doi: 10.1109/TPAMI.2008.225
– ident: ref9
  doi: 10.1109/TSMCB.2012.2223460
– year: 2012
  ident: ref40
  publication-title: Foundations of Machine Learning
– ident: ref25
  doi: 10.1109/SFCS.1997.646140
– start-page: 10
  year: 2010
  ident: ref46
  article-title: Density ratio estimation: A comprehensive review
  publication-title: RIMS Kokyuroku
– volume: 7
  start-page: 2399
  year: 2006
  ident: ref13
  article-title: Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
  publication-title: J Mach Learn Res
– year: 0
  ident: ref45
  article-title: Constructive setting of the density ratio estimation problem and its rigorous solution
  publication-title: arXiv preprint arXiv 1306 0407
– ident: ref24
  doi: 10.1145/180139.181176
– year: 2009
  ident: ref37
  publication-title: Neural Network Learning Theoretical Foundations
– volume: 10
  start-page: 1391
  year: 2009
  ident: ref49
  article-title: A least-squares approach to direct importance estimation
  publication-title: J Mach Learn Res
– ident: ref8
  doi: 10.1016/0020-0190(96)00006-3
– start-page: 505
  year: 0
  ident: ref50
  article-title: A two-stage weighting framework for multi-source domain adaptation
  publication-title: Proc Adv Neural Inf Process Syst 24
– ident: ref26
  doi: 10.1007/PL00013833
– ident: ref15
  doi: 10.1137/090763184
– ident: ref38
  doi: 10.1109/TPAMI.2009.57
– ident: ref44
  doi: 10.1162/NECO_a_00442
– ident: ref3
  doi: 10.1145/293347.293351
– start-page: 131
  year: 2009
  ident: ref39
  article-title: Covariate shift by kernel mean matching
  publication-title: Dataset Shift in Machine Learning
– start-page: 451
  year: 0
  ident: ref32
  article-title: Learning via Gaussian herding
  publication-title: Proc Adv Neural Inf Process Syst 23
– ident: ref30
  doi: 10.1109/TSP.2007.896065
– ident: ref18
  doi: 10.1137/0222052
– start-page: 233
  year: 0
  ident: ref6
  article-title: Multiple kernel learning from noisy labels by stochastic programming
  publication-title: Proc 29th Int Conf Mach Learn
– ident: ref7
  doi: 10.1109/TNNLS.2013.2292894
SSID ssj0014503
Score 2.665921
Snippet In this paper, we study a classification problem in which sample labels are randomly corrupted. In this scenario, there is an unobservable sample with...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 447
SubjectTerms Algorithm design and analysis
Classification
consistency
Convergence
Estimation
importance reweighting
Kernel
label noise
Noise
Noise measurement
noise rate estimation
Robustness
Title Classification with Noisy Labels by Importance Reweighting
URI https://ieeexplore.ieee.org/document/7159100
https://www.ncbi.nlm.nih.gov/pubmed/27046490
https://www.proquest.com/docview/1778425651
https://www.proquest.com/docview/1779414563
Volume 38
WOSCitedRecordID wos000370738900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2160-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014503
  issn: 0162-8828
  databaseCode: RIE
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS-QwEB9U7uF8OE-9j6onEXzzqu2mTRrf5LhF4VxEFPat5GMCgu4e7u4d-987ST_wQQXfCk3akpnp_Ca_yQzAoVGVLiQPrC4WaaHQpFWlypRro5AQqVOZi80m5GhUjcfqagV-9mdhEDEmn-FxuIxcvpvaRdgqO5Hke_OMAvRVKWVzVqtnDIoydkEmBEMWTmFEd0AmUyc3V2eXFyGLqzwONB9FGKEEsAykXvgVP_NHscHK61gz-pzhxvu-9jN8arElO2uUYRNWcLIFG13fBtaa8RasPytCuA2nsS9myBiKQmJhZ5aNpnezJfujDblOZpbs4iHidJrOrvF_3E6lyV_gdvj75td52nZUSC0v83lqB8rbArnXqhKKm8KXA1M5zX0mjebCaY9K20qS57RCWG5sYXJvPGbODTLPv8LaZDrB78AcAR9CP8Z5pBCTRE4wHSmeFl66zAibQN6ta23bcuOh68V9HcOOTNVRLHUQS92KJYGjfs7fptjGm6O3w6L3I9v1TmCvE1_d2uOszqUMfKMo8wQO-ttkSYEe0ROcLuIYVZAeCZ7At0bs_bM7bdl5-Z278JG-TDS5aXuwNn9c4A_4YP_N72aP-6Su42o_qusT6RTj3g
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB9KK2gfWm1t3Vo1gm-67e4lm2x8K2Lp4fUockLflnxMoKB30rtT-t93kv2gDyr4trDJ7pKZ2flNfpMZgHdW10YoHlldFLnQaPO61lXOjdVIiNTrwqdmE2o6ra-v9dUGfBjOwiBiSj7Dk3iZuHy_cOu4VXaqyPeWBQXoW5UQo7I9rTVwBqJKfZAJw5CNUyDRH5Ep9Ons6uxyHPO4qpNI9FGMEYsAq0jrxZ_xA4-UWqz8HW0mr3O--3_f-xR2OnTJzlp1eAYbON-D3b5zA-sMeQ-2H5Qh3IePqTNmzBlKYmJxb5ZNFzfLOzYxlpwns3ds_CMhdZrOvuLvtKFKk5_Dt_PPs08XeddTIXe8Kle5G-ngBPJgdC01tyJUI1t7w0OhrOHSm4DauFqR73RSOm6dsGWwAQvvR0XgB7A5X8zxBTBP0Ifwj_UBKcgkoRNQR4qoZVC-sNJlUPbr2riu4Hjse_G9SYFHoZskliaKpenEksH7Yc7PttzGP0fvx0UfRnbrncFxL76ms8hlUyoVGUdZlRm8HW6TLUWCxMxxsU5jtCA9kjyDw1bsw7N7bTn68zvfwOOL2eWkmYynX17CE_pK2WaqHcPm6naNr-CR-7W6Wd6-Tkp7D4qT5j0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classification+with+Noisy+Labels+by+Importance+Reweighting&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Liu%2C+Tongliang&rft.au=Tao%2C+Dacheng&rft.date=2016-03-01&rft.issn=0162-8828&rft.eissn=2160-9292&rft.volume=38&rft.issue=3&rft.spage=447&rft.epage=461&rft_id=info:doi/10.1109%2FTPAMI.2015.2456899&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TPAMI_2015_2456899
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon