Universal Adversarial Attack on Attention and the Resulting Dataset DAmageNet
Adversarial attacks on deep neural networks (DNNs) have been found for several years. However, the existing adversarial attacks have high success rates only when the information of the victim DNN is well-known or could be estimated by the structure similarity or massive queries. In this paper, we pr...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence Jg. 44; H. 4; S. 2188 - 2197 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
IEEE
01.04.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 0162-8828, 1939-3539, 2160-9292, 1939-3539 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Adversarial attacks on deep neural networks (DNNs) have been found for several years. However, the existing adversarial attacks have high success rates only when the information of the victim DNN is well-known or could be estimated by the structure similarity or massive queries. In this paper, we propose to Attack on Attention (AoA), a semantic property commonly shared by DNNs. AoA enjoys a significant increase in transferability when the traditional cross entropy loss is replaced with the attention loss. Since AoA alters the loss function only, it could be easily combined with other transferability-enhancement techniques and then achieve SOTA performance. We apply AoA to generate 50000 adversarial samples from ImageNet validation set to defeat many neural networks, and thus name the dataset as DAmageNet . 13 well-trained DNNs are tested on DAmageNet, and all of them have an error rate over 85 percent. Even with defenses or adversarial training, most models still maintain an error rate over 70 percent on DAmageNet. DAmageNet is the first universal adversarial dataset. It could be downloaded freely and serve as a benchmark for robustness testing and adversarial training. |
|---|---|
| AbstractList | Adversarial attacks on deep neural networks (DNNs) have been found for several years. However, the existing adversarial attacks have high success rates only when the information of the victim DNN is well-known or could be estimated by the structure similarity or massive queries. In this paper, we propose to Attack on Attention (AoA), a semantic property commonly shared by DNNs. AoA enjoys a significant increase in transferability when the traditional cross entropy loss is replaced with the attention loss. Since AoA alters the loss function only, it could be easily combined with other transferability-enhancement techniques and then achieve SOTA performance. We apply AoA to generate 50000 adversarial samples from ImageNet validation set to defeat many neural networks, and thus name the dataset as DAmageNet. 13 well-trained DNNs are tested on DAmageNet, and all of them have an error rate over 85 percent. Even with defenses or adversarial training, most models still maintain an error rate over 70 percent on DAmageNet. DAmageNet is the first universal adversarial dataset. It could be downloaded freely and serve as a benchmark for robustness testing and adversarial training. Adversarial attacks on deep neural networks (DNNs) have been found for several years. However, the existing adversarial attacks have high success rates only when the information of the victim DNN is well-known or could be estimated by the structure similarity or massive queries. In this paper, we propose to Attack on Attention (AoA), a semantic property commonly shared by DNNs. AoA enjoys a significant increase in transferability when the traditional cross entropy loss is replaced with the attention loss. Since AoA alters the loss function only, it could be easily combined with other transferability-enhancement techniques and then achieve SOTA performance. We apply AoA to generate 50000 adversarial samples from ImageNet validation set to defeat many neural networks, and thus name the dataset as DAmageNet. 13 well-trained DNNs are tested on DAmageNet, and all of them have an error rate over 85 percent. Even with defenses or adversarial training, most models still maintain an error rate over 70 percent on DAmageNet. DAmageNet is the first universal adversarial dataset. It could be downloaded freely and serve as a benchmark for robustness testing and adversarial training.Adversarial attacks on deep neural networks (DNNs) have been found for several years. However, the existing adversarial attacks have high success rates only when the information of the victim DNN is well-known or could be estimated by the structure similarity or massive queries. In this paper, we propose to Attack on Attention (AoA), a semantic property commonly shared by DNNs. AoA enjoys a significant increase in transferability when the traditional cross entropy loss is replaced with the attention loss. Since AoA alters the loss function only, it could be easily combined with other transferability-enhancement techniques and then achieve SOTA performance. We apply AoA to generate 50000 adversarial samples from ImageNet validation set to defeat many neural networks, and thus name the dataset as DAmageNet. 13 well-trained DNNs are tested on DAmageNet, and all of them have an error rate over 85 percent. Even with defenses or adversarial training, most models still maintain an error rate over 70 percent on DAmageNet. DAmageNet is the first universal adversarial dataset. It could be downloaded freely and serve as a benchmark for robustness testing and adversarial training. |
| Author | He, Zhengbao Yang, Jie Huang, Xiaolin Sun, Chengjin Chen, Sizhe |
| Author_xml | – sequence: 1 givenname: Sizhe orcidid: 0000-0003-3274-6926 surname: Chen fullname: Chen, Sizhe email: sizhe.chen@sjtu.edu.cn organization: Department of Automation, and the Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China – sequence: 2 givenname: Zhengbao orcidid: 0000-0003-3986-6162 surname: He fullname: He, Zhengbao email: lstefanie@sjtu.edu.cn organization: Department of Automation, and the Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China – sequence: 3 givenname: Chengjin orcidid: 0000-0002-9992-7919 surname: Sun fullname: Sun, Chengjin email: sunchengjin@sjtu.edu.cn organization: Department of Automation, and the Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China – sequence: 4 givenname: Jie orcidid: 0000-0003-4801-7162 surname: Yang fullname: Yang, Jie email: jieyang@sjtu.edu.cn organization: Department of Automation, and the Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China – sequence: 5 givenname: Xiaolin orcidid: 0000-0003-4285-6520 surname: Huang fullname: Huang, Xiaolin email: xiaolinhuang@sjtu.edu.cn organization: Department of Automation, and the Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33095710$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kUFv1DAQhS1URLeFPwASisSFS5axHXvt46oFWqkFhNqzNZtMikvWaW0HiX-P09320AOneYfvPY3eO2IHYQzE2FsOS87Bfrr6sb48XwoQsJQgpbD8BVsIrqG2wooDtgCuRW2MMIfsKKVbAN4okK_YoZRg1YrDgl1eB_-HYsKhWncPIvpZ54zt72oMs6KQfVEYuir_ouonpWnIPtxUp5gxUa5O11u8oW-UX7OXPQ6J3uzvMbv-8vnq5Ky--P71_GR9UbdS8Vy3sMGu6anXnG8M2A50Z1ApjSu5Qs1VI02zkUYA9BqaIhFFebiV0qLtV_KYfdzl3sXxfqKU3danloYBA41TcqJRDVdaN6KgH56ht-MUQ_nOCS1LCcroOfD9npo2W-rcXfRbjH_dY1EFMDugjWNKkXrX-oxzLzmiHxwHN2_iHjZx8yZuv0mximfWx_T_mt7tTJ6IngxWlGIK8g-XtpTC |
| CODEN | ITPIDJ |
| CitedBy_id | crossref_primary_10_1016_j_patcog_2021_108491 crossref_primary_10_1007_s41965_024_00142_3 crossref_primary_10_1109_TAI_2023_3257276 crossref_primary_10_1109_TPAMI_2024_3461686 crossref_primary_10_1109_COMST_2023_3319492 crossref_primary_10_1109_TIFS_2025_3565993 crossref_primary_10_1109_TPAMI_2022_3169802 crossref_primary_10_1109_TIFS_2024_3451689 crossref_primary_10_1016_j_csi_2022_103634 crossref_primary_10_1016_j_patcog_2022_108979 crossref_primary_10_1109_TPAMI_2024_3469952 crossref_primary_10_1109_TPAMI_2022_3176760 crossref_primary_10_1016_j_ins_2020_12_042 crossref_primary_10_1109_TR_2024_3369865 crossref_primary_10_1007_s13042_024_02097_4 crossref_primary_10_1109_MWC_001_2100247 crossref_primary_10_1109_TBDATA_2025_3552326 crossref_primary_10_1109_ACCESS_2022_3171659 crossref_primary_10_1109_TIFS_2024_3372803 crossref_primary_10_1016_j_inffus_2022_10_032 crossref_primary_10_1109_TGRS_2023_3336734 crossref_primary_10_1016_j_asoc_2023_110370 crossref_primary_10_1109_TGRS_2022_3156392 crossref_primary_10_1109_TIFS_2022_3156809 crossref_primary_10_1109_TPAMI_2022_3199013 crossref_primary_10_1109_TEVC_2022_3151373 crossref_primary_10_1007_s11063_022_11056_5 crossref_primary_10_1007_s11227_025_07225_7 crossref_primary_10_1109_TDSC_2025_3561162 crossref_primary_10_1109_TIFS_2025_3552030 |
| Cites_doi | 10.1109/CVPR.2019.00095 10.1007/978-3-030-20893-6_8 10.1109/TPAMI.2019.2936378 10.1109/CVPR.2018.00894 10.1109/CVPR.2018.00957 10.1109/ICCV.2019.00526 10.1109/SP.2017.49 10.48550/ARXIV.1706.06083 10.1038/nmeth.3547 10.1109/CVPR.2017.195 10.1109/TEVC.2019.2890858 10.1007/978-3-030-28954-6 10.1109/CVPR.2017.241 10.1201/9781351251389-8 10.1145/3128572.3140444 10.1109/ACCESS.2018.2807385 10.1109/ICCVW.2019.00513 10.1109/CVPR.2016.282 10.5555/2946645.2946704 10.1007/978-3-030-01258-8_39 10.1109/CVPR.2019.00444 10.1371/journal.pone.0130140 10.1109/CVPR.2016.90 10.1109/CVPR.2009.5206848 10.1109/CVPR.2016.319 10.1109/CVPR.2017.17 10.1109/TIP.2019.2940533 10.1109/CVPR.2018.00907 10.1145/3052973.3053009 10.1007/978-3-319-10590-1_53 10.1609/aaai.v31i1.11231 10.1109/CVPR.2017.243 10.1109/CVPR.2018.00191 10.1109/CVPR.2016.308 10.1109/CVPR.2019.00284 10.1109/CVPR.2019.00059 10.1609/aaai.v32i1.11688 10.1109/CVPR46437.2021.01501 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
| DOI | 10.1109/TPAMI.2020.3033291 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | MEDLINE Technology Research Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 2160-9292 1939-3539 |
| EndPage | 2197 |
| ExternalDocumentID | 33095710 10_1109_TPAMI_2020_3033291 9238430 |
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: National Key Research and Development Program of China grantid: 2018AAA0100702; 2019YFB1311503 funderid: 10.13039/501100012166 – fundername: National Natural Science Foundation of China grantid: 61977046; 61876107; U1803261 funderid: 10.13039/501100001809 |
| GroupedDBID | --- -DZ -~X .DC 0R~ 29I 4.4 53G 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 UHB ~02 5VS 9M8 AAYXX ABFSI ADRHT AETEA AETIX AGSQL AI. AIBXA ALLEH CITATION FA8 H~9 IBMZZ ICLAB IFJZH RNI RZB VH1 CGR CUY CVF ECM EIF NPM RIG XJT 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
| ID | FETCH-LOGICAL-c351t-c0bad4fef611b809d06d8a556a737a6154384b38200f6044b3aa2957c339a9f73 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 66 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000764815300038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0162-8828 1939-3539 |
| IngestDate | Sat Sep 27 19:39:12 EDT 2025 Mon Jun 30 04:29:00 EDT 2025 Mon Jul 21 06:04:58 EDT 2025 Sat Nov 29 05:16:00 EST 2025 Tue Nov 18 21:44:59 EST 2025 Wed Aug 27 02:49:31 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c351t-c0bad4fef611b809d06d8a556a737a6154384b38200f6044b3aa2957c339a9f73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-4285-6520 0000-0003-3986-6162 0000-0003-3274-6926 0000-0003-4801-7162 0000-0002-9992-7919 |
| PMID | 33095710 |
| PQID | 2635715867 |
| PQPubID | 85458 |
| PageCount | 10 |
| ParticipantIDs | ieee_primary_9238430 crossref_citationtrail_10_1109_TPAMI_2020_3033291 proquest_journals_2635715867 proquest_miscellaneous_2454156642 crossref_primary_10_1109_TPAMI_2020_3033291 pubmed_primary_33095710 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-04-01 |
| PublicationDateYYYYMMDD | 2022-04-01 |
| PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on pattern analysis and machine intelligence |
| PublicationTitleAbbrev | TPAMI |
| PublicationTitleAlternate | IEEE Trans Pattern Anal Mach Intell |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref57 ref12 ref56 ref15 Goodfellow (ref2) ref53 Ilyas (ref38); 80 ref52 ref11 Szegedy (ref22) ref55 ref10 ref54 Cheng (ref6) 2019 ref17 ref19 Meunier (ref40) 2019 Miyato (ref28) Hendrycks (ref59) ref45 ref48 ref44 Zhang (ref30) ref49 Zhou (ref47) Guo (ref67) Song (ref25) ref9 ref4 Baluja (ref26) 2017 ref3 ref5 Springenberg (ref51) Barbu (ref58) Ilyas (ref7) Du (ref41) Lin (ref46) Guo (ref8) Lin (ref14) ref35 Cohen (ref68) ref34 ref31 Simonyan (ref50) Tramèr (ref71) Brendel (ref37) 2018 ref33 ref32 Papernot (ref36) early access, 2016 Ru (ref39) ref1 Chollet (ref64) 2015 Simonyan (ref18) Sinha (ref21) Xie (ref70) Wu (ref42) ref24 ref23 ref69 ref20 Zhang (ref16) ref63 ref66 Abadi (ref65) 2015 ref27 ref29 Vaswani (ref43) ref60 ref62 ref61 |
| References_xml | – ident: ref33 doi: 10.1109/CVPR.2019.00095 – volume-title: Proc. Int. Conf. Learn. Representations ident: ref42 article-title: Skip connections matter: On the transferability of adversarial examples generated with resnets – year: 2015 ident: ref64 article-title: Keras – year: 2018 ident: ref37 article-title: Decision-based adversarial attacks: Reliable attacks against black-box machine learning models – volume-title: Proc. 8th Int. Conf. Learn. Representations ident: ref41 article-title: Query-efficient meta attack to deep neural networks – volume-title: Proc. 3rd Int. Conf. Learn. Representations ident: ref47 article-title: Object detectors emerge in deep scene CNNs – ident: ref53 doi: 10.1007/978-3-030-20893-6_8 – volume-title: Proc. 6th Int. Conf. Learn. Representations ident: ref67 article-title: Countering adversarial images using input transformations – ident: ref5 doi: 10.1109/TPAMI.2019.2936378 – start-page: 7502 volume-title: Proc. 36th Int. Conf. Mach. Learn. ident: ref16 article-title: Interpreting adversarially trained convolutional neural networks – volume-title: Proc. Int. Conf. Learn. Representations ident: ref2 article-title: Explaining and harnessing adversarial examples – volume-title: Proc. 5th Int. Conf. Learn. Representations ident: ref28 article-title: Adversarial training methods for semi-supervised text classification – ident: ref34 doi: 10.1109/CVPR.2018.00894 – year: 2017 ident: ref26 article-title: Adversarial transformation networks: Learning to generate adversarial examples – volume-title: Proc. Int. Conf. Learn. Representations ident: ref39 article-title: Bayesopt adversarial attack – ident: ref12 doi: 10.1109/CVPR.2018.00957 – ident: ref27 doi: 10.1109/ICCV.2019.00526 – ident: ref3 doi: 10.1109/SP.2017.49 – ident: ref4 doi: 10.48550/ARXIV.1706.06083 – volume-title: Proc. 2nd Int. Conf. Learn. Representations ident: ref46 article-title: Network in network – ident: ref49 doi: 10.1038/nmeth.3547 – start-page: 227 volume-title: Proc. Annu. Conf. Neural Inf. Process. Syst. ident: ref30 article-title: You only propagate once: Painless adversarial training using maximal principle – start-page: 3820 volume-title: Proc. Advances Neural Inf. Process. Syst. ident: ref8 article-title: Subspace attack: Exploiting promising subspaces for query-efficient black-box attacks – volume-title: Proc. 6th Int. Conf. Learn. Representations ident: ref71 article-title: Ensemble adversarial training: Attacks and defenses – ident: ref62 doi: 10.1109/CVPR.2017.195 – year: 2019 ident: ref40 article-title: Yet another but more efficient black-box adversarial attack: Tiling and evolution strategies – volume-title: Proc. Int. Conf. Learn. Representations ident: ref59 article-title: Benchmarking neural network robustness to common corruptions and perturbations – ident: ref24 doi: 10.1109/TEVC.2019.2890858 – start-page: 6000 volume-title: Proc. Advances Neural Inf. Process. Syst. ident: ref43 article-title: Attention is all you need – ident: ref44 doi: 10.1007/978-3-030-28954-6 – ident: ref20 doi: 10.1109/CVPR.2017.241 – volume-title: Proc. 3rd Int. Conf. Learn. Representations ident: ref51 article-title: Striving for simplicity: The all convolutional net – ident: ref69 doi: 10.1201/9781351251389-8 – ident: ref66 doi: 10.1145/3128572.3140444 – ident: ref1 doi: 10.1109/ACCESS.2018.2807385 – start-page: 8322 volume-title: Proc. Advances Neural Inf. Process. Syst. ident: ref25 article-title: Constructing unrestricted adversarial examples with generative models – ident: ref54 doi: 10.1109/ICCVW.2019.00513 – volume-title: Proc. 2nd Int. Conf. Learn. Representations ident: ref22 article-title: Intriguing properties of neural networks – ident: ref23 doi: 10.1109/CVPR.2016.282 – volume-title: Proc. 3rd Int. Conf. Learn. Representations ident: ref18 article-title: Very deep convolutional networks for large-scale image recognition – ident: ref19 doi: 10.5555/2946645.2946704 – volume-title: Proc. Int. Conf. Learn. Representations ident: ref21 article-title: Certifiable distributional robustness with principled adversarial training – volume-title: Proc. 7th Int. Conf. Learn. Representations ident: ref7 article-title: Prior convictions: Black-box adversarial attacks with bandits and priors – ident: ref15 doi: 10.1007/978-3-030-01258-8_39 – ident: ref11 doi: 10.1109/CVPR.2019.00444 – ident: ref52 doi: 10.1371/journal.pone.0130140 – ident: ref55 doi: 10.1109/CVPR.2016.90 – volume: 80 start-page: 2137 ident: ref38 article-title: Black-box adversarial attacks with limited queries and information – ident: ref17 doi: 10.1109/CVPR.2009.5206848 – ident: ref45 doi: 10.1109/CVPR.2016.319 – ident: ref10 doi: 10.1109/CVPR.2017.17 – volume-title: Proc. 8th Int. Conf. Learn. Representations ident: ref14 article-title: Nesterov accelerated gradient and scale invariance for adversarial attacks – ident: ref35 doi: 10.1109/TIP.2019.2940533 – ident: ref63 doi: 10.1109/CVPR.2018.00907 – ident: ref9 doi: 10.1145/3052973.3053009 – ident: ref48 doi: 10.1007/978-3-319-10590-1_53 – volume-title: Proc. 2nd Int. Conf. Learn. Representations ident: ref50 article-title: Deep inside convolutional networks: Visualising image classification models and saliency maps – year: early access, 2016 ident: ref36 article-title: Transferability in machine learning: From phenomena to black-box attacks using adversarial samples – ident: ref61 doi: 10.1609/aaai.v31i1.11231 – year: 2019 ident: ref6 article-title: Improving black-box adversarial attacks with a transfer-based prior – ident: ref56 doi: 10.1109/CVPR.2017.243 – ident: ref31 doi: 10.1109/CVPR.2018.00191 – ident: ref60 doi: 10.1109/CVPR.2016.308 – ident: ref13 doi: 10.1109/CVPR.2019.00284 – ident: ref32 doi: 10.1109/CVPR.2019.00059 – start-page: 1310 volume-title: Proc. 36th Int. Conf. Mach. Learn. ident: ref68 article-title: Certified adversarial robustness via randomized smoothing – year: 2015 ident: ref65 article-title: TensorFlow: Large-scale mchine learning on heterogeneous systems – ident: ref29 doi: 10.1609/aaai.v32i1.11688 – start-page: 9453 volume-title: Proc. Advances Neural Inf. Process. Syst. ident: ref58 article-title: Objectnet: A large-scale bias-controlled dataset for pushing the limits of object recognition models – volume-title: Proc. 6th Int. Conf. Learn. Representations ident: ref70 article-title: Mitigating adversarial effects through randomization – ident: ref57 doi: 10.1109/CVPR46437.2021.01501 |
| SSID | ssj0014503 |
| Score | 2.5721757 |
| Snippet | Adversarial attacks on deep neural networks (DNNs) have been found for several years. However, the existing adversarial attacks have high success rates only... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2188 |
| SubjectTerms | Adversarial attack Algorithms Artificial neural networks Attention Benchmarking black-box attack DAmageNet Datasets Error analysis Heating systems Neural networks Neural Networks, Computer Perturbation methods Semantics Training transferability Visualization |
| Title | Universal Adversarial Attack on Attention and the Resulting Dataset DAmageNet |
| URI | https://ieeexplore.ieee.org/document/9238430 https://www.ncbi.nlm.nih.gov/pubmed/33095710 https://www.proquest.com/docview/2635715867 https://www.proquest.com/docview/2454156642 |
| Volume | 44 |
| WOSCitedRecordID | wos000764815300038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 2160-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014503 issn: 0162-8828 databaseCode: RIE dateStart: 19790101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VigMcKLRAA6UyEjcITfyMjytKBRJdVaigvUVOPK4QNIu6WX4_Y-ehHgCJ20ix8_DMeOaL5wHwqkJeas0xb9rQ5FLHfRBlyH0TjTUqFVKW69dPZrmsVit7sQNv5lwYREzBZ_g2kuks36_bbfxVdkLOSCUFAfQ7xpghV2s-MZAqdUEmD4Y0nGDElCBT2JPLi8X5R4KCnBBqIQS3sT0M4XirTEycvWWPUoOVv_uayeac7f3f2z6EB6NvyRaDMDyCHez2YW_q28BGNd6H-7eKEB7A-RibEWf6RESZZIu-d-13tu4iNcREMtd5Rg4j-4ybGIfYXbFT15MZ7Nnp4po2piX2j-HL2fvLdx_ysclC3gpV9nlbNM7LgEGXZVMV1hfaV04p7YwwjvwdSV_RCHIUiqALSaRznFauFcI6G4x4ArvdusNDYNw6gdb6VDI-OLTeN7R9YIlcBxtcBuW01HU7ViCPjTB-1AmJFLZOnKojp-qRUxm8nuf8HOpv_HP0QeTDPHJkQQZHE0frUUU3dazCY0pVaZPBy_kyKVc8MXEdrrc0RqoEcCXP4OkgCfO9JwF69udnPod7PGZKpCCfI9jtb7b4Au62v_pvm5tjkuBVdZwk-Dc5Vug2 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5VBQk4UGh5BAoYiRuEJn4lPq4oVSt2VxVaUG-RE48Rasmibpbfz9h5qAdA4jZS7Dw8M5754nkAvCmR51pzTOvG16nUYR9E6VNXB2ONSvmY5fp1XiyX5cWFOd-Bd1MuDCLG4DN8H8h4lu_WzTb8KjsiZ6SUggD6LSUlz_tsrenMQKrYB5l8GNJxAhJjikxmjlbns8UZgUFOGDUTgpvQIIaQvFFFSJ29YZFii5W_e5vR6pzs_d_7PoD7g3fJZr04PIQdbPdhb-zcwAZF3od7N8oQHsBiiM4IM10kglSyWdfZ5pKt20D1UZHMto6Ry8g-4yZEIrbf2LHtyBB27Hj2g7amJXaP4MvJx9WH03Ros5A2QuVd2mS1ddKj13lel5lxmXalVUrbQhSWPB5JX1ELchUyrzNJpLWcVq4RwljjC_EYdtt1i0-BcWMFGuNi0Xhv0ThX0waCOXLtjbcJ5ONSV81Qgzy0wriqIhbJTBU5VQVOVQOnEng7zfnZV-D45-iDwIdp5MCCBA5HjlaDkm6qUIenyFWpiwReT5dJvcKZiW1xvaUxUkWIK3kCT3pJmO49CtCzPz_zFdw5XS3m1fxs-ek53OUhbyKG_BzCbne9xRdwu_nVfd9cv4xy_Bv8e-qV |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Universal+Adversarial+Attack+on+Attention+and+the+Resulting+Dataset+DAmageNet&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Chen%2C+Sizhe&rft.au=He%2C+Zhengbao&rft.au=Sun%2C+Chengjin&rft.au=Yang%2C+Jie&rft.date=2022-04-01&rft.issn=1939-3539&rft.eissn=1939-3539&rft.volume=44&rft.issue=4&rft.spage=2188&rft_id=info:doi/10.1109%2FTPAMI.2020.3033291&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon |