Multiple yield curve modeling and forecasting using deep learning

This manuscript introduces deep learning models that simultaneously describe the dynamics of several yield curves. We aim to learn the dependence structure among the different yield curves induced by the globalization of financial markets and exploit it to produce more accurate forecasts. By combini...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:ASTIN Bulletin : The Journal of the IAA Ročník 54; číslo 3; s. 463 - 494
Hlavní autoři: Richman, Ronald, Scognamiglio, Salvatore
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York, USA Cambridge University Press 01.09.2024
Témata:
ISSN:0515-0361, 1783-1350
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This manuscript introduces deep learning models that simultaneously describe the dynamics of several yield curves. We aim to learn the dependence structure among the different yield curves induced by the globalization of financial markets and exploit it to produce more accurate forecasts. By combining the self-attention mechanism and nonparametric quantile regression, our model generates both point and interval forecasts of future yields. The architecture is designed to avoid quantile crossing issues affecting multiple quantile regression models. Numerical experiments conducted on two different datasets confirm the effectiveness of our approach. Finally, we explore potential extensions and enhancements by incorporating deep ensemble methods and transfer learning mechanisms.
AbstractList This manuscript introduces deep learning models that simultaneously describe the dynamics of several yield curves. We aim to learn the dependence structure among the different yield curves induced by the globalization of financial markets and exploit it to produce more accurate forecasts. By combining the self-attention mechanism and nonparametric quantile regression, our model generates both point and interval forecasts of future yields. The architecture is designed to avoid quantile crossing issues affecting multiple quantile regression models. Numerical experiments conducted on two different datasets confirm the effectiveness of our approach. Finally, we explore potential extensions and enhancements by incorporating deep ensemble methods and transfer learning mechanisms.
Author Richman, Ronald
Scognamiglio, Salvatore
Author_xml – sequence: 1
  givenname: Ronald
  orcidid: 0000-0002-0441-8354
  surname: Richman
  fullname: Richman, Ronald
  email: ronaldrichman@gmail.com
  organization: 1Old Mutual Insure and University of the Witwatersrand, Johannesburg, South Africa
– sequence: 2
  givenname: Salvatore
  orcidid: 0000-0001-5725-5061
  surname: Scognamiglio
  fullname: Scognamiglio, Salvatore
  organization: 2Department of Management and Quantitative Studies, University of Naples “Parthenope”, Naples, Italy
BookMark eNptkEtLw0AUhQepYFpd-QcCLiV17kwySZalaBUqbnQ9zONOScnLmUTovzehBTdu7uHAx7nwLcmi7Vok5B7oGijkTyroNaMsXTNxRSLIC54Az-iCRDSDLKFcwA1ZhnCklEPBWEQ272M9VH2N8anC2sZm9D8YN53FumoPsWpt7DqPRoVh7mOYr0Xs4xqVb6d2S66dqgPeXXJFvl6eP7evyf5j97bd7BPDMxgSjQDCCMdNrlleoqbOFhqMzYQTAtG4AqnRoLAAzmdOiEyzUqSOU5s7viIP593ed98jhkEeu9G300vJAUrBIOXlRD2eKeO7EDw62fuqUf4kgcrZkZwcydmRZGKikwutGu0re8C_0f_4X-m1at4
Cites_doi 10.1016/j.jeconom.2005.01.011
10.3390/econometrics10020015
10.2143/AST.34.1.504963
10.1080/03461238.2020.1867232
10.1007/978-3-319-25385-5
10.2307/2951677
10.1017/S174849952000024X
10.2174/97816810868971180101
10.1017/asb.2019.33
10.1111/1540-6261.00426
10.1002/for.1256
10.1093/rfs/3.4.573
10.1016/j.eswa.2018.11.012
10.2307/1913643
10.18637/jss.v027.i03
10.1007/s00780-016-0291-5
10.1080/03461238.2022.2081816
10.1198/016214508000000922
10.1017/asb.2015.30
10.1016/j.cam.2021.113922
10.3386/w4871
10.1007/978-3-031-12409-9
10.1086/296409
10.1016/j.ejor.2022.04.044
10.1017/S1748499520000238
10.1016/B978-0-444-50897-3.50015-8
10.1109/ICNN.1994.374138
10.1016/j.jeconom.2005.03.005
10.1109/TPAMI.2013.50
10.1162/neco.1997.9.8.1735
10.1017/asb.2022.5
10.1007/978-3-030-26036-1_13
10.1080/1351847X.2014.926281
ContentType Journal Article
Copyright The Author(s), 2024. Published by Cambridge University Press on behalf of The International Actuarial Association
The Author(s), 2024. Published by Cambridge University Press on behalf of The International Actuarial Association. This work is licensed under the Creative Commons Attribution License This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited. (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s), 2024. Published by Cambridge University Press on behalf of The International Actuarial Association
– notice: The Author(s), 2024. Published by Cambridge University Press on behalf of The International Actuarial Association. This work is licensed under the Creative Commons Attribution License This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited. (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID IKXGN
AAYXX
CITATION
3V.
7X1
7XB
8A9
8FK
ABUWG
AFKRA
ANIOZ
BENPR
BEZIV
CCPQU
DWQXO
FRAZJ
FRNLG
K60
K6~
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1017/asb.2024.26
DatabaseName Cambridge University Press Wholly Gold Open Access Journals
CrossRef
ProQuest Central (Corporate)
Accounting & Tax Database (Proquest)
ProQuest Central (purchase pre-March 2016)
Accounting & Tax Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Accounting, Tax & Banking Collection
ProQuest Central
Business Premium Collection
ProQuest One
ProQuest Central
Accounting, Tax & Banking Collection (Alumni)
Business Premium Collection (Alumni)
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Business Premium Collection
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
ProQuest Central Basic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Business Collection
Accounting & Tax
ProQuest Central China
ProQuest Central
Accounting, Tax & Banking Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest One Business (Alumni)
Accounting, Tax & Banking Collection (Alumni)
Accounting & Tax (Alumni Edition)
ProQuest One Academic
ProQuest Central (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Business Premium Collection
CrossRef

Database_xml – sequence: 1
  dbid: IKXGN
  name: Cambridge University Press Wholly Gold Open Access Journals
  url: http://journals.cambridge.org/action/login
  sourceTypes: Publisher
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Business
EISSN 1783-1350
EndPage 494
ExternalDocumentID 10_1017_asb_2024_26
GroupedDBID 09C
09D
09E
0E1
0R~
23N
4.4
5GY
5VS
8I0
AAAZR
AABES
AABWE
AACJH
AADNG
AAFWJ
AAGFV
AAKTX
AALKF
AANRG
AAOIO
AAPYI
AARAB
AASVR
AAUKB
ABBXD
ABBZL
ABGDZ
ABJNI
ABJWI
ABKKG
ABMWE
ABQTM
ABROB
ABTND
ABUWG
ABVZP
ABXAU
ABYPY
ABZCX
ACABY
ACBMC
ACETC
ACFCP
ACGFS
ACHQT
ACIMK
ACUIJ
ACYZP
ACZBM
ACZBN
ACZUX
ACZWT
ADDNB
ADFEC
ADKIL
ADOVH
ADTCA
ADVJH
AEBAK
AEFOJ
AEHGV
AENCP
AENEX
AENGE
AEYYC
AFFUJ
AFKQG
AFKRA
AFKRZ
AFLOS
AFLVW
AGABE
AGHGI
AGJUD
AGLWM
AHQXX
AHRGI
AIGNW
AIHIV
AIOIP
AISIE
AJCYY
AJPFC
AJQAS
AKZCZ
ALMA_UNASSIGNED_HOLDINGS
ALWZO
ANFVQ
ANIOZ
AOWSX
AQJOH
ARZZG
ATUCA
AUXHV
AVDNQ
AWRMI
AWSUU
AYIQA
BBLKV
BBQHK
BCGOX
BENPR
BESQT
BEZIV
BGHMG
BJBOZ
BLZWO
BMAJL
C0O
CBIIA
CCPQU
CCQAD
CCUQV
CFAFE
CFBFF
CFLAC
CGMFO
CGQII
CHEAL
CJCSC
CTKSN
DOHLZ
DWQXO
EBS
ED0
EGQIC
EJD
FRNLG
GDOGT
HG-
HOVLH
HZ~
I.5
I.6
I.7
IH6
IKXGN
IOEEP
IOO
IS6
I~P
JHPGK
JOSPZ
JPPIE
JQKCU
JRMXA
KAFGG
KCGVB
KFECR
LHUNA
LW7
M-V
M7~
MS~
NIKVX
NZEOI
O9-
OK1
PQBIZ
PQBZA
RAMDC
RCA
ROL
RR0
RWP
S6-
S6U
SAAAG
SJN
T9M
TR2
UT1
WFFJZ
ZJOSE
ZMEZD
ZYDXJ
~A4
AAXMD
AAYXX
ABVKB
ABXHF
ACDLN
AFFHD
AFZFC
AGTDA
AKMAY
AMVHM
CITATION
PHGZM
PHGZT
3V.
7X1
7XB
8A9
8FK
K60
K6~
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c351t-be116c6f3c7b279eb0fd8b1cd56f66eecf8e0cb1ae81336f3c665b2964f30d7f3
IEDL.DBID IKXGN
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001325588300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0515-0361
IngestDate Tue Sep 02 03:18:55 EDT 2025
Sat Nov 29 01:43:22 EST 2025
Thu Oct 24 03:04:50 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Deep learning
transfer learning
asset–liability management
interest rate risk
Real-world modeling
Solvency II, IFRS 17
multiple yield curve modeling
attention models
Nelson–Siegel model
value-at-risk
Language English
License This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.
https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-be116c6f3c7b279eb0fd8b1cd56f66eecf8e0cb1ae81336f3c665b2964f30d7f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0441-8354
0000-0001-5725-5061
OpenAccessLink https://www.cambridge.org/core/product/identifier/S0515036124000266/type/journal_article
PQID 3119621439
PQPubID 5514772
PageCount 32
ParticipantIDs proquest_journals_3119621439
crossref_primary_10_1017_asb_2024_26
cambridge_journals_10_1017_asb_2024_26
PublicationCentury 2000
PublicationDate 2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-01
  day: 01
PublicationDecade 2020
PublicationPlace New York, USA
PublicationPlace_xml – name: New York, USA
– name: Cambridge
PublicationTitle ASTIN Bulletin : The Journal of the IAA
PublicationTitleAlternate ASTIN Bull
PublicationYear 2024
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References 1987; 77
2002; 57
2023; 2023
2023; 304
2006; 130
2006; 131
2008; 103
1997; 9
1990; 3
2021; 15
1987; 60
2013; 32
2013; 35
2020; 95
2020; 50
2008; 27
2004; 34
2016; 20
2014; 15
2019; 119
2022; 52
2022; 10
1978; 46
2022; 404
1992; 60
2016; 46
2021; 2021
2016; 22
S0515036124000266_ref30
Gerhart (S0515036124000266_ref16) 2020; 95
S0515036124000266_ref17
S0515036124000266_ref39
S0515036124000266_ref19
S0515036124000266_ref1
S0515036124000266_ref35
S0515036124000266_ref13
S0515036124000266_ref36
S0515036124000266_ref37
S0515036124000266_ref15
S0515036124000266_ref38
S0515036124000266_ref31
S0515036124000266_ref32
S0515036124000266_ref33
S0515036124000266_ref11
S0515036124000266_ref34
S0515036124000266_ref12
S0515036124000266_ref40
S0515036124000266_ref41
Goodfellow (S0515036124000266_ref18) 2016
S0515036124000266_ref3
S0515036124000266_ref2
S0515036124000266_ref5
S0515036124000266_ref4
S0515036124000266_ref7
S0515036124000266_ref6
S0515036124000266_ref9
S0515036124000266_ref8
S0515036124000266_ref28
Diebold (S0515036124000266_ref10) 2013
S0515036124000266_ref29
Kemp (S0515036124000266_ref27) 2009
Srivastava (S0515036124000266_ref42) 2014; 15
S0515036124000266_ref46
Fama (S0515036124000266_ref14) 1987; 77
S0515036124000266_ref24
S0515036124000266_ref47
S0515036124000266_ref25
S0515036124000266_ref26
S0515036124000266_ref48
S0515036124000266_ref20
S0515036124000266_ref43
S0515036124000266_ref21
S0515036124000266_ref22
S0515036124000266_ref44
S0515036124000266_ref45
S0515036124000266_ref23
References_xml – volume: 46
  start-page: 191
  issue: 2
  year: 2016
  end-page: 224
  article-title: Consistent yield curve prediction
  publication-title: ASTIN Bulletin: The Journal of the IAA
– volume: 77
  start-page: 680
  issue: 4
  year: 1987
  end-page: 692
  article-title: The information in long-maturity forward rates
  publication-title: The American Economic Review
– volume: 50
  start-page: 25
  issue: 1
  year: 2020
  end-page: 60
  article-title: A neural network boosted double overdispersed Poisson claims reserving model
  publication-title: ASTIN Bulletin: The Journal of the IAA
– volume: 60
  start-page: 473
  issue: 4
  year: 1987
  end-page: 489
  article-title: Parsimonious modeling of yield curves
  publication-title: Journal of Business
– volume: 3
  start-page: 573
  issue: 4
  year: 1990
  end-page: 592
  article-title: Pricing interest-rate-derivative securities
  publication-title: The Review of Financial Studies
– volume: 57
  start-page: 405
  issue: 1
  year: 2002
  end-page: 443
  article-title: Term premia and interest rate forecasts in affine models
  publication-title: The Journal of Finance
– volume: 103
  start-page: 1419
  issue: 484
  year: 2008
  end-page: 1437
  article-title: The dynamics of economic functions: Modeling and forecasting the yield curve
  publication-title: Journal of the American Statistical Association
– volume: 22
  start-page: 1109
  issue: 12
  year: 2016
  end-page: 1129
  article-title: Yield curve modeling and forecasting using semiparametric factor dynamics
  publication-title: The European Journal of Finance
– volume: 95
  start-page: 59
  year: 2020
  end-page: 78
  article-title: Empirical analysis and forecasting of multiple yield curves
  publication-title: Insurance: Mathematics and Economics
– volume: 2021
  start-page: 572
  issue: 7
  year: 2021
  end-page: 598
  article-title: Time-series forecasting of mortality rates using deep learning
  publication-title: Scandinavian Actuarial Journal
– volume: 119
  start-page: 362
  year: 2019
  end-page: 375
  article-title: A comparison of multitask and single task learning with artificial neural networks for yield curve forecasting
  publication-title: Expert Systems with Applications
– volume: 52
  start-page: 519
  issue: 2
  year: 2022
  end-page: 561
  article-title: Calibrating the Lee-Carter and the Poisson Lee-Carter models via neural networks
  publication-title: ASTIN Bulletin: The Journal of the IAA
– volume: 35
  start-page: 1798
  issue: 8
  year: 2013
  end-page: 1828
  article-title: Representation learning: A review and new perspectives
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 2023
  start-page: 71
  issue: 1
  year: 2023
  end-page: 95
  article-title: LocalGLMnet: Interpretable deep learning for tabular data
  publication-title: Scandinavian Actuarial Journal
– volume: 46
  start-page: 33
  issue: 1
  year: 1978
  end-page: 50
  article-title: Regression quantiles
  publication-title: Econometrica: Journal of the Econometric Society
– volume: 15
  start-page: 207
  issue: 2
  year: 2021
  end-page: 229
  article-title: Ai in actuarial science–a review of recent advances–part 1
  publication-title: Annals of Actuarial Science
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  end-page: 1780
  article-title: Long short-term memory
  publication-title: Neural Computation
– volume: 130
  start-page: 337
  issue: 2
  year: 2006
  end-page: 364
  article-title: Forecasting the term structure of government bond yields
  publication-title: Journal of Econometrics
– volume: 10
  start-page: 15
  issue: 2
  year: 2022
  article-title: Learning forecast-efficient yield curve factor decompositions with neural networks
  publication-title: Econometrics
– volume: 27
  start-page: 1
  year: 2008
  end-page: 22
  article-title: Automatic time series forecasting: The forecast package for R
  publication-title: Journal of Statistical Software
– volume: 15
  start-page: 1929
  issue: 1
  year: 2014
  end-page: 1958
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: Journal of Machine Learning Research
– volume: 20
  start-page: 267
  year: 2016
  end-page: 320
  article-title: A general HJM framework for multiple yield curve modelling
  publication-title: Finance and Stochastics
– volume: 304
  start-page: 1331
  issue: 3
  year: 2023
  end-page: 1348
  article-title: Improved scalability and risk factor proxying with a two-step principal component analysis for multi-curve modelling
  publication-title: European Journal of Operational Research
– volume: 404
  start-page: 113922
  year: 2022
  article-title: Pricing equity-linked life insurance contracts with multiple risk factors by neural networks
  publication-title: Journal of Computational and Applied Mathematics
– volume: 15
  start-page: 230
  issue: 2
  year: 2021
  end-page: 258
  article-title: Ai in actuarial science–a review of recent advances–part 2
  publication-title: Annals of Actuarial Science
– volume: 32
  start-page: 111
  issue: 2
  year: 2013
  end-page: 123
  article-title: Modeling and forecasting the yield curve by an extended Nelson-Siegel class of models: A quantile autoregression approach
  publication-title: Journal of Forecasting
– volume: 34
  start-page: 229
  issue: 1
  year: 2004
  end-page: 247
  article-title: Testing distributions of stochastically generated yield curves
  publication-title: ASTIN Bulletin: The Journal of the IAA
– volume: 131
  start-page: 309
  issue: 1-2
  year: 2006
  end-page: 338
  article-title: The macroeconomy and the yield curve: A dynamic latent factor approach
  publication-title: Journal of Econometrics
– volume: 60
  start-page: 77
  issue: 1
  year: 1992
  end-page: 105
  article-title: Bond pricing and the term structure of interest rates: A new methodology for contingent claims valuation
  publication-title: Econometrica: Journal of the Econometric Society
– ident: S0515036124000266_ref11
  doi: 10.1016/j.jeconom.2005.01.011
– ident: S0515036124000266_ref26
  doi: 10.3390/econometrics10020015
– ident: S0515036124000266_ref46
  doi: 10.2143/AST.34.1.504963
– ident: S0515036124000266_ref35
  doi: 10.1080/03461238.2020.1867232
– ident: S0515036124000266_ref19
  doi: 10.1007/978-3-319-25385-5
– ident: S0515036124000266_ref22
  doi: 10.2307/2951677
– ident: S0515036124000266_ref39
  doi: 10.1017/S174849952000024X
– volume-title: Yield Curve Modeling and Forecasting: The Dynamic Nelson-Siegel Approach
  year: 2013
  ident: S0515036124000266_ref10
– ident: S0515036124000266_ref48
  doi: 10.2174/97816810868971180101
– volume: 95
  start-page: 59
  year: 2020
  ident: S0515036124000266_ref16
  article-title: Empirical analysis and forecasting of multiple yield curves
  publication-title: Insurance: Mathematics and Economics
– ident: S0515036124000266_ref15
  doi: 10.1017/asb.2019.33
– ident: S0515036124000266_ref12
  doi: 10.1111/1540-6261.00426
– ident: S0515036124000266_ref8
  doi: 10.1002/for.1256
– ident: S0515036124000266_ref24
  doi: 10.1093/rfs/3.4.573
– ident: S0515036124000266_ref33
– ident: S0515036124000266_ref34
  doi: 10.1016/j.eswa.2018.11.012
– ident: S0515036124000266_ref28
  doi: 10.2307/1913643
– ident: S0515036124000266_ref25
  doi: 10.18637/jss.v027.i03
– ident: S0515036124000266_ref7
  doi: 10.1007/s00780-016-0291-5
– ident: S0515036124000266_ref40
  doi: 10.1080/03461238.2022.2081816
– ident: S0515036124000266_ref6
  doi: 10.1198/016214508000000922
– ident: S0515036124000266_ref44
  doi: 10.1017/asb.2015.30
– ident: S0515036124000266_ref3
  doi: 10.1016/j.cam.2021.113922
– ident: S0515036124000266_ref37
– ident: S0515036124000266_ref43
  doi: 10.3386/w4871
– ident: S0515036124000266_ref45
– ident: S0515036124000266_ref47
  doi: 10.1007/978-3-031-12409-9
– ident: S0515036124000266_ref31
  doi: 10.1086/296409
– ident: S0515036124000266_ref2
  doi: 10.1016/j.ejor.2022.04.044
– ident: S0515036124000266_ref1
– ident: S0515036124000266_ref38
  doi: 10.1017/S1748499520000238
– ident: S0515036124000266_ref5
– ident: S0515036124000266_ref20
– volume-title: Deep Learning
  year: 2016
  ident: S0515036124000266_ref18
– ident: S0515036124000266_ref36
  doi: 10.1016/B978-0-444-50897-3.50015-8
– ident: S0515036124000266_ref29
– ident: S0515036124000266_ref32
  doi: 10.1109/ICNN.1994.374138
– volume-title: Market Consistency: Model Calibration in Imperfect Markets
  year: 2009
  ident: S0515036124000266_ref27
– ident: S0515036124000266_ref9
  doi: 10.1016/j.jeconom.2005.03.005
– ident: S0515036124000266_ref4
  doi: 10.1109/TPAMI.2013.50
– volume: 77
  start-page: 680
  year: 1987
  ident: S0515036124000266_ref14
  article-title: The information in long-maturity forward rates
  publication-title: The American Economic Review
– volume: 15
  start-page: 1929
  year: 2014
  ident: S0515036124000266_ref42
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: Journal of Machine Learning Research
– ident: S0515036124000266_ref23
  doi: 10.1162/neco.1997.9.8.1735
– ident: S0515036124000266_ref41
  doi: 10.1017/asb.2022.5
– ident: S0515036124000266_ref17
  doi: 10.1007/978-3-030-26036-1_13
– ident: S0515036124000266_ref13
– ident: S0515036124000266_ref21
  doi: 10.1080/1351847X.2014.926281
– ident: S0515036124000266_ref30
SSID ssj0031822
Score 2.3345566
Snippet This manuscript introduces deep learning models that simultaneously describe the dynamics of several yield curves. We aim to learn the dependence structure...
SourceID proquest
crossref
cambridge
SourceType Aggregation Database
Index Database
Publisher
StartPage 463
SubjectTerms Asset liability management
Deep learning
Discount rates
Economic forecasting
Effectiveness
Expected values
Interest rates
Liability
Life insurance
Machine learning
Securities markets
Solvency
Valuation
Yield curve
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA66iXjxtzidksPwVm3SNk1PMmXDi2OIwm4lP17ESzfXbeB_b9KmjoF48dw0lI_X772X9-U9hHoSOJU287Dsp0QQM5oG0tpSIAmECYSh5lpWwybS0YhPJtnYH7iVXlbZcGJF1Hqq3Bn5XUSsrVDr3bP72Wfgpka56qofobGN2q5TmbXz9sNgNH5puNgabF1HsF47sFxN_A091zRalNKmhzS-3eyrsOmfNum58jnDg_9-7SHa99Em7tfmcYS2oDhGu43Y_QT1n72eEH85JRtWy_kKcDUdx7o0LAqNbVALSpROHY3de-9YA8ywnzbxforehoPXx6fAD1UIVJSQRSCBEKaYiVQqaZqBDI3mkiidMMMYgDIcQiWJAG7TV7eOsUS64qyJQp2a6Ay1imkB5wgLY2w4GXKdEBVriDMquNFhLGmkmSKig25-YM39r1HmtawszS3-ucM_p6yDeg3m-axusvH7sm4D9nq7NdIXfz--RHtun1of1kWtxXwJV2hHrRYf5fzaG843bAXM3w
  priority: 102
  providerName: ProQuest
Title Multiple yield curve modeling and forecasting using deep learning
URI https://www.cambridge.org/core/product/identifier/S0515036124000266/type/journal_article
https://www.proquest.com/docview/3119621439
Volume 54
WOSCitedRecordID wos001325588300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Accounting, Tax & Banking Collection
  customDbUrl:
  eissn: 1783-1350
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0031822
  issn: 0515-0361
  databaseCode: ANIOZ
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/accountingtaxbanking
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1783-1350
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0031822
  issn: 0515-0361
  databaseCode: BENPR
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLaAIcSFN2IwUA6IW1mTtml3HIiXEAXxkCYuVZM4iMuYtoHEv8dpU9AkDlw4tapSV7Fdx46_2ACHCjOhKPIg66fLIJYiDRTpUqA4hgmGocmMqppNpHmeDQa9uzkYNGdhHKzyu8ZBlcmv-qON6vKn3VdTY2hw3H1w3UnI_nKHgqRIQnbdpmXXi6DwjJ-HFnkwgn7Z1tX14CJvrDSpcp1hICKBo-LP7rly0uVEUeAo4uPZiguzK9es4a5Wo_PV_5vHGqx4D5X16yfrMIfDDVhqAPKb0L_xGET26dBvTL-PP5BVHXVoGWTl0DByhFGXE4eoZu69F2YQR8x3qHjZgqfzs8fTy8A3Ygh0lPBpoJBzqaWNdKpE2kMVWpMprk0irZSI2mYYasVLzCjkdeOkTJRL6NooNKmNtmFh-DbEHWCltTTbMDMJ17HBuCfKzJowViIyUvOyDUffbCs8DyZFDUVLC5JM4SRTCNmGw0YaxaguzPH7sE4jqR9yESe7I8hT7O3-9XN7sOzuanRZBxam43fch0X9MX2djA-g1c-vbp_penKW390feGX7Ah4g5Mw
linkProvider Cambridge University Press
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V07T8MwED5BQcDCG_HGA7AFYidx0gGhioeogMIAEmIJsX2uWEppCog_xW_k3CSgSoiNgTnOSc53vkfu8x3AtsJEKMo8yPrpzAuliD1FuuQpjn6Evm8SowbDJuJWK7m7q1-PwEd1F8bRKiubODDU5km7f-T7ASddEeTd64fdZ89NjXLV1WqERqEW5_j-RilbftA8Jnx3hDg9uTk688qpAp4OIt73FHIutbSBjpWI66h8axLFtYmklRJR2wR9rXiGCeVvbp2UkXLVSRv4JrYByR2FsTCgzKgGY41W8-q-sv10QIq6BUUJHvkGXt4IdE2qs1xROirCveE-DsP-cNgdDHzc6cx_-zqzMF1G06xRqP8cjGBnHiYqMv8CNC5LviR7d0w9pl96r8gG03_IZbOsYxgF7aiz3LG_mXuvzQxil5XTNNqLcPsnG1iCWuepg8vAMmspXPYTE3EdGgzrIkus8UMlAiM1z1Zg9wvGtDz6eVrQ5uKU8E4d3qmQK7BdYZx2iyYiPy9br8D9FveN7Orvj7dg8uzm8iK9aLbO12DKySy4cOtQ6_decAPG9Wv_Me9tlkrL4OGvNeETzo4sgQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V09T8MwED1BQYiFb8Q3HoAtEDuJkw4IVUBFBRQGkBBLiO1zxVJKU0D8NX4d5yYBVUJsDMxxLDnvfO8ufr4D2FGYCEWZB3k_nXmhFLGnyJY8xdGP0PdNYtSw2UTcbid3d_XrMfio7sI4WWXlE4eO2jxp94_8IOBkK4LYvX5gS1nE9UnzqPfsuQ5S7qS1aqdRmMg5vr9R-pYftk4I610hmqc3x2de2WHA00HEB55CzqWWNtCxEnEdlW9Norg2kbRSImqboK8VzzChXM6NkzJS7qTSBr6JbUDzjsOEqwgT1mCi0W5d3Vc8QJulOMOgiMEjnuDl7UBXsDrLFaWmItwfrekwyo2j1DDku-bsf_5SczBTRtmsUWyLeRjD7gJMVSL_RWhcljpK9u4UfEy_9F-RDbsCEZWzrGsYBfOos9ypwpl7r8MMYo-VXTY6S3D7JwtYhlr3qYsrwDJrKYz2ExNxHRoM6yJLrPFDJQIjNc9WYe8L0rR0CXlayOnilLBPHfapkKuwU-Gd9oriIj8P26iA_p7uG-W13x9vwxTBn1602ufrMO2mLCRyG1Ab9F9wEyb16-Ax72-V9svg4a8N4ROwdzVG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple+yield+curve+modeling+and+forecasting+using+deep+learning&rft.jtitle=ASTIN+Bulletin+%3A+The+Journal+of+the+IAA&rft.au=Richman%2C+Ronald&rft.au=Scognamiglio%2C+Salvatore&rft.date=2024-09-01&rft.pub=Cambridge+University+Press&rft.issn=0515-0361&rft.eissn=1783-1350&rft.volume=54&rft.issue=3&rft.spage=463&rft.epage=494&rft_id=info:doi/10.1017%2Fasb.2024.26&rft.externalDocID=10_1017_asb_2024_26
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0515-0361&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0515-0361&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0515-0361&client=summon