Multiple yield curve modeling and forecasting using deep learning
This manuscript introduces deep learning models that simultaneously describe the dynamics of several yield curves. We aim to learn the dependence structure among the different yield curves induced by the globalization of financial markets and exploit it to produce more accurate forecasts. By combini...
Uloženo v:
| Vydáno v: | ASTIN Bulletin : The Journal of the IAA Ročník 54; číslo 3; s. 463 - 494 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York, USA
Cambridge University Press
01.09.2024
|
| Témata: | |
| ISSN: | 0515-0361, 1783-1350 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This manuscript introduces deep learning models that simultaneously describe the dynamics of several yield curves. We aim to learn the dependence structure among the different yield curves induced by the globalization of financial markets and exploit it to produce more accurate forecasts. By combining the self-attention mechanism and nonparametric quantile regression, our model generates both point and interval forecasts of future yields. The architecture is designed to avoid quantile crossing issues affecting multiple quantile regression models. Numerical experiments conducted on two different datasets confirm the effectiveness of our approach. Finally, we explore potential extensions and enhancements by incorporating deep ensemble methods and transfer learning mechanisms. |
|---|---|
| AbstractList | This manuscript introduces deep learning models that simultaneously describe the dynamics of several yield curves. We aim to learn the dependence structure among the different yield curves induced by the globalization of financial markets and exploit it to produce more accurate forecasts. By combining the self-attention mechanism and nonparametric quantile regression, our model generates both point and interval forecasts of future yields. The architecture is designed to avoid quantile crossing issues affecting multiple quantile regression models. Numerical experiments conducted on two different datasets confirm the effectiveness of our approach. Finally, we explore potential extensions and enhancements by incorporating deep ensemble methods and transfer learning mechanisms. |
| Author | Richman, Ronald Scognamiglio, Salvatore |
| Author_xml | – sequence: 1 givenname: Ronald orcidid: 0000-0002-0441-8354 surname: Richman fullname: Richman, Ronald email: ronaldrichman@gmail.com organization: 1Old Mutual Insure and University of the Witwatersrand, Johannesburg, South Africa – sequence: 2 givenname: Salvatore orcidid: 0000-0001-5725-5061 surname: Scognamiglio fullname: Scognamiglio, Salvatore organization: 2Department of Management and Quantitative Studies, University of Naples “Parthenope”, Naples, Italy |
| BookMark | eNptkEtLw0AUhQepYFpd-QcCLiV17kwySZalaBUqbnQ9zONOScnLmUTovzehBTdu7uHAx7nwLcmi7Vok5B7oGijkTyroNaMsXTNxRSLIC54Az-iCRDSDLKFcwA1ZhnCklEPBWEQ272M9VH2N8anC2sZm9D8YN53FumoPsWpt7DqPRoVh7mOYr0Xs4xqVb6d2S66dqgPeXXJFvl6eP7evyf5j97bd7BPDMxgSjQDCCMdNrlleoqbOFhqMzYQTAtG4AqnRoLAAzmdOiEyzUqSOU5s7viIP593ed98jhkEeu9G300vJAUrBIOXlRD2eKeO7EDw62fuqUf4kgcrZkZwcydmRZGKikwutGu0re8C_0f_4X-m1at4 |
| Cites_doi | 10.1016/j.jeconom.2005.01.011 10.3390/econometrics10020015 10.2143/AST.34.1.504963 10.1080/03461238.2020.1867232 10.1007/978-3-319-25385-5 10.2307/2951677 10.1017/S174849952000024X 10.2174/97816810868971180101 10.1017/asb.2019.33 10.1111/1540-6261.00426 10.1002/for.1256 10.1093/rfs/3.4.573 10.1016/j.eswa.2018.11.012 10.2307/1913643 10.18637/jss.v027.i03 10.1007/s00780-016-0291-5 10.1080/03461238.2022.2081816 10.1198/016214508000000922 10.1017/asb.2015.30 10.1016/j.cam.2021.113922 10.3386/w4871 10.1007/978-3-031-12409-9 10.1086/296409 10.1016/j.ejor.2022.04.044 10.1017/S1748499520000238 10.1016/B978-0-444-50897-3.50015-8 10.1109/ICNN.1994.374138 10.1016/j.jeconom.2005.03.005 10.1109/TPAMI.2013.50 10.1162/neco.1997.9.8.1735 10.1017/asb.2022.5 10.1007/978-3-030-26036-1_13 10.1080/1351847X.2014.926281 |
| ContentType | Journal Article |
| Copyright | The Author(s), 2024. Published by Cambridge University Press on behalf of The International Actuarial Association The Author(s), 2024. Published by Cambridge University Press on behalf of The International Actuarial Association. This work is licensed under the Creative Commons Attribution License This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited. (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s), 2024. Published by Cambridge University Press on behalf of The International Actuarial Association – notice: The Author(s), 2024. Published by Cambridge University Press on behalf of The International Actuarial Association. This work is licensed under the Creative Commons Attribution License This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited. (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | IKXGN AAYXX CITATION 3V. 7X1 7XB 8A9 8FK ABUWG AFKRA ANIOZ BENPR BEZIV CCPQU DWQXO FRAZJ FRNLG K60 K6~ PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQQKQ PQUKI PRINS Q9U |
| DOI | 10.1017/asb.2024.26 |
| DatabaseName | Cambridge University Press Wholly Gold Open Access Journals CrossRef ProQuest Central (Corporate) Accounting & Tax Database (Proquest) ProQuest Central (purchase pre-March 2016) Accounting & Tax Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Accounting, Tax & Banking Collection ProQuest Central Business Premium Collection ProQuest One ProQuest Central Accounting, Tax & Banking Collection (Alumni) Business Premium Collection (Alumni) ProQuest Business Collection (Alumni Edition) ProQuest Business Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
| DatabaseTitle | CrossRef Business Premium Collection ProQuest Business Collection (Alumni Edition) ProQuest One Business ProQuest Central Basic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Business Collection Accounting & Tax ProQuest Central China ProQuest Central Accounting, Tax & Banking Collection ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest One Business (Alumni) Accounting, Tax & Banking Collection (Alumni) Accounting & Tax (Alumni Edition) ProQuest One Academic ProQuest Central (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) ProQuest One Academic (New) |
| DatabaseTitleList | Business Premium Collection CrossRef |
| Database_xml | – sequence: 1 dbid: IKXGN name: Cambridge University Press Wholly Gold Open Access Journals url: http://journals.cambridge.org/action/login sourceTypes: Publisher – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Business |
| EISSN | 1783-1350 |
| EndPage | 494 |
| ExternalDocumentID | 10_1017_asb_2024_26 |
| GroupedDBID | 09C 09D 09E 0E1 0R~ 23N 4.4 5GY 5VS 8I0 AAAZR AABES AABWE AACJH AADNG AAFWJ AAGFV AAKTX AALKF AANRG AAOIO AAPYI AARAB AASVR AAUKB ABBXD ABBZL ABGDZ ABJNI ABJWI ABKKG ABMWE ABQTM ABROB ABTND ABUWG ABVZP ABXAU ABYPY ABZCX ACABY ACBMC ACETC ACFCP ACGFS ACHQT ACIMK ACUIJ ACYZP ACZBM ACZBN ACZUX ACZWT ADDNB ADFEC ADKIL ADOVH ADTCA ADVJH AEBAK AEFOJ AEHGV AENCP AENEX AENGE AEYYC AFFUJ AFKQG AFKRA AFKRZ AFLOS AFLVW AGABE AGHGI AGJUD AGLWM AHQXX AHRGI AIGNW AIHIV AIOIP AISIE AJCYY AJPFC AJQAS AKZCZ ALMA_UNASSIGNED_HOLDINGS ALWZO ANFVQ ANIOZ AOWSX AQJOH ARZZG ATUCA AUXHV AVDNQ AWRMI AWSUU AYIQA BBLKV BBQHK BCGOX BENPR BESQT BEZIV BGHMG BJBOZ BLZWO BMAJL C0O CBIIA CCPQU CCQAD CCUQV CFAFE CFBFF CFLAC CGMFO CGQII CHEAL CJCSC CTKSN DOHLZ DWQXO EBS ED0 EGQIC EJD FRNLG GDOGT HG- HOVLH HZ~ I.5 I.6 I.7 IH6 IKXGN IOEEP IOO IS6 I~P JHPGK JOSPZ JPPIE JQKCU JRMXA KAFGG KCGVB KFECR LHUNA LW7 M-V M7~ MS~ NIKVX NZEOI O9- OK1 PQBIZ PQBZA RAMDC RCA ROL RR0 RWP S6- S6U SAAAG SJN T9M TR2 UT1 WFFJZ ZJOSE ZMEZD ZYDXJ ~A4 AAXMD AAYXX ABVKB ABXHF ACDLN AFFHD AFZFC AGTDA AKMAY AMVHM CITATION PHGZM PHGZT 3V. 7X1 7XB 8A9 8FK K60 K6~ PKEHL PQEST PQQKQ PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c351t-be116c6f3c7b279eb0fd8b1cd56f66eecf8e0cb1ae81336f3c665b2964f30d7f3 |
| IEDL.DBID | IKXGN |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001325588300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0515-0361 |
| IngestDate | Tue Sep 02 03:18:55 EDT 2025 Sat Nov 29 01:43:22 EST 2025 Thu Oct 24 03:04:50 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Deep learning transfer learning asset–liability management interest rate risk Real-world modeling Solvency II, IFRS 17 multiple yield curve modeling attention models Nelson–Siegel model value-at-risk |
| Language | English |
| License | This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited. https://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c351t-be116c6f3c7b279eb0fd8b1cd56f66eecf8e0cb1ae81336f3c665b2964f30d7f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-0441-8354 0000-0001-5725-5061 |
| OpenAccessLink | https://www.cambridge.org/core/product/identifier/S0515036124000266/type/journal_article |
| PQID | 3119621439 |
| PQPubID | 5514772 |
| PageCount | 32 |
| ParticipantIDs | proquest_journals_3119621439 crossref_primary_10_1017_asb_2024_26 cambridge_journals_10_1017_asb_2024_26 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-09-01 |
| PublicationDateYYYYMMDD | 2024-09-01 |
| PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York, USA |
| PublicationPlace_xml | – name: New York, USA – name: Cambridge |
| PublicationTitle | ASTIN Bulletin : The Journal of the IAA |
| PublicationTitleAlternate | ASTIN Bull |
| PublicationYear | 2024 |
| Publisher | Cambridge University Press |
| Publisher_xml | – name: Cambridge University Press |
| References | 1987; 77 2002; 57 2023; 2023 2023; 304 2006; 130 2006; 131 2008; 103 1997; 9 1990; 3 2021; 15 1987; 60 2013; 32 2013; 35 2020; 95 2020; 50 2008; 27 2004; 34 2016; 20 2014; 15 2019; 119 2022; 52 2022; 10 1978; 46 2022; 404 1992; 60 2016; 46 2021; 2021 2016; 22 S0515036124000266_ref30 Gerhart (S0515036124000266_ref16) 2020; 95 S0515036124000266_ref17 S0515036124000266_ref39 S0515036124000266_ref19 S0515036124000266_ref1 S0515036124000266_ref35 S0515036124000266_ref13 S0515036124000266_ref36 S0515036124000266_ref37 S0515036124000266_ref15 S0515036124000266_ref38 S0515036124000266_ref31 S0515036124000266_ref32 S0515036124000266_ref33 S0515036124000266_ref11 S0515036124000266_ref34 S0515036124000266_ref12 S0515036124000266_ref40 S0515036124000266_ref41 Goodfellow (S0515036124000266_ref18) 2016 S0515036124000266_ref3 S0515036124000266_ref2 S0515036124000266_ref5 S0515036124000266_ref4 S0515036124000266_ref7 S0515036124000266_ref6 S0515036124000266_ref9 S0515036124000266_ref8 S0515036124000266_ref28 Diebold (S0515036124000266_ref10) 2013 S0515036124000266_ref29 Kemp (S0515036124000266_ref27) 2009 Srivastava (S0515036124000266_ref42) 2014; 15 S0515036124000266_ref46 Fama (S0515036124000266_ref14) 1987; 77 S0515036124000266_ref24 S0515036124000266_ref47 S0515036124000266_ref25 S0515036124000266_ref26 S0515036124000266_ref48 S0515036124000266_ref20 S0515036124000266_ref43 S0515036124000266_ref21 S0515036124000266_ref22 S0515036124000266_ref44 S0515036124000266_ref45 S0515036124000266_ref23 |
| References_xml | – volume: 46 start-page: 191 issue: 2 year: 2016 end-page: 224 article-title: Consistent yield curve prediction publication-title: ASTIN Bulletin: The Journal of the IAA – volume: 77 start-page: 680 issue: 4 year: 1987 end-page: 692 article-title: The information in long-maturity forward rates publication-title: The American Economic Review – volume: 50 start-page: 25 issue: 1 year: 2020 end-page: 60 article-title: A neural network boosted double overdispersed Poisson claims reserving model publication-title: ASTIN Bulletin: The Journal of the IAA – volume: 60 start-page: 473 issue: 4 year: 1987 end-page: 489 article-title: Parsimonious modeling of yield curves publication-title: Journal of Business – volume: 3 start-page: 573 issue: 4 year: 1990 end-page: 592 article-title: Pricing interest-rate-derivative securities publication-title: The Review of Financial Studies – volume: 57 start-page: 405 issue: 1 year: 2002 end-page: 443 article-title: Term premia and interest rate forecasts in affine models publication-title: The Journal of Finance – volume: 103 start-page: 1419 issue: 484 year: 2008 end-page: 1437 article-title: The dynamics of economic functions: Modeling and forecasting the yield curve publication-title: Journal of the American Statistical Association – volume: 22 start-page: 1109 issue: 12 year: 2016 end-page: 1129 article-title: Yield curve modeling and forecasting using semiparametric factor dynamics publication-title: The European Journal of Finance – volume: 95 start-page: 59 year: 2020 end-page: 78 article-title: Empirical analysis and forecasting of multiple yield curves publication-title: Insurance: Mathematics and Economics – volume: 2021 start-page: 572 issue: 7 year: 2021 end-page: 598 article-title: Time-series forecasting of mortality rates using deep learning publication-title: Scandinavian Actuarial Journal – volume: 119 start-page: 362 year: 2019 end-page: 375 article-title: A comparison of multitask and single task learning with artificial neural networks for yield curve forecasting publication-title: Expert Systems with Applications – volume: 52 start-page: 519 issue: 2 year: 2022 end-page: 561 article-title: Calibrating the Lee-Carter and the Poisson Lee-Carter models via neural networks publication-title: ASTIN Bulletin: The Journal of the IAA – volume: 35 start-page: 1798 issue: 8 year: 2013 end-page: 1828 article-title: Representation learning: A review and new perspectives publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 2023 start-page: 71 issue: 1 year: 2023 end-page: 95 article-title: LocalGLMnet: Interpretable deep learning for tabular data publication-title: Scandinavian Actuarial Journal – volume: 46 start-page: 33 issue: 1 year: 1978 end-page: 50 article-title: Regression quantiles publication-title: Econometrica: Journal of the Econometric Society – volume: 15 start-page: 207 issue: 2 year: 2021 end-page: 229 article-title: Ai in actuarial science–a review of recent advances–part 1 publication-title: Annals of Actuarial Science – volume: 9 start-page: 1735 issue: 8 year: 1997 end-page: 1780 article-title: Long short-term memory publication-title: Neural Computation – volume: 130 start-page: 337 issue: 2 year: 2006 end-page: 364 article-title: Forecasting the term structure of government bond yields publication-title: Journal of Econometrics – volume: 10 start-page: 15 issue: 2 year: 2022 article-title: Learning forecast-efficient yield curve factor decompositions with neural networks publication-title: Econometrics – volume: 27 start-page: 1 year: 2008 end-page: 22 article-title: Automatic time series forecasting: The forecast package for R publication-title: Journal of Statistical Software – volume: 15 start-page: 1929 issue: 1 year: 2014 end-page: 1958 article-title: Dropout: A simple way to prevent neural networks from overfitting publication-title: Journal of Machine Learning Research – volume: 20 start-page: 267 year: 2016 end-page: 320 article-title: A general HJM framework for multiple yield curve modelling publication-title: Finance and Stochastics – volume: 304 start-page: 1331 issue: 3 year: 2023 end-page: 1348 article-title: Improved scalability and risk factor proxying with a two-step principal component analysis for multi-curve modelling publication-title: European Journal of Operational Research – volume: 404 start-page: 113922 year: 2022 article-title: Pricing equity-linked life insurance contracts with multiple risk factors by neural networks publication-title: Journal of Computational and Applied Mathematics – volume: 15 start-page: 230 issue: 2 year: 2021 end-page: 258 article-title: Ai in actuarial science–a review of recent advances–part 2 publication-title: Annals of Actuarial Science – volume: 32 start-page: 111 issue: 2 year: 2013 end-page: 123 article-title: Modeling and forecasting the yield curve by an extended Nelson-Siegel class of models: A quantile autoregression approach publication-title: Journal of Forecasting – volume: 34 start-page: 229 issue: 1 year: 2004 end-page: 247 article-title: Testing distributions of stochastically generated yield curves publication-title: ASTIN Bulletin: The Journal of the IAA – volume: 131 start-page: 309 issue: 1-2 year: 2006 end-page: 338 article-title: The macroeconomy and the yield curve: A dynamic latent factor approach publication-title: Journal of Econometrics – volume: 60 start-page: 77 issue: 1 year: 1992 end-page: 105 article-title: Bond pricing and the term structure of interest rates: A new methodology for contingent claims valuation publication-title: Econometrica: Journal of the Econometric Society – ident: S0515036124000266_ref11 doi: 10.1016/j.jeconom.2005.01.011 – ident: S0515036124000266_ref26 doi: 10.3390/econometrics10020015 – ident: S0515036124000266_ref46 doi: 10.2143/AST.34.1.504963 – ident: S0515036124000266_ref35 doi: 10.1080/03461238.2020.1867232 – ident: S0515036124000266_ref19 doi: 10.1007/978-3-319-25385-5 – ident: S0515036124000266_ref22 doi: 10.2307/2951677 – ident: S0515036124000266_ref39 doi: 10.1017/S174849952000024X – volume-title: Yield Curve Modeling and Forecasting: The Dynamic Nelson-Siegel Approach year: 2013 ident: S0515036124000266_ref10 – ident: S0515036124000266_ref48 doi: 10.2174/97816810868971180101 – volume: 95 start-page: 59 year: 2020 ident: S0515036124000266_ref16 article-title: Empirical analysis and forecasting of multiple yield curves publication-title: Insurance: Mathematics and Economics – ident: S0515036124000266_ref15 doi: 10.1017/asb.2019.33 – ident: S0515036124000266_ref12 doi: 10.1111/1540-6261.00426 – ident: S0515036124000266_ref8 doi: 10.1002/for.1256 – ident: S0515036124000266_ref24 doi: 10.1093/rfs/3.4.573 – ident: S0515036124000266_ref33 – ident: S0515036124000266_ref34 doi: 10.1016/j.eswa.2018.11.012 – ident: S0515036124000266_ref28 doi: 10.2307/1913643 – ident: S0515036124000266_ref25 doi: 10.18637/jss.v027.i03 – ident: S0515036124000266_ref7 doi: 10.1007/s00780-016-0291-5 – ident: S0515036124000266_ref40 doi: 10.1080/03461238.2022.2081816 – ident: S0515036124000266_ref6 doi: 10.1198/016214508000000922 – ident: S0515036124000266_ref44 doi: 10.1017/asb.2015.30 – ident: S0515036124000266_ref3 doi: 10.1016/j.cam.2021.113922 – ident: S0515036124000266_ref37 – ident: S0515036124000266_ref43 doi: 10.3386/w4871 – ident: S0515036124000266_ref45 – ident: S0515036124000266_ref47 doi: 10.1007/978-3-031-12409-9 – ident: S0515036124000266_ref31 doi: 10.1086/296409 – ident: S0515036124000266_ref2 doi: 10.1016/j.ejor.2022.04.044 – ident: S0515036124000266_ref1 – ident: S0515036124000266_ref38 doi: 10.1017/S1748499520000238 – ident: S0515036124000266_ref5 – ident: S0515036124000266_ref20 – volume-title: Deep Learning year: 2016 ident: S0515036124000266_ref18 – ident: S0515036124000266_ref36 doi: 10.1016/B978-0-444-50897-3.50015-8 – ident: S0515036124000266_ref29 – ident: S0515036124000266_ref32 doi: 10.1109/ICNN.1994.374138 – volume-title: Market Consistency: Model Calibration in Imperfect Markets year: 2009 ident: S0515036124000266_ref27 – ident: S0515036124000266_ref9 doi: 10.1016/j.jeconom.2005.03.005 – ident: S0515036124000266_ref4 doi: 10.1109/TPAMI.2013.50 – volume: 77 start-page: 680 year: 1987 ident: S0515036124000266_ref14 article-title: The information in long-maturity forward rates publication-title: The American Economic Review – volume: 15 start-page: 1929 year: 2014 ident: S0515036124000266_ref42 article-title: Dropout: A simple way to prevent neural networks from overfitting publication-title: Journal of Machine Learning Research – ident: S0515036124000266_ref23 doi: 10.1162/neco.1997.9.8.1735 – ident: S0515036124000266_ref41 doi: 10.1017/asb.2022.5 – ident: S0515036124000266_ref17 doi: 10.1007/978-3-030-26036-1_13 – ident: S0515036124000266_ref13 – ident: S0515036124000266_ref21 doi: 10.1080/1351847X.2014.926281 – ident: S0515036124000266_ref30 |
| SSID | ssj0031822 |
| Score | 2.3345566 |
| Snippet | This manuscript introduces deep learning models that simultaneously describe the dynamics of several yield curves. We aim to learn the dependence structure... |
| SourceID | proquest crossref cambridge |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 463 |
| SubjectTerms | Asset liability management Deep learning Discount rates Economic forecasting Effectiveness Expected values Interest rates Liability Life insurance Machine learning Securities markets Solvency Valuation Yield curve |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA66iXjxtzidksPwVm3SNk1PMmXDi2OIwm4lP17ESzfXbeB_b9KmjoF48dw0lI_X772X9-U9hHoSOJU287Dsp0QQM5oG0tpSIAmECYSh5lpWwybS0YhPJtnYH7iVXlbZcGJF1Hqq3Bn5XUSsrVDr3bP72Wfgpka56qofobGN2q5TmbXz9sNgNH5puNgabF1HsF47sFxN_A091zRalNKmhzS-3eyrsOmfNum58jnDg_9-7SHa99Em7tfmcYS2oDhGu43Y_QT1n72eEH85JRtWy_kKcDUdx7o0LAqNbVALSpROHY3de-9YA8ywnzbxforehoPXx6fAD1UIVJSQRSCBEKaYiVQqaZqBDI3mkiidMMMYgDIcQiWJAG7TV7eOsUS64qyJQp2a6Ay1imkB5wgLY2w4GXKdEBVriDMquNFhLGmkmSKig25-YM39r1HmtawszS3-ucM_p6yDeg3m-axusvH7sm4D9nq7NdIXfz--RHtun1of1kWtxXwJV2hHrRYf5fzaG843bAXM3w priority: 102 providerName: ProQuest |
| Title | Multiple yield curve modeling and forecasting using deep learning |
| URI | https://www.cambridge.org/core/product/identifier/S0515036124000266/type/journal_article https://www.proquest.com/docview/3119621439 |
| Volume | 54 |
| WOSCitedRecordID | wos001325588300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Accounting, Tax & Banking Collection customDbUrl: eissn: 1783-1350 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0031822 issn: 0515-0361 databaseCode: ANIOZ dateStart: 20130101 isFulltext: true titleUrlDefault: https://search.proquest.com/accountingtaxbanking providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1783-1350 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0031822 issn: 0515-0361 databaseCode: BENPR dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLaAIcSFN2IwUA6IW1mTtml3HIiXEAXxkCYuVZM4iMuYtoHEv8dpU9AkDlw4tapSV7Fdx46_2ACHCjOhKPIg66fLIJYiDRTpUqA4hgmGocmMqppNpHmeDQa9uzkYNGdhHKzyu8ZBlcmv-qON6vKn3VdTY2hw3H1w3UnI_nKHgqRIQnbdpmXXi6DwjJ-HFnkwgn7Z1tX14CJvrDSpcp1hICKBo-LP7rly0uVEUeAo4uPZiguzK9es4a5Wo_PV_5vHGqx4D5X16yfrMIfDDVhqAPKb0L_xGET26dBvTL-PP5BVHXVoGWTl0DByhFGXE4eoZu69F2YQR8x3qHjZgqfzs8fTy8A3Ygh0lPBpoJBzqaWNdKpE2kMVWpMprk0irZSI2mYYasVLzCjkdeOkTJRL6NooNKmNtmFh-DbEHWCltTTbMDMJ17HBuCfKzJowViIyUvOyDUffbCs8DyZFDUVLC5JM4SRTCNmGw0YaxaguzPH7sE4jqR9yESe7I8hT7O3-9XN7sOzuanRZBxam43fch0X9MX2djA-g1c-vbp_penKW390feGX7Ah4g5Mw |
| linkProvider | Cambridge University Press |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V07T8MwED5BQcDCG_HGA7AFYidx0gGhioeogMIAEmIJsX2uWEppCog_xW_k3CSgSoiNgTnOSc53vkfu8x3AtsJEKMo8yPrpzAuliD1FuuQpjn6Evm8SowbDJuJWK7m7q1-PwEd1F8bRKiubODDU5km7f-T7ASddEeTd64fdZ89NjXLV1WqERqEW5_j-RilbftA8Jnx3hDg9uTk688qpAp4OIt73FHIutbSBjpWI66h8axLFtYmklRJR2wR9rXiGCeVvbp2UkXLVSRv4JrYByR2FsTCgzKgGY41W8-q-sv10QIq6BUUJHvkGXt4IdE2qs1xROirCveE-DsP-cNgdDHzc6cx_-zqzMF1G06xRqP8cjGBnHiYqMv8CNC5LviR7d0w9pl96r8gG03_IZbOsYxgF7aiz3LG_mXuvzQxil5XTNNqLcPsnG1iCWuepg8vAMmspXPYTE3EdGgzrIkus8UMlAiM1z1Zg9wvGtDz6eVrQ5uKU8E4d3qmQK7BdYZx2iyYiPy9br8D9FveN7Orvj7dg8uzm8iK9aLbO12DKySy4cOtQ6_decAPG9Wv_Me9tlkrL4OGvNeETzo4sgQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V09T8MwED1BQYiFb8Q3HoAtEDuJkw4IVUBFBRQGkBBLiO1zxVJKU0D8NX4d5yYBVUJsDMxxLDnvfO8ufr4D2FGYCEWZB3k_nXmhFLGnyJY8xdGP0PdNYtSw2UTcbid3d_XrMfio7sI4WWXlE4eO2jxp94_8IOBkK4LYvX5gS1nE9UnzqPfsuQ5S7qS1aqdRmMg5vr9R-pYftk4I610hmqc3x2de2WHA00HEB55CzqWWNtCxEnEdlW9Norg2kbRSImqboK8VzzChXM6NkzJS7qTSBr6JbUDzjsOEqwgT1mCi0W5d3Vc8QJulOMOgiMEjnuDl7UBXsDrLFaWmItwfrekwyo2j1DDku-bsf_5SczBTRtmsUWyLeRjD7gJMVSL_RWhcljpK9u4UfEy_9F-RDbsCEZWzrGsYBfOos9ypwpl7r8MMYo-VXTY6S3D7JwtYhlr3qYsrwDJrKYz2ExNxHRoM6yJLrPFDJQIjNc9WYe8L0rR0CXlayOnilLBPHfapkKuwU-Gd9oriIj8P26iA_p7uG-W13x9vwxTBn1602ufrMO2mLCRyG1Ab9F9wEyb16-Ax72-V9svg4a8N4ROwdzVG |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple+yield+curve+modeling+and+forecasting+using+deep+learning&rft.jtitle=ASTIN+Bulletin+%3A+The+Journal+of+the+IAA&rft.au=Richman%2C+Ronald&rft.au=Scognamiglio%2C+Salvatore&rft.date=2024-09-01&rft.pub=Cambridge+University+Press&rft.issn=0515-0361&rft.eissn=1783-1350&rft.volume=54&rft.issue=3&rft.spage=463&rft.epage=494&rft_id=info:doi/10.1017%2Fasb.2024.26&rft.externalDocID=10_1017_asb_2024_26 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0515-0361&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0515-0361&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0515-0361&client=summon |