Laplacian-Uniform Mixture-Driven Iterative Robust Coding With Applications to Face Recognition Against Dense Errors

Outliers due to occlusion, pixel corruption, and so on pose serious challenges to face recognition despite the recent progress brought by sparse representation. In this article, we show that robust statistics implemented by the state-of-the-art methods are insufficient for robustness against dense g...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transaction on neural networks and learning systems Ročník 31; číslo 9; s. 3620 - 3633
Hlavní autori: Zheng, Huicheng, Lin, Dajun, Lian, Lina, Dong, Jiayu, Zhang, Peipei
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States IEEE 01.09.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:2162-237X, 2162-2388, 2162-2388
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Outliers due to occlusion, pixel corruption, and so on pose serious challenges to face recognition despite the recent progress brought by sparse representation. In this article, we show that robust statistics implemented by the state-of-the-art methods are insufficient for robustness against dense gross errors. By modeling the distribution of coding residuals with a Laplacian-uniform mixture, we obtain a sparse representation that is significantly more robust than the previous methods. The nonconvex error term of the implemented objective function is nondifferentiable at zero and cannot be properly addressed by the usual iteratively reweighted least-squares formulation. We show that an iterative robust coding algorithm can be derived by local linear approximation of the nonconvex error term, which is both effective and efficient. With iteratively reweighted <inline-formula> <tex-math notation="LaTeX">l_{1} </tex-math></inline-formula> minimization of the error term, the proposed algorithm is capable of handling the sparsity assumption of the coding errors more appropriately than the previous methods. Notably, it has the distinct property of addressing error detection and error correction cooperatively in the robust coding process. The proposed method demonstrates significantly improved robustness for face recognition against dense gross errors, either contiguous or discontiguous, as verified by extensive experiments.
AbstractList Outliers due to occlusion, pixel corruption, and so on pose serious challenges to face recognition despite the recent progress brought by sparse representation. In this article, we show that robust statistics implemented by the state-of-the-art methods are insufficient for robustness against dense gross errors. By modeling the distribution of coding residuals with a Laplacian-uniform mixture, we obtain a sparse representation that is significantly more robust than the previous methods. The nonconvex error term of the implemented objective function is nondifferentiable at zero and cannot be properly addressed by the usual iteratively reweighted least-squares formulation. We show that an iterative robust coding algorithm can be derived by local linear approximation of the nonconvex error term, which is both effective and efficient. With iteratively reweighted l1 minimization of the error term, the proposed algorithm is capable of handling the sparsity assumption of the coding errors more appropriately than the previous methods. Notably, it has the distinct property of addressing error detection and error correction cooperatively in the robust coding process. The proposed method demonstrates significantly improved robustness for face recognition against dense gross errors, either contiguous or discontiguous, as verified by extensive experiments.Outliers due to occlusion, pixel corruption, and so on pose serious challenges to face recognition despite the recent progress brought by sparse representation. In this article, we show that robust statistics implemented by the state-of-the-art methods are insufficient for robustness against dense gross errors. By modeling the distribution of coding residuals with a Laplacian-uniform mixture, we obtain a sparse representation that is significantly more robust than the previous methods. The nonconvex error term of the implemented objective function is nondifferentiable at zero and cannot be properly addressed by the usual iteratively reweighted least-squares formulation. We show that an iterative robust coding algorithm can be derived by local linear approximation of the nonconvex error term, which is both effective and efficient. With iteratively reweighted l1 minimization of the error term, the proposed algorithm is capable of handling the sparsity assumption of the coding errors more appropriately than the previous methods. Notably, it has the distinct property of addressing error detection and error correction cooperatively in the robust coding process. The proposed method demonstrates significantly improved robustness for face recognition against dense gross errors, either contiguous or discontiguous, as verified by extensive experiments.
Outliers due to occlusion, pixel corruption, and so on pose serious challenges to face recognition despite the recent progress brought by sparse representation. In this article, we show that robust statistics implemented by the state-of-the-art methods are insufficient for robustness against dense gross errors. By modeling the distribution of coding residuals with a Laplacian-uniform mixture, we obtain a sparse representation that is significantly more robust than the previous methods. The nonconvex error term of the implemented objective function is nondifferentiable at zero and cannot be properly addressed by the usual iteratively reweighted least-squares formulation. We show that an iterative robust coding algorithm can be derived by local linear approximation of the nonconvex error term, which is both effective and efficient. With iteratively reweighted l minimization of the error term, the proposed algorithm is capable of handling the sparsity assumption of the coding errors more appropriately than the previous methods. Notably, it has the distinct property of addressing error detection and error correction cooperatively in the robust coding process. The proposed method demonstrates significantly improved robustness for face recognition against dense gross errors, either contiguous or discontiguous, as verified by extensive experiments.
Outliers due to occlusion, pixel corruption, and so on pose serious challenges to face recognition despite the recent progress brought by sparse representation. In this article, we show that robust statistics implemented by the state-of-the-art methods are insufficient for robustness against dense gross errors. By modeling the distribution of coding residuals with a Laplacian-uniform mixture, we obtain a sparse representation that is significantly more robust than the previous methods. The nonconvex error term of the implemented objective function is nondifferentiable at zero and cannot be properly addressed by the usual iteratively reweighted least-squares formulation. We show that an iterative robust coding algorithm can be derived by local linear approximation of the nonconvex error term, which is both effective and efficient. With iteratively reweighted <inline-formula> <tex-math notation="LaTeX">l_{1} </tex-math></inline-formula> minimization of the error term, the proposed algorithm is capable of handling the sparsity assumption of the coding errors more appropriately than the previous methods. Notably, it has the distinct property of addressing error detection and error correction cooperatively in the robust coding process. The proposed method demonstrates significantly improved robustness for face recognition against dense gross errors, either contiguous or discontiguous, as verified by extensive experiments.
Outliers due to occlusion, pixel corruption, and so on pose serious challenges to face recognition despite the recent progress brought by sparse representation. In this article, we show that robust statistics implemented by the state-of-the-art methods are insufficient for robustness against dense gross errors. By modeling the distribution of coding residuals with a Laplacian-uniform mixture, we obtain a sparse representation that is significantly more robust than the previous methods. The nonconvex error term of the implemented objective function is nondifferentiable at zero and cannot be properly addressed by the usual iteratively reweighted least-squares formulation. We show that an iterative robust coding algorithm can be derived by local linear approximation of the nonconvex error term, which is both effective and efficient. With iteratively reweighted [Formula Omitted] minimization of the error term, the proposed algorithm is capable of handling the sparsity assumption of the coding errors more appropriately than the previous methods. Notably, it has the distinct property of addressing error detection and error correction cooperatively in the robust coding process. The proposed method demonstrates significantly improved robustness for face recognition against dense gross errors, either contiguous or discontiguous, as verified by extensive experiments.
Author Lin, Dajun
Zhang, Peipei
Zheng, Huicheng
Lian, Lina
Dong, Jiayu
Author_xml – sequence: 1
  givenname: Huicheng
  orcidid: 0000-0002-6729-4176
  surname: Zheng
  fullname: Zheng, Huicheng
  email: zhenghch@mail.sysu.edu.cn
  organization: School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China
– sequence: 2
  givenname: Dajun
  surname: Lin
  fullname: Lin, Dajun
  organization: School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China
– sequence: 3
  givenname: Lina
  surname: Lian
  fullname: Lian, Lina
  organization: School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China
– sequence: 4
  givenname: Jiayu
  surname: Dong
  fullname: Dong, Jiayu
  organization: School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China
– sequence: 5
  givenname: Peipei
  surname: Zhang
  fullname: Zhang, Peipei
  organization: School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31714242$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1vEzEQhi1UREvbPwASssSFywZ_7a59jNIWKoUi0VZws7zObHC1sRfbW5V_j9OkPfSALx7ZzzMazfsWHfjgAaF3lMwoJerzzdXV8nrGCFUzpkTNW_YKHTHasIpxKQ-e6_bXITpN6Y6U05C6EeoNOuS0pYIJdoTS0oyDsc746ta7PsQN_uYe8hShOovuHjy-zBBNLiX-EbopZbwIK-fX-KfLv_F8HAdny3fwCeeAL4wtHNiw9m77iOdr43yRzsAnwOcxhphO0OveDAlO9_cxur04v1l8rZbfv1wu5svK8prmqrNKNrSjVHBpKGc1mBXrKVgphG0tMUZY1jWcCCWgbZqupn3TciP5igIowY_Rp13fMYY_E6SsNy5ZGAbjIUxJM04FIbKRqqAfX6B3YYq-TKeZ4KolnFFSqA97auo2sNJjdBsT_-qndRZA7gAbQ0oRem1dftxOjsYNmhK9DU8_hqe34el9eEVlL9Sn7v-V3u8kBwDPgpSqDNTyf8GEpJw
CODEN ITNNAL
CitedBy_id crossref_primary_10_1109_TCSVT_2021_3103941
crossref_primary_10_1109_TIP_2025_3539472
crossref_primary_10_3390_s20154250
crossref_primary_10_1109_TIFS_2023_3309458
crossref_primary_10_1117_1_JEI_33_5_053057
crossref_primary_10_1088_1402_4896_acfe5a
crossref_primary_10_1016_j_ins_2023_119947
crossref_primary_10_1016_j_measurement_2024_116619
crossref_primary_10_3390_s23208559
Cites_doi 10.1109/JSTSP.2007.910971
10.1109/TIP.2017.2675341
10.1109/ICIP.2016.7532956
10.5244/C.29.41
10.1109/TPAMI.2010.220
10.1002/cpa.20042
10.1023/A:1023709501986
10.1109/TNNLS.2016.2643286
10.1109/AFGR.2008.4813410
10.1002/9780470434697
10.1109/CVPRW.2016.20
10.1109/TIP.2012.2235849
10.1109/TPAMI.2017.2757923
10.1109/ICIP.2017.8296992
10.1109/CVPR.2014.220
10.1109/TNNLS.2017.2712801
10.1109/TSP.2007.896065
10.1109/TPAMI.2014.2359453
10.1109/CVPR.2013.75
10.1109/34.927464
10.1137/S1064827596304010
10.1109/TIP.2013.2262292
10.1109/TPAMI.2016.2535218
10.1109/TIFS.2018.2833032
10.1007/s00041-008-9045-x
10.1137/080716542
10.1016/j.patrec.2009.11.002
10.1002/cpa.20132
10.1109/TPAMI.2006.244
10.1109/CVPR.2013.230
10.1109/TPAMI.2013.102
10.1109/34.598228
10.1162/jocn.1991.3.1.71
10.1109/CVPR.2015.7299058
10.1109/CVPRW.2006.149
10.1109/TIP.2014.2329451
10.1023/B:VISI.0000013087.49260.fb
10.1073/pnas.0437847100
10.1109/TNNLS.2012.2226471
10.1109/TPAMI.2005.92
10.1111/j.2517-6161.1996.tb02080.x
10.1109/CVPR.2009.5206862
10.1109/CVPR.2015.7298907
10.1109/TPAMI.2005.55
10.1109/TNNLS.2016.2580572
10.1109/TPAMI.2012.191
10.1109/TIP.2013.2237920
10.1109/TIP.2015.2475625
10.1109/34.910882
10.1109/TIP.2017.2675206
10.1145/954339.954342
10.1109/TPAMI.2010.230
10.1109/TPAMI.2008.79
10.1109/TPAMI.2014.2313124
10.1137/090777761
10.1109/TPAMI.2003.1182094
10.1109/TIP.2017.2662213
10.1109/TPAMI.2013.50
10.1162/neco.2006.18.7.1527
10.1109/83.392335
10.1109/TNNLS.2016.2522431
10.1109/TPAMI.2002.1008382
10.1109/TNNLS.2018.2836933
10.1109/TIP.2002.999679
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2019.2945372
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 3633
ExternalDocumentID 31714242
10_1109_TNNLS_2019_2945372
8891717
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Science and Technology Program of Guangzhou
  grantid: 201803030029; 2014J4100092
– fundername: Project on the Integration of Industry, Education and Research of Guangdong Province
  grantid: 2013B090500013
– fundername: Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund (the second phase)
  grantid: U1501501
  funderid: 10.13039/501100001809
– fundername: National Natural Science Foundation of China
  grantid: 61172141; U1611461
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
RIG
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c351t-bc9861b11438a1325ead2f1ec844c7c0aa4c2b630494e766b51f673a83d1ee943
IEDL.DBID RIE
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000566342500037&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2162-237X
2162-2388
IngestDate Sun Nov 09 10:20:05 EST 2025
Sun Nov 09 07:03:04 EST 2025
Thu Apr 03 06:53:43 EDT 2025
Sat Nov 29 01:40:04 EST 2025
Tue Nov 18 21:39:52 EST 2025
Wed Aug 27 02:32:11 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-bc9861b11438a1325ead2f1ec844c7c0aa4c2b630494e766b51f673a83d1ee943
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6729-4176
PMID 31714242
PQID 2439703210
PQPubID 85436
PageCount 14
ParticipantIDs pubmed_primary_31714242
crossref_citationtrail_10_1109_TNNLS_2019_2945372
proquest_journals_2439703210
crossref_primary_10_1109_TNNLS_2019_2945372
proquest_miscellaneous_2314008689
ieee_primary_8891717
PublicationCentury 2000
PublicationDate 2020-09-01
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref12
ref59
ref15
ref58
ref14
ref53
ref52
ref55
ref11
ref54
ref10
ref17
ref16
ref19
ref18
martinez (ref43) 1998
he (ref23) 2013; 24
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
huang (ref28) 2014
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
he (ref24) 2014; 36
ref40
he (ref22) 2011; 33
ref35
ref34
ref37
ref36
ref31
ref33
huber (ref30) 2009
ref32
ref2
ref1
ref39
ref38
ref68
ref67
ref26
ref64
ref20
ref63
ref65
ref21
ref29
he (ref25) 2005; 27
yi (ref66) 2014
huang (ref27) 2007
ref60
ref62
ref61
References_xml – ident: ref36
  doi: 10.1109/JSTSP.2007.910971
– ident: ref15
  doi: 10.1109/TIP.2017.2675341
– ident: ref31
  doi: 10.1109/ICIP.2016.7532956
– ident: ref45
  doi: 10.5244/C.29.41
– volume: 33
  start-page: 1561
  year: 2011
  ident: ref22
  article-title: Maximum correntropy criterion for robust face recognition
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2010.220
– ident: ref10
  doi: 10.1002/cpa.20042
– ident: ref11
  doi: 10.1023/A:1023709501986
– ident: ref19
  doi: 10.1109/TNNLS.2016.2643286
– ident: ref33
  doi: 10.1109/AFGR.2008.4813410
– year: 2009
  ident: ref30
  publication-title: Robust Statistics
  doi: 10.1002/9780470434697
– ident: ref18
  doi: 10.1109/CVPRW.2016.20
– ident: ref64
  doi: 10.1109/TIP.2012.2235849
– ident: ref12
  doi: 10.1109/TPAMI.2017.2757923
– ident: ref53
  doi: 10.1109/ICIP.2017.8296992
– ident: ref48
  doi: 10.1109/CVPR.2014.220
– ident: ref67
  doi: 10.1109/TNNLS.2017.2712801
– ident: ref41
  doi: 10.1109/TSP.2007.896065
– ident: ref35
  doi: 10.1109/TPAMI.2014.2359453
– ident: ref59
  doi: 10.1109/CVPR.2013.75
– ident: ref17
  doi: 10.1109/34.927464
– ident: ref9
  doi: 10.1137/S1064827596304010
– ident: ref62
  doi: 10.1109/TIP.2013.2262292
– ident: ref65
  doi: 10.1109/TPAMI.2016.2535218
– ident: ref57
  doi: 10.1109/TIFS.2018.2833032
– ident: ref7
  doi: 10.1007/s00041-008-9045-x
– ident: ref3
  doi: 10.1137/080716542
– ident: ref46
  doi: 10.1016/j.patrec.2009.11.002
– ident: ref14
  doi: 10.1002/cpa.20132
– ident: ref2
  doi: 10.1109/TPAMI.2006.244
– ident: ref44
  doi: 10.1109/CVPR.2013.230
– volume: 36
  start-page: 261
  year: 2014
  ident: ref24
  article-title: Half-quadratic-based iterative minimization for robust sparse representation
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2013.102
– ident: ref4
  doi: 10.1109/34.598228
– ident: ref51
  doi: 10.1162/jocn.1991.3.1.71
– year: 2014
  ident: ref66
  article-title: Learning face representation from scratch
  publication-title: arXiv 1411 7923
– ident: ref21
  doi: 10.1109/CVPR.2015.7299058
– ident: ref6
  doi: 10.1109/CVPRW.2006.149
– ident: ref54
  doi: 10.1109/TIP.2014.2329451
– ident: ref52
  doi: 10.1023/B:VISI.0000013087.49260.fb
– year: 1998
  ident: ref43
  article-title: The AR face database
– year: 2014
  ident: ref28
  article-title: Labeled faces in the wild: Updates and new reporting procedures
– ident: ref13
  doi: 10.1073/pnas.0437847100
– volume: 24
  start-page: 35
  year: 2013
  ident: ref23
  article-title: Two-stage nonnegative sparse representation for large-scale face recognition
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2012.2226471
– ident: ref37
  doi: 10.1109/TPAMI.2005.92
– ident: ref49
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– ident: ref34
  doi: 10.1109/CVPR.2009.5206862
– ident: ref47
  doi: 10.1109/CVPR.2015.7298907
– volume: 27
  start-page: 328
  year: 2005
  ident: ref25
  article-title: Face recognition using Laplacianfaces
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2005.55
– ident: ref61
  doi: 10.1109/TNNLS.2016.2580572
– ident: ref39
  doi: 10.1109/TPAMI.2012.191
– ident: ref38
  doi: 10.1109/TIP.2013.2237920
– ident: ref8
  doi: 10.1109/TIP.2015.2475625
– ident: ref50
  doi: 10.1109/34.910882
– ident: ref32
  doi: 10.1109/TIP.2017.2675206
– ident: ref68
  doi: 10.1145/954339.954342
– ident: ref55
  doi: 10.1109/TPAMI.2010.230
– ident: ref56
  doi: 10.1109/TPAMI.2008.79
– ident: ref1
  doi: 10.1109/TPAMI.2014.2313124
– ident: ref63
  doi: 10.1137/090777761
– ident: ref20
  doi: 10.1109/TPAMI.2003.1182094
– ident: ref58
  doi: 10.1109/TIP.2017.2662213
– ident: ref5
  doi: 10.1109/TPAMI.2013.50
– ident: ref26
  doi: 10.1162/neco.2006.18.7.1527
– ident: ref16
  doi: 10.1109/83.392335
– ident: ref29
  doi: 10.1109/TNNLS.2016.2522431
– year: 2007
  ident: ref27
  article-title: Labeled faces in the wild: A database for studying face recognition in unconstrained environments
– ident: ref42
  doi: 10.1109/TPAMI.2002.1008382
– ident: ref60
  doi: 10.1109/TNNLS.2018.2836933
– ident: ref40
  doi: 10.1109/TIP.2002.999679
SSID ssj0000605649
Score 2.3742852
Snippet Outliers due to occlusion, pixel corruption, and so on pose serious challenges to face recognition despite the recent progress brought by sparse...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3620
SubjectTerms Algorithms
Approximation algorithms
Coding
Coding residual
Corruption
Encoding
Error correction
Error correction & detection
Error detection
Face
Face recognition
Facial recognition technology
Iterative methods
Minimization
non-convexity
Objective function
Occlusion
outlier
Outliers (statistics)
Pattern recognition
Representations
Robustness
sparse representation
Training
Title Laplacian-Uniform Mixture-Driven Iterative Robust Coding With Applications to Face Recognition Against Dense Errors
URI https://ieeexplore.ieee.org/document/8891717
https://www.ncbi.nlm.nih.gov/pubmed/31714242
https://www.proquest.com/docview/2439703210
https://www.proquest.com/docview/2314008689
Volume 31
WOSCitedRecordID wos000566342500037&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE
  customDbUrl:
  eissn: 2162-2388
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605649
  issn: 2162-237X
  databaseCode: RIE
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9UwFA_b8MEXp86P6hwRfNNszUeb9PGy7aIwL6IT71tJ0lQvSCtt79if7zm5bVFQwbdAT9LCOWl-J-fjR8gr62slXXDMSVEwVSnFbDCKVTVGyTivauEi2YRercx6XXzYI2_mWpgQQkw-C6c4jLH8qvVbvCo7MwacC673yb7W-a5Wa75PSQGX5xHtCp4LJqReTzUyaXF2vVpdfcJEruJUFCqTWvx2DkVilb9jzHjWLA__7yvvk3sjpqSLnRE8IHuheUgOJ74GOm7fI9JfWUzBAoNgADURrdL3m1sMIbCLDv969F3ssQxD-rF1236g5y2ebfTLZvhGF7_EuunQ0qX1IDclILUNXXy1G0Cb9AJc40Avu67t-kfk8_Ly-vwtG0kXmJcZH5jzhcm540iLbsFVzcDURM2DN0p57VNrlRcux-icCjrPXcbrXEtrZMVDKJR8TA6atglPCbXGhKp2MENXynFhFTc-hcWy1FvAMQnhkwpKP3YkR2KM72X0TNKijGorUW3lqLaEvJ7n_Nj14_in9BHqZ5YcVZOQ40nT5bhl-1IgNEuxpCkhL-fHsNkwgmKb0G5BRoI_Ck6gKRLyZGch89oSqeQB8Dz78zufk7sCXfWYnnZMDoZuG16QO_5m2PTdCVj02pxEi_4Jgl3yWQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB_OU9AXTz1Pq6dG8E1z13y0TR-Xu1vucG8RXXHfSpKmuiCttF3xzzeTbYuCCr4FOkkLM2l-k_n4AbzStpLCOEON4DmVpZRUOyVpWWGUjLGy4iaQTWTLpVqv83d78GaqhXHOheQzd4LDEMsvG7vFq7JTpbxzwbIbcBOZs4ZqrelGJfbIPA14l7OUUy6y9VglE-enq-Vy8QFTufITnstEZPy3kyhQq_wdZYbTZn7wf995D-4OqJLMdmZwH_Zc_QAORsYGMmzgQ-gWGpOwvElQDzYRr5LrzQ8MItDzFv975Cp0WfZD8r4x264nZw2ebuTTpv9CZr9Eu0nfkLm2Xm5MQWpqMvusNx5vknPvHDty0bZN2z2Ej_OL1dklHWgXqBUJ66mxuUqZYUiMrr2zmnhj4xVzVklpMxtrLS03KcbnpMvS1CSsSjOhlSiZc7kUR7BfN7V7DEQr5crK-BlZKQ3jWjJlY79YElvtkUwEbFRBYYee5EiN8bUIvkmcF0FtBaqtGNQWwetpzrddR45_Sh-ifibJQTURHI-aLoZN2xUcwVmMRU0RvJwe--2GMRRdu2brZYT3SL0bqPIIHu0sZFpbIJm8hzxP_vzOF3D7cnW9KBZXy7dP4Q5Hxz0kqx3Dft9u3TO4Zb_3m659Huz6J47K9Lo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Laplacian-Uniform+Mixture-Driven+Iterative+Robust+Coding+With+Applications+to+Face+Recognition+Against+Dense+Errors&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Zheng%2C+Huicheng&rft.au=Lin%2C+Dajun&rft.au=Lian%2C+Lina&rft.au=Dong%2C+Jiayu&rft.date=2020-09-01&rft.issn=2162-2388&rft.eissn=2162-2388&rft.volume=31&rft.issue=9&rft.spage=3620&rft_id=info:doi/10.1109%2FTNNLS.2019.2945372&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon