Kernel-Based Multilayer Extreme Learning Machines for Representation Learning

Recently, multilayer extreme learning machine (ML-ELM) was applied to stacked autoencoder (SAE) for representation learning. In contrast to traditional SAE, the training time of ML-ELM is significantly reduced from hours to seconds with high accuracy. However, ML-ELM suffers from several drawbacks:...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems Jg. 29; H. 3; S. 757 - 762
Hauptverfasser: Wong, Chi Man, Vong, Chi Man, Wong, Pak Kin, Cao, Jiuwen
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 01.03.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2162-237X, 2162-2388
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Recently, multilayer extreme learning machine (ML-ELM) was applied to stacked autoencoder (SAE) for representation learning. In contrast to traditional SAE, the training time of ML-ELM is significantly reduced from hours to seconds with high accuracy. However, ML-ELM suffers from several drawbacks: 1) manual tuning on the number of hidden nodes in every layer is an uncertain factor to training time and generalization; 2) random projection of input weights and bias in every layer of ML-ELM leads to suboptimal model generalization; 3) the pseudoinverse solution for output weights in every layer incurs relatively large reconstruction error; and 4) the storage and execution time for transformation matrices in representation learning are proportional to the number of hidden layers. Inspired by kernel learning, a kernel version of ML-ELM is developed, namely, multilayer kernel ELM (ML-KELM), whose contributions are: 1) elimination of manual tuning on the number of hidden nodes in every layer; 2) no random projection mechanism so as to obtain optimal model generalization; 3) exact inverse solution for output weights is guaranteed under invertible kernel matrix, resulting to smaller reconstruction error; and 4) all transformation matrices are unified into two matrices only, so that storage can be reduced and may shorten model execution time. Benchmark data sets of different sizes have been employed for the evaluation of ML-KELM. Experimental results have verified the contributions of the proposed ML-KELM. The improvement in accuracy over benchmark data sets is up to 7%.
AbstractList Recently, multilayer extreme learning machine (ML-ELM) was applied to stacked autoencoder (SAE) for representation learning. In contrast to traditional SAE, the training time of ML-ELM is significantly reduced from hours to seconds with high accuracy. However, ML-ELM suffers from several drawbacks: 1) manual tuning on the number of hidden nodes in every layer is an uncertain factor to training time and generalization; 2) random projection of input weights and bias in every layer of ML-ELM leads to suboptimal model generalization; 3) the pseudoinverse solution for output weights in every layer incurs relatively large reconstruction error; and 4) the storage and execution time for transformation matrices in representation learning are proportional to the number of hidden layers. Inspired by kernel learning, a kernel version of ML-ELM is developed, namely, multilayer kernel ELM (ML-KELM), whose contributions are: 1) elimination of manual tuning on the number of hidden nodes in every layer; 2) no random projection mechanism so as to obtain optimal model generalization; 3) exact inverse solution for output weights is guaranteed under invertible kernel matrix, resulting to smaller reconstruction error; and 4) all transformation matrices are unified into two matrices only, so that storage can be reduced and may shorten model execution time. Benchmark data sets of different sizes have been employed for the evaluation of ML-KELM. Experimental results have verified the contributions of the proposed ML-KELM. The improvement in accuracy over benchmark data sets is up to 7%.
Author Wong, Chi Man
Wong, Pak Kin
Cao, Jiuwen
Vong, Chi Man
Author_xml – sequence: 1
  givenname: Chi Man
  surname: Wong
  fullname: Wong, Chi Man
  email: mb55501@umac.mo
  organization: Department of Computer and Information Science, University of Macau, Macau, China
– sequence: 2
  givenname: Chi Man
  orcidid: 0000-0001-7997-8279
  surname: Vong
  fullname: Vong, Chi Man
  email: cmvong@umac.mol
  organization: Department of Computer and Information Science, University of Macau, Macau, China
– sequence: 3
  givenname: Pak Kin
  surname: Wong
  fullname: Wong, Pak Kin
  email: fstpkw@umac.mo
  organization: Department of Electromechanical Engineering, University of Macau, Macau, China
– sequence: 4
  givenname: Jiuwen
  surname: Cao
  fullname: Cao, Jiuwen
  email: jwcao@hdu.edu.cn
  organization: Institute of Information and Control, Hangzhou Dianzi University, Hangzhou, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28055922$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1LxDAQhoMofv8BBSl48dJ1krRpclTxC3cV_ABvIW0nGumma9KC_nuru-7Bg3OZOTzvzPC-W2TVtx4J2aMwohTU8ePt7fhhxICKERNcSJ6tkE1GBUsZl3J1ORfPG2Q3xjcYSkAuMrVONpiEPFeMbZLJDQaPTXpqItbJpG8615hPDMn5RxdwiskYTfDOvyQTU706jzGxbUjucRYwou9M51q_hHbImjVNxN1F3yZPF-ePZ1fp-O7y-uxknFY8p11alsgpLbg0Wc1VySyoyphaWIumgizPoJSK1coUNJMgqTRY2oxV1nJb17Xi2-RovncW2vceY6enLlbYNMZj20dNZS5yJUHRAT38g761ffDDd5oBSKVoVsBAHSyovpxirWfBTU341L9GDQCbA1VoYwxolwgF_R2I_glEfweiF4EMIvlHVLm5Y10wrvlfuj-XOkRc3iokUCmAfwHfGZg0
CODEN ITNNAL
CitedBy_id crossref_primary_10_1109_TCYB_2019_2923756
crossref_primary_10_1016_j_jfoodeng_2020_110223
crossref_primary_10_1007_s12559_020_09752_2
crossref_primary_10_1016_j_engappai_2023_105831
crossref_primary_10_1016_j_eswa_2021_115308
crossref_primary_10_1016_j_measurement_2020_108186
crossref_primary_10_1016_j_neucom_2020_06_110
crossref_primary_10_1109_ACCESS_2020_3022627
crossref_primary_10_1109_JBHI_2022_3164937
crossref_primary_10_1016_j_jfranklin_2020_04_033
crossref_primary_10_1016_j_oceaneng_2023_114370
crossref_primary_10_1007_s10462_023_10478_4
crossref_primary_10_1016_j_jmapro_2022_10_072
crossref_primary_10_1016_j_neucom_2018_08_062
crossref_primary_10_1109_JSEN_2025_3532456
crossref_primary_10_1002_er_7117
crossref_primary_10_1007_s12559_020_09804_7
crossref_primary_10_1109_TMC_2025_3552538
crossref_primary_10_1007_s11063_022_11134_8
crossref_primary_10_3389_fncom_2023_1120516
crossref_primary_10_1007_s12559_018_9602_9
crossref_primary_10_1007_s13042_020_01234_z
crossref_primary_10_1109_TCYB_2022_3219855
crossref_primary_10_1002_for_2663
crossref_primary_10_1007_s11063_024_11677_y
crossref_primary_10_1016_j_dajour_2023_100193
crossref_primary_10_1016_j_engappai_2024_108935
crossref_primary_10_3390_s24185867
crossref_primary_10_3390_su16177498
crossref_primary_10_1109_MIS_2021_3122958
crossref_primary_10_1109_TNNLS_2018_2877468
crossref_primary_10_1109_TIE_2022_3170631
crossref_primary_10_1007_s13369_020_04566_8
crossref_primary_10_1007_s12652_018_0994_x
crossref_primary_10_1049_ccs2_12030
crossref_primary_10_1109_MIE_2019_2938025
crossref_primary_10_3390_app12189021
crossref_primary_10_1109_ACCESS_2023_3322375
crossref_primary_10_1016_j_engappai_2020_103796
crossref_primary_10_1109_TNNLS_2020_2979486
crossref_primary_10_1007_s13042_022_01749_7
crossref_primary_10_1016_j_neunet_2019_09_030
crossref_primary_10_3390_bdcc2040031
crossref_primary_10_1016_j_neuri_2022_100075
crossref_primary_10_1109_TNNLS_2020_3007509
crossref_primary_10_1109_TNNLS_2020_3026621
crossref_primary_10_1109_TBCAS_2021_3090995
crossref_primary_10_1016_j_renene_2025_122516
crossref_primary_10_1016_j_neunet_2019_03_004
crossref_primary_10_1016_j_scs_2020_102613
crossref_primary_10_1007_s11042_023_14634_4
crossref_primary_10_1016_j_neucom_2018_11_106
crossref_primary_10_1109_TSMC_2019_2931003
crossref_primary_10_1016_j_patcog_2023_109992
crossref_primary_10_1016_j_neucom_2025_131366
crossref_primary_10_1109_TNNLS_2020_3015356
crossref_primary_10_1007_s11042_018_6134_y
crossref_primary_10_1007_s40747_022_00867_7
crossref_primary_10_1016_j_dsp_2019_102634
crossref_primary_10_1016_j_energy_2021_120094
crossref_primary_10_1016_j_ymssp_2023_110957
crossref_primary_10_1007_s00202_021_01261_1
crossref_primary_10_1109_TVT_2020_3040398
crossref_primary_10_1007_s40003_023_00691_6
crossref_primary_10_1007_s00500_018_3128_7
crossref_primary_10_1093_ce_zkad042
crossref_primary_10_1109_ACCESS_2019_2907720
crossref_primary_10_1109_ACCESS_2019_2949726
crossref_primary_10_1016_j_jprocont_2020_03_012
crossref_primary_10_1016_j_asoc_2022_109861
crossref_primary_10_1007_s13042_019_00924_7
crossref_primary_10_1145_3340268
crossref_primary_10_1016_j_neucom_2020_06_039
crossref_primary_10_1109_TPWRS_2020_3001919
crossref_primary_10_1109_ACCESS_2022_3217213
crossref_primary_10_1109_TNNLS_2020_3015860
crossref_primary_10_1109_TNNLS_2020_3029198
crossref_primary_10_1007_s12652_022_03880_3
crossref_primary_10_1109_TIM_2021_3054673
crossref_primary_10_1016_j_chemolab_2023_104937
crossref_primary_10_1016_j_infrared_2019_103070
crossref_primary_10_1016_j_energy_2021_122585
crossref_primary_10_1016_j_jfranklin_2020_05_031
crossref_primary_10_1016_j_neucom_2018_05_057
crossref_primary_10_1088_1361_6501_addbf8
crossref_primary_10_3390_a15060185
crossref_primary_10_1177_09596518221082857
crossref_primary_10_1016_j_asoc_2021_107239
crossref_primary_10_1007_s11063_024_11492_5
crossref_primary_10_1109_TFUZZ_2023_3347699
crossref_primary_10_1016_j_egyr_2022_10_024
crossref_primary_10_1016_j_neucom_2021_03_110
crossref_primary_10_1049_iet_stg_2018_0021
crossref_primary_10_1109_TNNLS_2020_3027984
crossref_primary_10_1109_JSEN_2020_3028579
crossref_primary_10_1080_09720510_2020_1714149
crossref_primary_10_1109_ACCESS_2019_2962067
crossref_primary_10_1109_TCDS_2019_2936441
crossref_primary_10_1007_s10489_021_02915_0
crossref_primary_10_3233_KES_218014
crossref_primary_10_1007_s10489_020_02058_8
crossref_primary_10_1016_j_engappai_2022_105611
crossref_primary_10_1109_TII_2018_2817201
crossref_primary_10_1016_j_jfranklin_2020_06_027
crossref_primary_10_1007_s11071_021_06987_y
crossref_primary_10_1007_s40435_025_01730_6
crossref_primary_10_1108_EC_11_2021_0683
crossref_primary_10_1016_j_neucom_2018_05_032
crossref_primary_10_34133_cbsystems_0158
crossref_primary_10_1016_j_asoc_2019_105854
crossref_primary_10_1016_j_asoc_2022_108861
crossref_primary_10_1016_j_neucom_2019_11_105
crossref_primary_10_1109_ACCESS_2019_2924647
crossref_primary_10_1109_TIM_2024_3374295
crossref_primary_10_1109_TNNLS_2021_3117403
crossref_primary_10_1016_j_conengprac_2020_104706
crossref_primary_10_1109_TCYB_2021_3064821
crossref_primary_10_1109_TNNLS_2024_3512505
crossref_primary_10_1109_TGRS_2020_3022029
crossref_primary_10_1016_j_eneco_2019_104648
crossref_primary_10_1109_TNNLS_2019_2927385
crossref_primary_10_1016_j_neucom_2024_128533
crossref_primary_10_1109_TNNLS_2020_3025905
crossref_primary_10_1016_j_engappai_2022_105051
crossref_primary_10_1109_TII_2022_3165870
crossref_primary_10_1007_s11042_021_11097_3
crossref_primary_10_1155_2021_2026895
Cites_doi 10.1137/1001003
10.1109/TIP.2016.2570569
10.1109/CVPRW.2014.79
10.1561/2200000006
10.1049/el.2014.0611
10.1016/j.neucom.2005.12.126
10.1007/BF01893414
10.1126/science.1127647
10.1109/TCSVT.2014.2335852
10.1109/TSMCB.2011.2168604
10.1007/978-0-387-77242-4
10.1109/TNNLS.2015.2424995
10.1109/TNNLS.2014.2382094
10.1109/ACII.2013.90
10.1049/el.2013.3235
10.1145/2641190.2641198
10.7551/mitpress/4175.001.0001
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2016.2636834
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 762
ExternalDocumentID 28055922
10_1109_TNNLS_2016_2636834
7801860
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: NNSF of China
  grantid: 61503104
  funderid: 10.13039/501100001809
– fundername: Zhejiang Provincial NSF of China
  grantid: LY15F030017
– fundername: University of Macau Research
  grantid: MYRG2014-00083-FST; MYRG2016-00134-FST
  funderid: 10.13039/501100004733
– fundername: FDCT
  grantid: 050/2015/A
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
RIG
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c351t-bbe311738a4d39b2f09caad6ffeac04540b892d9a71480818aebf42cff3fddd93
IEDL.DBID RIE
ISICitedReferencesCount 149
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000426344600023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2162-237X
IngestDate Sun Sep 28 09:25:04 EDT 2025
Sun Nov 09 07:08:44 EST 2025
Thu Apr 03 06:49:58 EDT 2025
Tue Nov 18 22:32:08 EST 2025
Sat Nov 29 07:50:46 EST 2025
Wed Aug 27 02:52:37 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-bbe311738a4d39b2f09caad6ffeac04540b892d9a71480818aebf42cff3fddd93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7997-8279
PMID 28055922
PQID 2008991470
PQPubID 85436
PageCount 6
ParticipantIDs proquest_journals_2008991470
crossref_primary_10_1109_TNNLS_2016_2636834
ieee_primary_7801860
pubmed_primary_28055922
crossref_citationtrail_10_1109_TNNLS_2016_2636834
proquest_miscellaneous_1856598091
PublicationCentury 2000
PublicationDate 2018-03-01
PublicationDateYYYYMMDD 2018-03-01
PublicationDate_xml – month: 03
  year: 2018
  text: 2018-03-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
shie (ref7) 2015
ref14
ref11
van der maaten (ref3) 2009; 10
ref1
ref16
ref19
ref18
scholkopf (ref23) 2001
guyon (ref25) 2004
steinwart (ref15) 2008
ref24
huang (ref10) 2004; 2
ref20
ref22
hinton (ref2) 2006; 313
he (ref17) 2015
lekamalage (ref9) 2016; 25
ref4
ref5
baldi (ref6) 2012; 7
lichman (ref21) 2013
kasun (ref8) 2013; 28
References_xml – start-page: 545
  year: 2004
  ident: ref25
  article-title: Result analysis of the NIPS 2003 feature selection challenge
  publication-title: Proc Adv Neural Inf Process Syst
– volume: 28
  start-page: 31
  year: 2013
  ident: ref8
  article-title: Representational learning with extreme learning machine for big data
  publication-title: IEEE Intell Syst
– ident: ref16
  doi: 10.1137/1001003
– volume: 7
  start-page: 37
  year: 2012
  ident: ref6
  article-title: Autoencoders, unsupervised learning, and deep architectures
  publication-title: Unsupervised and Transfer Learning Challenges in Machine Learning
– volume: 25
  start-page: 3906
  year: 2016
  ident: ref9
  article-title: Dimension reduction with extreme learning machine
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2016.2570569
– year: 2015
  ident: ref17
  publication-title: Deep residual learning for image recognition
– ident: ref4
  doi: 10.1109/CVPRW.2014.79
– ident: ref1
  doi: 10.1561/2200000006
– ident: ref19
  doi: 10.1049/el.2014.0611
– start-page: 711
  year: 2015
  ident: ref7
  article-title: Transfer representation learning for medical image analysis
  publication-title: Proc IEEE Eng Med Biol Soc Annu Int Conf (EMBC)
– ident: ref12
  doi: 10.1016/j.neucom.2005.12.126
– ident: ref24
  doi: 10.1007/BF01893414
– volume: 313
  start-page: 504
  year: 2006
  ident: ref2
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– ident: ref18
  doi: 10.1109/TCSVT.2014.2335852
– ident: ref14
  doi: 10.1109/TSMCB.2011.2168604
– year: 2008
  ident: ref15
  publication-title: Support Vector Machines
  doi: 10.1007/978-0-387-77242-4
– ident: ref11
  doi: 10.1109/TNNLS.2015.2424995
– volume: 2
  start-page: 985
  year: 2004
  ident: ref10
  article-title: Extreme learning machine: A new learning scheme of feedforward neural networks
  publication-title: Proc IEEE Int Joint Conf Neural Netw
– year: 2013
  ident: ref21
  article-title: UCI machine learning repository
– ident: ref13
  doi: 10.1109/TNNLS.2014.2382094
– volume: 10
  start-page: 66
  year: 2009
  ident: ref3
  article-title: Dimensionality reduction: A comparative review
  publication-title: J Mach Learn Res
– ident: ref5
  doi: 10.1109/ACII.2013.90
– ident: ref20
  doi: 10.1049/el.2013.3235
– ident: ref22
  doi: 10.1145/2641190.2641198
– year: 2001
  ident: ref23
  publication-title: Learning With Kernels Support Vector Machines Regularization Optimization and Beyond
  doi: 10.7551/mitpress/4175.001.0001
SSID ssj0000605649
Score 2.5915396
Snippet Recently, multilayer extreme learning machine (ML-ELM) was applied to stacked autoencoder (SAE) for representation learning. In contrast to traditional SAE,...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 757
SubjectTerms Benchmark testing
Benchmarks
Datasets
Kernel
Kernel learning
Learning
Learning algorithms
Learning systems
Manuals
multilayer extreme learning machine (ML-ELM)
Neural networks
Nonhomogeneous media
Reconstruction
representation learning
Representations
stacked autoencoder (SAE)
Training
Tuning
Title Kernel-Based Multilayer Extreme Learning Machines for Representation Learning
URI https://ieeexplore.ieee.org/document/7801860
https://www.ncbi.nlm.nih.gov/pubmed/28055922
https://www.proquest.com/docview/2008991470
https://www.proquest.com/docview/1856598091
Volume 29
WOSCitedRecordID wos000426344600023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2162-2388
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605649
  issn: 2162-237X
  databaseCode: RIE
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEBZpyKGXps2rm6ZBhd4SJZbk1ePYloRCk6U0SdmbkaVxKCzeso-Sn9-RLBsCbSA3gx4WmpHmm9E8CPmovDfSjx2rbfCsDEIx5JvAJMggUAQ5now5P6_0ZGKmU_t9g5wOsTAAkJzP4Cx-prf8MPfraCo713idGoUK-gutdRerNdhTCsTlKqFdwZVgQuppHyNT2PPbyeTqJjpyqTOhpDIy1uMRpkA8LcQjkZRqrPwfbiaxc7n9vAW_Jq8yvKSfOn54Qzag3SHbfekGmk_yLrn-BosWZuwzCrFAUxTuzCH6phcPq2gxpDnv6j29Tt6WsKSIbumP5Debw5XaodMeubu8uP3yleXKCszLMV-xugbJuZbGlUHaWjSF9c4F1TR4D6ekfLWxIlinUVuKSe8c1E0pfNPIJoRg5T7ZbOctvCWUSycB5Nhb4CUElHYchylQUfl1thwR3m9u5XPa8Vj9YlYl9aOwVaJNFWlTZdqMyMkw5neXdOPJ3rtx54eeedNH5KinYZXP5TIV3UREXGps_jA044mKzySuhfl6WSGCUWNrEEiNyEFH-2HunmUO__3Pd-Qlrsx0PmpHZHO1WMN7suX_rH4tF8fItlNznNj2LxG35lg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEA-lCvpi1Wo922oE3zTtJtnNJo-1tFR6t4iecm9LNpkV4diT-xD_fCfZ7IKggm8L-diQmWR-M5kPQl4r57R0hWWN8Y7lXiiGfOOZBOkFiiDLozHny7SsKr1YmA975O0YCwMA0fkMzsJnfMv3K7cLprLzEq9TrVBBv1PkueB9tNZoUckQmauIdwVXgglZLoYomcycz6tq-im4cqkzoaTSMlTkETpDRC3Eb0IpVln5O-CMguf64P-W_JA8SACTXvQc8YjsQfeYHAzFG2g6y4dkdgvrDpbsHYoxT2Mc7tIi_qZXP7fBZkhT5tWvdBb9LWFDEd_Sj9FzNgUsdWOnJ-Tz9dX88oal2grMyYJvWdOA5LyU2uZemka0mXHWetW2eBPHtHyNNsIbW6K-FNLeWWjaXLi2la333sinZL9bdfCMUC6tBJCFM8Bz8CjvOA5ToIL6a00-IXzY3NqlxOOh_sWyjgpIZupImzrQpk60mZA345jvfdqNf_Y-DDs_9kybPiEnAw3rdDI3sewmYuK8xOZXYzOeqfBQYjtY7TY1YhhVGI1QakKOetqPcw8s8_zP_3xJ7t3MZ9N6-r66PSb3cZW691g7Ifvb9Q5OyV33Y_tts34RmfcXxV_otw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Kernel-Based+Multilayer+Extreme+Learning+Machines+for+Representation+Learning&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Wong%2C+Chi+Man&rft.au=Vong%2C+Chi+Man&rft.au=Wong%2C+Pak+Kin&rft.au=Cao%2C+Jiuwen&rft.date=2018-03-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=29&rft.issue=3&rft.spage=757&rft_id=info:doi/10.1109%2FTNNLS.2016.2636834&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon