Fast charging optimization for lithium-ion batteries based on dynamic programming algorithm and electrochemical-thermal-capacity fade coupled model

Enabling fast charging of lithium-ion batteries may accelerate the commercial application of electric vehicles (EVs). The fast charging, however, could lead to capacity fade, lithium plating, and thermal runaway. This paper develops an optimal multi-stage charging protocol for lithium-ion batteries...

Full description

Saved in:
Bibliographic Details
Published in:Journal of power sources Vol. 438; p. 227015
Main Authors: Xu, Meng, Wang, Rui, Zhao, Peng, Wang, Xia
Format: Journal Article
Language:English
Published: Elsevier B.V 31.10.2019
Subjects:
ISSN:0378-7753, 1873-2755
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Enabling fast charging of lithium-ion batteries may accelerate the commercial application of electric vehicles (EVs). The fast charging, however, could lead to capacity fade, lithium plating, and thermal runaway. This paper develops an optimal multi-stage charging protocol for lithium-ion batteries to minimize capacity fade due to the solid-electrolyte interphase (SEI) increase, to maximize the SEI potential to decrease the lithium plating, and to reduce the temperature rise to avoid a thermal runaway situation. An electrochemical-thermal-capacity fade coupled model is developed to monitor the battery internal state. The dynamic programming (DP) optimization algorithm is employed to search for the suboptimal charging current profiles. The optimization results illustrate that the optimized charging current profile varies with the state of charge (SOC) and the cycle number. As compared to the constant current charging protocol, each optimized charging strategy can reduce the capacity fade ratio by 4.6%, increase the SEI potential by 57%, and reduce the temperature rise by 16.3% for over 3300 charging-discharging cycles, respectively. •An electrochemical-thermal-capacity fade coupled battery model is developed.•A multi-stage fast charging protocol is proposed by dynamic programming with model.•Battery can be fast charged with low capacity fade.•Battery can be fast charged with a reasonable low temperature rise.
AbstractList Enabling fast charging of lithium-ion batteries may accelerate the commercial application of electric vehicles (EVs). The fast charging, however, could lead to capacity fade, lithium plating, and thermal runaway. This paper develops an optimal multi-stage charging protocol for lithium-ion batteries to minimize capacity fade due to the solid-electrolyte interphase (SEI) increase, to maximize the SEI potential to decrease the lithium plating, and to reduce the temperature rise to avoid a thermal runaway situation. An electrochemical-thermal-capacity fade coupled model is developed to monitor the battery internal state. The dynamic programming (DP) optimization algorithm is employed to search for the suboptimal charging current profiles. The optimization results illustrate that the optimized charging current profile varies with the state of charge (SOC) and the cycle number. As compared to the constant current charging protocol, each optimized charging strategy can reduce the capacity fade ratio by 4.6%, increase the SEI potential by 57%, and reduce the temperature rise by 16.3% for over 3300 charging-discharging cycles, respectively. •An electrochemical-thermal-capacity fade coupled battery model is developed.•A multi-stage fast charging protocol is proposed by dynamic programming with model.•Battery can be fast charged with low capacity fade.•Battery can be fast charged with a reasonable low temperature rise.
ArticleNumber 227015
Author Wang, Xia
Zhao, Peng
Xu, Meng
Wang, Rui
Author_xml – sequence: 1
  givenname: Meng
  orcidid: 0000-0002-4295-8247
  surname: Xu
  fullname: Xu, Meng
  organization: Department of Mechanical Engineering, Oakland University, Rochester, MI, 48309, USA
– sequence: 2
  givenname: Rui
  surname: Wang
  fullname: Wang, Rui
  organization: Ford Motor Company, Dearborn, MI, USA
– sequence: 3
  givenname: Peng
  orcidid: 0000-0002-6743-6269
  surname: Zhao
  fullname: Zhao, Peng
  organization: Department of Mechanical Engineering, Oakland University, Rochester, MI, 48309, USA
– sequence: 4
  givenname: Xia
  orcidid: 0000-0001-9925-5465
  surname: Wang
  fullname: Wang, Xia
  email: wang@oakland.edu
  organization: Department of Mechanical Engineering, Oakland University, Rochester, MI, 48309, USA
BookMark eNqFkM9qGzEQh0VIII6TVwh6gXWk1Wq1hhxSTNMWDL20ZzErzdoyq9UiyS3ua-SFK9ftpZec5g_z_WC-O3I9hQkJeeRsxRlvnw6rwxx-pnCMq5rx9aquFePyiix4p0RVKymvyYIJ1VVKSXFL7lI6MMY4V2xB3l4hZWr2EHdu2tEwZ-fdL8guTHQIkY4u793RV-e5h5wxOkylS2hpWdnTBN4ZOsewi-D9OQPGXYgF8xQmS3FEk2Mweyx3MFZ5j9GXamAG4_KJDmCRmnCcxxLpg8XxntwMMCZ8-FuX5Pvrx2-bz9X266cvmw_bygjJc9Ur0Q3rrlemM1xIyQCbhsu2lq3tUPRCQlNDA2YtWd8CBz70gnXAGiOFNWuxJO0l18SQUsRBz9F5iCfNmT6r1Qf9T60-q9UXtQV8_g8sn_xxliO48X385YJjee6Hw6iTcTgZtC4WWdoG917Eb4MtoTI
CitedBy_id crossref_primary_10_1016_j_ijheatmasstransfer_2024_125223
crossref_primary_10_1016_j_est_2025_116486
crossref_primary_10_1016_j_enconman_2025_120170
crossref_primary_10_1016_j_applthermaleng_2024_123826
crossref_primary_10_1016_j_energy_2022_126192
crossref_primary_10_1016_j_ijheatmasstransfer_2020_120615
crossref_primary_10_1016_j_est_2024_114732
crossref_primary_10_1016_j_jpowsour_2024_235902
crossref_primary_10_1016_j_rineng_2025_105461
crossref_primary_10_1016_j_est_2020_101307
crossref_primary_10_3390_en18051280
crossref_primary_10_3390_en18092306
crossref_primary_10_1109_TTE_2024_3462769
crossref_primary_10_1016_j_est_2024_114294
crossref_primary_10_1016_j_apenergy_2022_118795
crossref_primary_10_1109_LCSYS_2020_3046378
crossref_primary_10_1016_j_enconman_2025_119576
crossref_primary_10_1016_j_energy_2021_119767
crossref_primary_10_1016_j_est_2022_104385
crossref_primary_10_1016_j_rser_2025_115706
crossref_primary_10_1016_j_est_2025_115563
crossref_primary_10_34133_space_0247
crossref_primary_10_1016_j_apenergy_2023_121187
crossref_primary_10_1016_j_est_2020_101837
crossref_primary_10_3390_en16176200
crossref_primary_10_1002_eng2_70007
crossref_primary_10_1016_j_jpowsour_2022_231376
crossref_primary_10_1016_j_jpowsour_2022_232586
crossref_primary_10_1109_JAS_2022_105599
crossref_primary_10_3390_en13092388
crossref_primary_10_1109_TTE_2020_3032737
crossref_primary_10_3390_en14061776
crossref_primary_10_3390_wevj16040203
crossref_primary_10_1016_j_conengprac_2024_105856
crossref_primary_10_1016_j_rser_2020_110015
crossref_primary_10_3390_batteries11060209
crossref_primary_10_3390_batteries9060291
crossref_primary_10_1109_TTE_2022_3187012
crossref_primary_10_1016_j_jpowsour_2024_234996
crossref_primary_10_1109_TCST_2023_3306240
crossref_primary_10_1002_ente_202400584
crossref_primary_10_1016_j_est_2021_103306
crossref_primary_10_1109_TTE_2024_3430540
crossref_primary_10_1002_est2_70146
crossref_primary_10_1016_j_est_2023_107546
crossref_primary_10_1002_er_8665
crossref_primary_10_1016_j_applthermaleng_2025_126030
crossref_primary_10_1016_j_ijheatmasstransfer_2020_120834
crossref_primary_10_1016_j_fub_2025_100042
crossref_primary_10_1016_j_est_2025_115585
crossref_primary_10_3390_en17061470
crossref_primary_10_1002_cjoc_202000512
crossref_primary_10_1016_j_est_2024_112064
crossref_primary_10_1109_TII_2024_3363079
crossref_primary_10_1109_TTE_2022_3204843
crossref_primary_10_1016_j_est_2024_114086
crossref_primary_10_4271_14_14_02_0012
crossref_primary_10_1016_j_isci_2024_109980
crossref_primary_10_1016_j_est_2025_115352
crossref_primary_10_1016_j_apenergy_2022_120272
crossref_primary_10_1016_j_seta_2021_101435
crossref_primary_10_1109_LCSYS_2021_3131269
crossref_primary_10_1016_j_jpowsour_2023_233009
crossref_primary_10_1007_s11581_025_06411_0
crossref_primary_10_1016_j_ifacol_2022_10_287
crossref_primary_10_1002_qre_3424
crossref_primary_10_1016_j_est_2023_108926
crossref_primary_10_1002_er_5924
crossref_primary_10_1016_j_jpowsour_2020_229019
crossref_primary_10_1109_ACCESS_2023_3296440
crossref_primary_10_1039_D4EE03063J
crossref_primary_10_1016_j_electacta_2023_142761
crossref_primary_10_1149_1945_7111_ad30d4
crossref_primary_10_1007_s43236_021_00253_5
crossref_primary_10_3390_su142114035
crossref_primary_10_1002_ente_202500100
crossref_primary_10_1016_j_pmatsci_2024_101339
crossref_primary_10_1016_j_rser_2024_114915
crossref_primary_10_1016_j_est_2024_114143
crossref_primary_10_1016_j_jelechem_2022_116773
crossref_primary_10_1016_j_applthermaleng_2025_126222
crossref_primary_10_1016_j_applthermaleng_2024_124262
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121614
crossref_primary_10_1109_TIA_2024_3384470
crossref_primary_10_1109_TIA_2024_3427049
crossref_primary_10_1016_j_jpowsour_2023_233272
crossref_primary_10_1016_j_jpowsour_2023_233273
crossref_primary_10_1016_j_energy_2022_126331
crossref_primary_10_1002_aenm_202201506
crossref_primary_10_1016_j_applthermaleng_2022_118530
crossref_primary_10_1016_j_est_2024_111205
crossref_primary_10_1016_j_est_2023_107182
crossref_primary_10_1016_j_cej_2024_155015
crossref_primary_10_1016_j_jpowsour_2022_231129
crossref_primary_10_1016_j_est_2024_114031
crossref_primary_10_1002_ente_202101135
crossref_primary_10_1016_j_jpowsour_2021_229772
crossref_primary_10_1039_D4SE00291A
crossref_primary_10_1016_j_apenergy_2020_115232
crossref_primary_10_1016_j_energy_2023_127453
crossref_primary_10_1016_j_applthermaleng_2022_119173
crossref_primary_10_3390_en16010460
crossref_primary_10_1016_j_energy_2021_122877
crossref_primary_10_1038_s44359_024_00020_2
crossref_primary_10_1016_j_apenergy_2021_118244
Cites_doi 10.1016/j.jpowsour.2013.05.199
10.1016/j.jpowsour.2013.05.089
10.1149/1.3591799
10.1149/1.3655705
10.1016/j.jpowsour.2014.09.108
10.1149/2.053304jes
10.1016/j.jpowsour.2010.08.035
10.1149/1.3614529
10.1149/1.3515902
10.1016/j.jpowsour.2017.05.110
10.1007/s10008-008-0509-3
10.1016/j.jpowsour.2013.03.157
10.1016/j.energy.2016.08.087
10.3390/en7106783
10.1016/j.est.2018.09.004
10.1016/j.jpowsour.2014.10.185
10.1115/1.4032066
10.1016/j.jpowsour.2010.11.134
10.1149/2.064209jes
10.1149/1.3414012
10.1016/j.jpowsour.2004.12.038
10.1016/S0378-7753(99)00058-0
10.1016/j.jpowsour.2016.01.096
10.1149/2.073202jes
10.1149/2.0641506jes
10.1149/1.1836921
10.1016/j.jpowsour.2016.04.140
10.1016/S0378-7753(03)00027-2
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.jpowsour.2019.227015
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-2755
ExternalDocumentID 10_1016_j_jpowsour_2019_227015
S0378775319310080
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AARLI
AAXUO
ABFNM
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LX7
LY6
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSK
SSM
SSR
SSZ
T5K
XPP
ZMT
~G-
29L
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
CITATION
EFKBS
FEDTE
FGOYB
G-2
HLY
HVGLF
HZ~
NDZJH
R2-
SAC
SCB
SCE
SEW
T9H
VH1
VOH
WUQ
~HD
ID FETCH-LOGICAL-c351t-b738f98b7c8c13550ae44156256d8e3b35a42a4ac950b6a1a1fb308a04c53dc93
ISICitedReferencesCount 131
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000490030800014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0378-7753
IngestDate Tue Nov 18 21:52:07 EST 2025
Sat Nov 29 07:16:08 EST 2025
Fri Feb 23 02:48:20 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Lithium ion batteries
Heat generation
Electrochemical-thermal-capacity fade model
Cycle life
Fast charging optimization
Dynamic programming
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c351t-b738f98b7c8c13550ae44156256d8e3b35a42a4ac950b6a1a1fb308a04c53dc93
ORCID 0000-0002-4295-8247
0000-0001-9925-5465
0000-0002-6743-6269
ParticipantIDs crossref_primary_10_1016_j_jpowsour_2019_227015
crossref_citationtrail_10_1016_j_jpowsour_2019_227015
elsevier_sciencedirect_doi_10_1016_j_jpowsour_2019_227015
PublicationCentury 2000
PublicationDate 2019-10-31
PublicationDateYYYYMMDD 2019-10-31
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-31
  day: 31
PublicationDecade 2010
PublicationTitle Journal of power sources
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Safari, Delacourt (bib29) 2011; 158
Pramanik, Anwar (bib13) 2016; 313
Chung, Andriiko, Mon'ko, Lee (bib10) 1999; 79
Jiang, Peng, Sun (bib21) 2013; 243
Bazinski, Wang, Sangeorzan, Guessous (bib27) 2016; 114
Hu, Li, Peng, Sun (bib7) 2013; 239
Jin, Gu, Zhang, Park, Sun (bib22) 2008; 12
Liu, Li, Fathy (bib8) 2016; 138
Ekström, Lindbergh (bib28) 2015; 162
Wang, Liu, Garner, Sherman, Soukiazian, Verbrugge, Tataria, Musser, Finamore (bib30) 2011; 196
Cope, Podrazhansky (bib14) 1999
Anseán, Dubarry, Devie, Liaw, García, Viera, González (bib1) 2016; 321
Zhang, Zhang, Xiong, Zhou (bib6) 2014; 7
Farkhondeh, Delacourt (bib23) 2011; 159
Notten, Op het Veld, Van Beek (bib11) 2005; 145
Sikha, Ramadass, Haran, White, Popov (bib9) 2003; 122
Wang, Srdjan (bib16) 2012
Vo, Chen, Shen, Kapoor (bib4) 2015; 273
Jalkanen, Aho, Vuorilehto (bib26) 2013; 243
Hellwig, Sörgel, Bessler (bib19) 2011; 35
Safari, Delacourt (bib24) 2011; 158
Gerver, Jeremy, Meyers (bib25) 2011; 158
Prada, Domenico, Creff, Bernard (bib18) 2012; 159
Guo, Yann Liaw, Qiu, Gao, Zhang (bib5) 2015; 274
Prada, Di Domenico, Creff, Bernard, Sauvant-Moynot, Huet (bib15) 2013; 160
Yang, Leng, Zhang, Ge, Wang (bib2) 2017; 360
Doyle, Newman, Gozdz, Schmutz, Tarascon (bib20) 1996; 143
Xu, Wang, Reichman, Wang (bib12) 2018; 20
Methekar, Ramadesigan, Braatz, Subramanian (bib3) 2010; 25
Remmlinger, Buchholz, Meiler, Bernreuter, Dietmayer (bib17) 2011; 196
Prada (10.1016/j.jpowsour.2019.227015_bib15) 2013; 160
Liu (10.1016/j.jpowsour.2019.227015_bib8) 2016; 138
Zhang (10.1016/j.jpowsour.2019.227015_bib6) 2014; 7
Hu (10.1016/j.jpowsour.2019.227015_bib7) 2013; 239
Ekström (10.1016/j.jpowsour.2019.227015_bib28) 2015; 162
Hellwig (10.1016/j.jpowsour.2019.227015_bib19) 2011; 35
Farkhondeh (10.1016/j.jpowsour.2019.227015_bib23) 2011; 159
Yang (10.1016/j.jpowsour.2019.227015_bib2) 2017; 360
Wang (10.1016/j.jpowsour.2019.227015_bib30) 2011; 196
Chung (10.1016/j.jpowsour.2019.227015_bib10) 1999; 79
Prada (10.1016/j.jpowsour.2019.227015_bib18) 2012; 159
Jalkanen (10.1016/j.jpowsour.2019.227015_bib26) 2013; 243
Jiang (10.1016/j.jpowsour.2019.227015_bib21) 2013; 243
Cope (10.1016/j.jpowsour.2019.227015_bib14) 1999
Anseán (10.1016/j.jpowsour.2019.227015_bib1) 2016; 321
Wang (10.1016/j.jpowsour.2019.227015_bib16) 2012
Bazinski (10.1016/j.jpowsour.2019.227015_bib27) 2016; 114
Pramanik (10.1016/j.jpowsour.2019.227015_bib13) 2016; 313
Vo (10.1016/j.jpowsour.2019.227015_bib4) 2015; 273
Safari (10.1016/j.jpowsour.2019.227015_bib29) 2011; 158
Guo (10.1016/j.jpowsour.2019.227015_bib5) 2015; 274
Xu (10.1016/j.jpowsour.2019.227015_bib12) 2018; 20
Jin (10.1016/j.jpowsour.2019.227015_bib22) 2008; 12
Safari (10.1016/j.jpowsour.2019.227015_bib24) 2011; 158
Doyle (10.1016/j.jpowsour.2019.227015_bib20) 1996; 143
Notten (10.1016/j.jpowsour.2019.227015_bib11) 2005; 145
Remmlinger (10.1016/j.jpowsour.2019.227015_bib17) 2011; 196
Sikha (10.1016/j.jpowsour.2019.227015_bib9) 2003; 122
Gerver (10.1016/j.jpowsour.2019.227015_bib25) 2011; 158
Methekar (10.1016/j.jpowsour.2019.227015_bib3) 2010; 25
References_xml – volume: 114
  start-page: 1085
  year: 2016
  end-page: 1092
  ident: bib27
  article-title: Measuring and assessing the effective in-plane thermal conductivity of lithium iron phosphate pouch cells
  publication-title: Energy
– volume: 243
  start-page: 354
  year: 2013
  end-page: 360
  ident: bib26
  article-title: Entropy change effects on the thermal behavior of a LiFePO4/graphite lithium-ion cell at different states of charge
  publication-title: J. Power Sources
– volume: 321
  start-page: 201
  year: 2016
  end-page: 209
  ident: bib1
  article-title: Fast charging technique for high power LiFePO4 batteries: a mechanistic analysis of aging
  publication-title: J. Power Sources
– volume: 159
  start-page: A177
  year: 2011
  end-page: A192
  ident: bib23
  article-title: Mathematical modeling of commercial LiFePO4 electrodes based on variable solid-state diffusivity
  publication-title: J. Electrochem. Soc.
– volume: 122
  start-page: 67
  year: 2003
  end-page: 76
  ident: bib9
  article-title: Comparison of the capacity fade of Sony US 18650 cells charged with different protocols
  publication-title: J. Power Sources
– volume: 313
  start-page: 164
  year: 2016
  end-page: 177
  ident: bib13
  article-title: Electrochemical model based charge optimization for lithium-ion batteries
  publication-title: J. Power Sources
– volume: 158
  start-page: 1123
  year: 2011
  end-page: 1135
  ident: bib29
  article-title: Aging of a commercial graphite/LiFePO4 cell
  publication-title: J. Electrochem. Soc.
– volume: 158
  start-page: A63
  year: 2011
  end-page: A73
  ident: bib24
  article-title: Mathematical modeling of lithium iron phosphate electrode: galvanostatic charge/discharge and path dependence
  publication-title: J. Electrochem. Soc.
– start-page: 233
  year: 1999
  end-page: 235
  ident: bib14
  article-title: The art of battery charging
  publication-title: Battery Conference on Applications and Advances
– volume: 143
  start-page: 1890
  year: 1996
  ident: bib20
  publication-title: Electrochem. Soc.
– volume: 12
  start-page: 1549
  year: 2008
  end-page: 1554
  ident: bib22
  article-title: Effect of different carbon conductive additives on electrochemical properties of LiFePO4-C/Li batteries
  publication-title: J. Solid State Electrochem.
– volume: 35
  start-page: 215
  year: 2011
  end-page: 228
  ident: bib19
  article-title: A multi-scale electrochemical and thermal model of a LiFePO4 battery
  publication-title: Ecs Trans.
– volume: 162
  start-page: A1003
  year: 2015
  end-page: A1007
  ident: bib28
  article-title: A model for predicting capacity fade due to SEI formation in a commercial graphite/LiFePO4 cell
  publication-title: J. Electrochem. Soc.
– volume: 243
  start-page: 181
  year: 2013
  end-page: 194
  ident: bib21
  article-title: Thermal analyses of LiFePO 4/graphite battery discharge processes
  publication-title: J. Power Sources
– volume: 160
  start-page: A616
  year: 2013
  end-page: A628
  ident: bib15
  article-title: A simplified electrochemical and thermal aging model of LiFePO4-graphite li-ion batteries: power and capacity fade simulations
  publication-title: J. Electrochem. Soc.
– volume: 7
  start-page: 6783
  year: 2014
  end-page: 6797
  ident: bib6
  article-title: Study on the optimal charging strategy for lithium-ion batteries used in electric vehicles
  publication-title: Energies
– volume: 138
  year: 2016
  ident: bib8
  article-title: A computationally efficient approach for optimizing lithium-ion battery charging
  publication-title: J. Dyn. Syst. Meas. Control
– volume: 360
  start-page: 28
  year: 2017
  end-page: 40
  ident: bib2
  article-title: Modeling of lithium plating induced aging of lithium-ion batteries: transition from linear to nonlinear aging
  publication-title: J. Power Sources
– volume: 20
  start-page: 298
  year: 2018
  end-page: 309
  ident: bib12
  article-title: Modeling the effect of two-stage fast charging protocol on thermal behavior and charging energy efficiency of lithium-ion batteries
  publication-title: J. Energy Storage
– volume: 25
  start-page: 139
  year: 2010
  end-page: 146
  ident: bib3
  article-title: Optimum charging profile for lithium-ion batteries to maximize energy storage and utilization
  publication-title: ECS Trans.
– volume: 159
  start-page: A1508
  year: 2012
  end-page: A1519
  ident: bib18
  article-title: Simplified electrochemical and thermal model of LiFePO4-graphite Li-ion batteries for fast charge applications
  publication-title: J. Electrochem. Soc.
– volume: 145
  start-page: 89
  year: 2005
  end-page: 94
  ident: bib11
  article-title: Boostcharging Li-ion batteries: a challenging new charging concept
  publication-title: J. Power Sources
– volume: 196
  start-page: 3942
  year: 2011
  end-page: 3948
  ident: bib30
  article-title: Cycle-life model for graphite-LiFePO4 cells
  publication-title: J. Power Sources
– volume: 273
  start-page: 413
  year: 2015
  end-page: 422
  ident: bib4
  article-title: New charging strategy for lithium-ion batteries based on the integration of Taguchi method and state of charge estimation
  publication-title: J. Power Sources
– volume: 196
  start-page: 5357
  year: 2011
  end-page: 5363
  ident: bib17
  article-title: State-of-health monitoring of lithium-ion batteries in electric vehicles by on-board internal resistance estimation
  publication-title: J. Power Sources
– volume: 239
  start-page: 449
  year: 2013
  end-page: 457
  ident: bib7
  article-title: Charging time and loss optimization for LiNMC and LiFePO4 batteries based on equivalent circuit models
  publication-title: J. Power Sources
– start-page: 1
  year: 2012
  end-page: 8
  ident: bib16
  article-title: Dynamic programming technique in hybrid electric vehicle optimization
  publication-title: 2012 IEEE International Electric Vehicle Conference
– volume: 274
  start-page: 957
  year: 2015
  end-page: 964
  ident: bib5
  article-title: Optimal charging method for lithium ion batteries using a universal voltage protocol accommodating aging
  publication-title: J. Power Sources
– volume: 158
  start-page: A835
  year: 2011
  end-page: A843
  ident: bib25
  article-title: Three-dimensional modeling of electrochemical performance and heat generation of lithium-ion batteries in tabbed planar configurations
  publication-title: J. Electrochem. Soc.
– volume: 79
  start-page: 205
  year: 1999
  end-page: 211
  ident: bib10
  article-title: On charge conditions for Li-ion and other secondary lithium batteries with solid intercalation electrodes
  publication-title: J. Power Sources
– volume: 243
  start-page: 354
  year: 2013
  ident: 10.1016/j.jpowsour.2019.227015_bib26
  article-title: Entropy change effects on the thermal behavior of a LiFePO4/graphite lithium-ion cell at different states of charge
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.05.199
– volume: 243
  start-page: 181
  year: 2013
  ident: 10.1016/j.jpowsour.2019.227015_bib21
  article-title: Thermal analyses of LiFePO 4/graphite battery discharge processes
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.05.089
– volume: 158
  start-page: A835
  year: 2011
  ident: 10.1016/j.jpowsour.2019.227015_bib25
  article-title: Three-dimensional modeling of electrochemical performance and heat generation of lithium-ion batteries in tabbed planar configurations
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.3591799
– volume: 35
  start-page: 215
  issue: 32
  year: 2011
  ident: 10.1016/j.jpowsour.2019.227015_bib19
  article-title: A multi-scale electrochemical and thermal model of a LiFePO4 battery
  publication-title: Ecs Trans.
  doi: 10.1149/1.3655705
– volume: 273
  start-page: 413
  year: 2015
  ident: 10.1016/j.jpowsour.2019.227015_bib4
  article-title: New charging strategy for lithium-ion batteries based on the integration of Taguchi method and state of charge estimation
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.09.108
– volume: 160
  start-page: A616
  issue: 4
  year: 2013
  ident: 10.1016/j.jpowsour.2019.227015_bib15
  article-title: A simplified electrochemical and thermal aging model of LiFePO4-graphite li-ion batteries: power and capacity fade simulations
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.053304jes
– start-page: 233
  year: 1999
  ident: 10.1016/j.jpowsour.2019.227015_bib14
  article-title: The art of battery charging
– volume: 196
  start-page: 5357
  year: 2011
  ident: 10.1016/j.jpowsour.2019.227015_bib17
  article-title: State-of-health monitoring of lithium-ion batteries in electric vehicles by on-board internal resistance estimation
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2010.08.035
– start-page: 1
  year: 2012
  ident: 10.1016/j.jpowsour.2019.227015_bib16
  article-title: Dynamic programming technique in hybrid electric vehicle optimization
– volume: 158
  start-page: 1123
  year: 2011
  ident: 10.1016/j.jpowsour.2019.227015_bib29
  article-title: Aging of a commercial graphite/LiFePO4 cell
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.3614529
– volume: 158
  start-page: A63
  issue: 2
  year: 2011
  ident: 10.1016/j.jpowsour.2019.227015_bib24
  article-title: Mathematical modeling of lithium iron phosphate electrode: galvanostatic charge/discharge and path dependence
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.3515902
– volume: 360
  start-page: 28
  year: 2017
  ident: 10.1016/j.jpowsour.2019.227015_bib2
  article-title: Modeling of lithium plating induced aging of lithium-ion batteries: transition from linear to nonlinear aging
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.05.110
– volume: 12
  start-page: 1549
  year: 2008
  ident: 10.1016/j.jpowsour.2019.227015_bib22
  article-title: Effect of different carbon conductive additives on electrochemical properties of LiFePO4-C/Li batteries
  publication-title: J. Solid State Electrochem.
  doi: 10.1007/s10008-008-0509-3
– volume: 239
  start-page: 449
  year: 2013
  ident: 10.1016/j.jpowsour.2019.227015_bib7
  article-title: Charging time and loss optimization for LiNMC and LiFePO4 batteries based on equivalent circuit models
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.03.157
– volume: 114
  start-page: 1085
  year: 2016
  ident: 10.1016/j.jpowsour.2019.227015_bib27
  article-title: Measuring and assessing the effective in-plane thermal conductivity of lithium iron phosphate pouch cells
  publication-title: Energy
  doi: 10.1016/j.energy.2016.08.087
– volume: 7
  start-page: 6783
  issue: 10
  year: 2014
  ident: 10.1016/j.jpowsour.2019.227015_bib6
  article-title: Study on the optimal charging strategy for lithium-ion batteries used in electric vehicles
  publication-title: Energies
  doi: 10.3390/en7106783
– volume: 20
  start-page: 298
  year: 2018
  ident: 10.1016/j.jpowsour.2019.227015_bib12
  article-title: Modeling the effect of two-stage fast charging protocol on thermal behavior and charging energy efficiency of lithium-ion batteries
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2018.09.004
– volume: 274
  start-page: 957
  year: 2015
  ident: 10.1016/j.jpowsour.2019.227015_bib5
  article-title: Optimal charging method for lithium ion batteries using a universal voltage protocol accommodating aging
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.10.185
– volume: 138
  issue: 2
  year: 2016
  ident: 10.1016/j.jpowsour.2019.227015_bib8
  article-title: A computationally efficient approach for optimizing lithium-ion battery charging
  publication-title: J. Dyn. Syst. Meas. Control
  doi: 10.1115/1.4032066
– volume: 196
  start-page: 3942
  year: 2011
  ident: 10.1016/j.jpowsour.2019.227015_bib30
  article-title: Cycle-life model for graphite-LiFePO4 cells
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2010.11.134
– volume: 159
  start-page: A1508
  year: 2012
  ident: 10.1016/j.jpowsour.2019.227015_bib18
  article-title: Simplified electrochemical and thermal model of LiFePO4-graphite Li-ion batteries for fast charge applications
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.064209jes
– volume: 25
  start-page: 139
  issue: 35
  year: 2010
  ident: 10.1016/j.jpowsour.2019.227015_bib3
  article-title: Optimum charging profile for lithium-ion batteries to maximize energy storage and utilization
  publication-title: ECS Trans.
  doi: 10.1149/1.3414012
– volume: 145
  start-page: 89
  year: 2005
  ident: 10.1016/j.jpowsour.2019.227015_bib11
  article-title: Boostcharging Li-ion batteries: a challenging new charging concept
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2004.12.038
– volume: 79
  start-page: 205
  year: 1999
  ident: 10.1016/j.jpowsour.2019.227015_bib10
  article-title: On charge conditions for Li-ion and other secondary lithium batteries with solid intercalation electrodes
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(99)00058-0
– volume: 313
  start-page: 164
  year: 2016
  ident: 10.1016/j.jpowsour.2019.227015_bib13
  article-title: Electrochemical model based charge optimization for lithium-ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.01.096
– volume: 159
  start-page: A177
  year: 2011
  ident: 10.1016/j.jpowsour.2019.227015_bib23
  article-title: Mathematical modeling of commercial LiFePO4 electrodes based on variable solid-state diffusivity
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.073202jes
– volume: 162
  start-page: A1003
  issue: 6
  year: 2015
  ident: 10.1016/j.jpowsour.2019.227015_bib28
  article-title: A model for predicting capacity fade due to SEI formation in a commercial graphite/LiFePO4 cell
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0641506jes
– volume: 143
  start-page: 1890
  year: 1996
  ident: 10.1016/j.jpowsour.2019.227015_bib20
  publication-title: Electrochem. Soc.
  doi: 10.1149/1.1836921
– volume: 321
  start-page: 201
  year: 2016
  ident: 10.1016/j.jpowsour.2019.227015_bib1
  article-title: Fast charging technique for high power LiFePO4 batteries: a mechanistic analysis of aging
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.04.140
– volume: 122
  start-page: 67
  year: 2003
  ident: 10.1016/j.jpowsour.2019.227015_bib9
  article-title: Comparison of the capacity fade of Sony US 18650 cells charged with different protocols
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(03)00027-2
SSID ssj0001170
Score 2.6354077
Snippet Enabling fast charging of lithium-ion batteries may accelerate the commercial application of electric vehicles (EVs). The fast charging, however, could lead to...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 227015
SubjectTerms Cycle life
Dynamic programming
Electrochemical-thermal-capacity fade model
Fast charging optimization
Heat generation
Lithium ion batteries
Title Fast charging optimization for lithium-ion batteries based on dynamic programming algorithm and electrochemical-thermal-capacity fade coupled model
URI https://dx.doi.org/10.1016/j.jpowsour.2019.227015
Volume 438
WOSCitedRecordID wos000490030800014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-2755
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001170
  issn: 0378-7753
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZKlwMcEE-xvOQDt8oliZ3YPq7QrgChFYJFyi2ynQRatWnVbVb7Pzjun93xIyGiiwpCXNLGquOm89Xz2Zn5BqHXkurM6FoRYMOMgIdSRBpqiGY0UxnPUqWduv5Hfnoq8lx-Go2uulyYiwVvGnF5Kdf_1dTQBsa2qbN_Ye7-otAA78HocASzw_GPDH-izrcTJ4DkApphSliGXEsXUgi0-_usXRJ7rp24JqyVJ9aZlfbBQekr1HdxW0uXw7j4ttpAN19NIxTOMUFpgFgGuYRXA27XWE5fq9KGwLfrBVzSVdr5DQNe2wptE__4oKf2eev2aKvgUd1ev5-PPrezwTb3ykcX734sn6nhVkYsBz7A7a_t5Nj4vC5Y53LuJYWnlZ-mBack4V7gt5vHmZeJ2fEJfntiPp3DXdlbsvF8cpokPPKJpL_obX-xA9rxgNpa5aPoFjqAoaQYo4Oj98f5h97R26I97iFV-IKDBPSbR7uZ-wz4zNl9dC-YAR95AD1Ao6p5iO4O5CkfoR8WSriDEh5CCQOU8ABKuIcSdlDC0BSghAdQwj2UMEAJ74MStlDCAUrYQekx-npyfPb2HQlFPIihabwlmlNRS6G5ESYGchupyi7hYdmdlaKimqaKJYopI9NIZypWca1pJFTETEpLI-kTNG5WTfUU4VLHNJHC1GlVs5hFoiwtwVVKZZKxMjtEaffzFiYo3NtCK4uiC2WcF51ZCmuWwpvlEL3p-629xsveHrKzXhGYqmegBYBuT99n_9D3Obrz83_zAo23m7Z6iW6bi-3sfPMq4PMaWS3Eyg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+charging+optimization+for+lithium-ion+batteries+based+on+dynamic+programming+algorithm+and+electrochemical-thermal-capacity+fade+coupled+model&rft.jtitle=Journal+of+power+sources&rft.au=Xu%2C+Meng&rft.au=Wang%2C+Rui&rft.au=Zhao%2C+Peng&rft.au=Wang%2C+Xia&rft.date=2019-10-31&rft.pub=Elsevier+B.V&rft.issn=0378-7753&rft.eissn=1873-2755&rft.volume=438&rft_id=info:doi/10.1016%2Fj.jpowsour.2019.227015&rft.externalDocID=S0378775319310080
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7753&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7753&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7753&client=summon