Fast charging optimization for lithium-ion batteries based on dynamic programming algorithm and electrochemical-thermal-capacity fade coupled model
Enabling fast charging of lithium-ion batteries may accelerate the commercial application of electric vehicles (EVs). The fast charging, however, could lead to capacity fade, lithium plating, and thermal runaway. This paper develops an optimal multi-stage charging protocol for lithium-ion batteries...
Saved in:
| Published in: | Journal of power sources Vol. 438; p. 227015 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
31.10.2019
|
| Subjects: | |
| ISSN: | 0378-7753, 1873-2755 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Enabling fast charging of lithium-ion batteries may accelerate the commercial application of electric vehicles (EVs). The fast charging, however, could lead to capacity fade, lithium plating, and thermal runaway. This paper develops an optimal multi-stage charging protocol for lithium-ion batteries to minimize capacity fade due to the solid-electrolyte interphase (SEI) increase, to maximize the SEI potential to decrease the lithium plating, and to reduce the temperature rise to avoid a thermal runaway situation. An electrochemical-thermal-capacity fade coupled model is developed to monitor the battery internal state. The dynamic programming (DP) optimization algorithm is employed to search for the suboptimal charging current profiles. The optimization results illustrate that the optimized charging current profile varies with the state of charge (SOC) and the cycle number. As compared to the constant current charging protocol, each optimized charging strategy can reduce the capacity fade ratio by 4.6%, increase the SEI potential by 57%, and reduce the temperature rise by 16.3% for over 3300 charging-discharging cycles, respectively.
•An electrochemical-thermal-capacity fade coupled battery model is developed.•A multi-stage fast charging protocol is proposed by dynamic programming with model.•Battery can be fast charged with low capacity fade.•Battery can be fast charged with a reasonable low temperature rise. |
|---|---|
| AbstractList | Enabling fast charging of lithium-ion batteries may accelerate the commercial application of electric vehicles (EVs). The fast charging, however, could lead to capacity fade, lithium plating, and thermal runaway. This paper develops an optimal multi-stage charging protocol for lithium-ion batteries to minimize capacity fade due to the solid-electrolyte interphase (SEI) increase, to maximize the SEI potential to decrease the lithium plating, and to reduce the temperature rise to avoid a thermal runaway situation. An electrochemical-thermal-capacity fade coupled model is developed to monitor the battery internal state. The dynamic programming (DP) optimization algorithm is employed to search for the suboptimal charging current profiles. The optimization results illustrate that the optimized charging current profile varies with the state of charge (SOC) and the cycle number. As compared to the constant current charging protocol, each optimized charging strategy can reduce the capacity fade ratio by 4.6%, increase the SEI potential by 57%, and reduce the temperature rise by 16.3% for over 3300 charging-discharging cycles, respectively.
•An electrochemical-thermal-capacity fade coupled battery model is developed.•A multi-stage fast charging protocol is proposed by dynamic programming with model.•Battery can be fast charged with low capacity fade.•Battery can be fast charged with a reasonable low temperature rise. |
| ArticleNumber | 227015 |
| Author | Wang, Xia Zhao, Peng Xu, Meng Wang, Rui |
| Author_xml | – sequence: 1 givenname: Meng orcidid: 0000-0002-4295-8247 surname: Xu fullname: Xu, Meng organization: Department of Mechanical Engineering, Oakland University, Rochester, MI, 48309, USA – sequence: 2 givenname: Rui surname: Wang fullname: Wang, Rui organization: Ford Motor Company, Dearborn, MI, USA – sequence: 3 givenname: Peng orcidid: 0000-0002-6743-6269 surname: Zhao fullname: Zhao, Peng organization: Department of Mechanical Engineering, Oakland University, Rochester, MI, 48309, USA – sequence: 4 givenname: Xia orcidid: 0000-0001-9925-5465 surname: Wang fullname: Wang, Xia email: wang@oakland.edu organization: Department of Mechanical Engineering, Oakland University, Rochester, MI, 48309, USA |
| BookMark | eNqFkM9qGzEQh0VIII6TVwh6gXWk1Wq1hhxSTNMWDL20ZzErzdoyq9UiyS3ua-SFK9ftpZec5g_z_WC-O3I9hQkJeeRsxRlvnw6rwxx-pnCMq5rx9aquFePyiix4p0RVKymvyYIJ1VVKSXFL7lI6MMY4V2xB3l4hZWr2EHdu2tEwZ-fdL8guTHQIkY4u793RV-e5h5wxOkylS2hpWdnTBN4ZOsewi-D9OQPGXYgF8xQmS3FEk2Mweyx3MFZ5j9GXamAG4_KJDmCRmnCcxxLpg8XxntwMMCZ8-FuX5Pvrx2-bz9X266cvmw_bygjJc9Ur0Q3rrlemM1xIyQCbhsu2lq3tUPRCQlNDA2YtWd8CBz70gnXAGiOFNWuxJO0l18SQUsRBz9F5iCfNmT6r1Qf9T60-q9UXtQV8_g8sn_xxliO48X385YJjee6Hw6iTcTgZtC4WWdoG917Eb4MtoTI |
| CitedBy_id | crossref_primary_10_1016_j_ijheatmasstransfer_2024_125223 crossref_primary_10_1016_j_est_2025_116486 crossref_primary_10_1016_j_enconman_2025_120170 crossref_primary_10_1016_j_applthermaleng_2024_123826 crossref_primary_10_1016_j_energy_2022_126192 crossref_primary_10_1016_j_ijheatmasstransfer_2020_120615 crossref_primary_10_1016_j_est_2024_114732 crossref_primary_10_1016_j_jpowsour_2024_235902 crossref_primary_10_1016_j_rineng_2025_105461 crossref_primary_10_1016_j_est_2020_101307 crossref_primary_10_3390_en18051280 crossref_primary_10_3390_en18092306 crossref_primary_10_1109_TTE_2024_3462769 crossref_primary_10_1016_j_est_2024_114294 crossref_primary_10_1016_j_apenergy_2022_118795 crossref_primary_10_1109_LCSYS_2020_3046378 crossref_primary_10_1016_j_enconman_2025_119576 crossref_primary_10_1016_j_energy_2021_119767 crossref_primary_10_1016_j_est_2022_104385 crossref_primary_10_1016_j_rser_2025_115706 crossref_primary_10_1016_j_est_2025_115563 crossref_primary_10_34133_space_0247 crossref_primary_10_1016_j_apenergy_2023_121187 crossref_primary_10_1016_j_est_2020_101837 crossref_primary_10_3390_en16176200 crossref_primary_10_1002_eng2_70007 crossref_primary_10_1016_j_jpowsour_2022_231376 crossref_primary_10_1016_j_jpowsour_2022_232586 crossref_primary_10_1109_JAS_2022_105599 crossref_primary_10_3390_en13092388 crossref_primary_10_1109_TTE_2020_3032737 crossref_primary_10_3390_en14061776 crossref_primary_10_3390_wevj16040203 crossref_primary_10_1016_j_conengprac_2024_105856 crossref_primary_10_1016_j_rser_2020_110015 crossref_primary_10_3390_batteries11060209 crossref_primary_10_3390_batteries9060291 crossref_primary_10_1109_TTE_2022_3187012 crossref_primary_10_1016_j_jpowsour_2024_234996 crossref_primary_10_1109_TCST_2023_3306240 crossref_primary_10_1002_ente_202400584 crossref_primary_10_1016_j_est_2021_103306 crossref_primary_10_1109_TTE_2024_3430540 crossref_primary_10_1002_est2_70146 crossref_primary_10_1016_j_est_2023_107546 crossref_primary_10_1002_er_8665 crossref_primary_10_1016_j_applthermaleng_2025_126030 crossref_primary_10_1016_j_ijheatmasstransfer_2020_120834 crossref_primary_10_1016_j_fub_2025_100042 crossref_primary_10_1016_j_est_2025_115585 crossref_primary_10_3390_en17061470 crossref_primary_10_1002_cjoc_202000512 crossref_primary_10_1016_j_est_2024_112064 crossref_primary_10_1109_TII_2024_3363079 crossref_primary_10_1109_TTE_2022_3204843 crossref_primary_10_1016_j_est_2024_114086 crossref_primary_10_4271_14_14_02_0012 crossref_primary_10_1016_j_isci_2024_109980 crossref_primary_10_1016_j_est_2025_115352 crossref_primary_10_1016_j_apenergy_2022_120272 crossref_primary_10_1016_j_seta_2021_101435 crossref_primary_10_1109_LCSYS_2021_3131269 crossref_primary_10_1016_j_jpowsour_2023_233009 crossref_primary_10_1007_s11581_025_06411_0 crossref_primary_10_1016_j_ifacol_2022_10_287 crossref_primary_10_1002_qre_3424 crossref_primary_10_1016_j_est_2023_108926 crossref_primary_10_1002_er_5924 crossref_primary_10_1016_j_jpowsour_2020_229019 crossref_primary_10_1109_ACCESS_2023_3296440 crossref_primary_10_1039_D4EE03063J crossref_primary_10_1016_j_electacta_2023_142761 crossref_primary_10_1149_1945_7111_ad30d4 crossref_primary_10_1007_s43236_021_00253_5 crossref_primary_10_3390_su142114035 crossref_primary_10_1002_ente_202500100 crossref_primary_10_1016_j_pmatsci_2024_101339 crossref_primary_10_1016_j_rser_2024_114915 crossref_primary_10_1016_j_est_2024_114143 crossref_primary_10_1016_j_jelechem_2022_116773 crossref_primary_10_1016_j_applthermaleng_2025_126222 crossref_primary_10_1016_j_applthermaleng_2024_124262 crossref_primary_10_1016_j_ijheatmasstransfer_2021_121614 crossref_primary_10_1109_TIA_2024_3384470 crossref_primary_10_1109_TIA_2024_3427049 crossref_primary_10_1016_j_jpowsour_2023_233272 crossref_primary_10_1016_j_jpowsour_2023_233273 crossref_primary_10_1016_j_energy_2022_126331 crossref_primary_10_1002_aenm_202201506 crossref_primary_10_1016_j_applthermaleng_2022_118530 crossref_primary_10_1016_j_est_2024_111205 crossref_primary_10_1016_j_est_2023_107182 crossref_primary_10_1016_j_cej_2024_155015 crossref_primary_10_1016_j_jpowsour_2022_231129 crossref_primary_10_1016_j_est_2024_114031 crossref_primary_10_1002_ente_202101135 crossref_primary_10_1016_j_jpowsour_2021_229772 crossref_primary_10_1039_D4SE00291A crossref_primary_10_1016_j_apenergy_2020_115232 crossref_primary_10_1016_j_energy_2023_127453 crossref_primary_10_1016_j_applthermaleng_2022_119173 crossref_primary_10_3390_en16010460 crossref_primary_10_1016_j_energy_2021_122877 crossref_primary_10_1038_s44359_024_00020_2 crossref_primary_10_1016_j_apenergy_2021_118244 |
| Cites_doi | 10.1016/j.jpowsour.2013.05.199 10.1016/j.jpowsour.2013.05.089 10.1149/1.3591799 10.1149/1.3655705 10.1016/j.jpowsour.2014.09.108 10.1149/2.053304jes 10.1016/j.jpowsour.2010.08.035 10.1149/1.3614529 10.1149/1.3515902 10.1016/j.jpowsour.2017.05.110 10.1007/s10008-008-0509-3 10.1016/j.jpowsour.2013.03.157 10.1016/j.energy.2016.08.087 10.3390/en7106783 10.1016/j.est.2018.09.004 10.1016/j.jpowsour.2014.10.185 10.1115/1.4032066 10.1016/j.jpowsour.2010.11.134 10.1149/2.064209jes 10.1149/1.3414012 10.1016/j.jpowsour.2004.12.038 10.1016/S0378-7753(99)00058-0 10.1016/j.jpowsour.2016.01.096 10.1149/2.073202jes 10.1149/2.0641506jes 10.1149/1.1836921 10.1016/j.jpowsour.2016.04.140 10.1016/S0378-7753(03)00027-2 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier B.V. |
| Copyright_xml | – notice: 2019 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.jpowsour.2019.227015 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-2755 |
| ExternalDocumentID | 10_1016_j_jpowsour_2019_227015 S0378775319310080 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AARLI AAXUO ABFNM ABMAC ABXRA ABYKQ ACDAQ ACGFS ACRLP ADBBV ADECG ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LX7 LY6 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSK SSM SSR SSZ T5K XPP ZMT ~G- 29L 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM CITATION EFKBS FEDTE FGOYB G-2 HLY HVGLF HZ~ NDZJH R2- SAC SCB SCE SEW T9H VH1 VOH WUQ ~HD |
| ID | FETCH-LOGICAL-c351t-b738f98b7c8c13550ae44156256d8e3b35a42a4ac950b6a1a1fb308a04c53dc93 |
| ISICitedReferencesCount | 131 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000490030800014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0378-7753 |
| IngestDate | Tue Nov 18 21:52:07 EST 2025 Sat Nov 29 07:16:08 EST 2025 Fri Feb 23 02:48:20 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Lithium ion batteries Heat generation Electrochemical-thermal-capacity fade model Cycle life Fast charging optimization Dynamic programming |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c351t-b738f98b7c8c13550ae44156256d8e3b35a42a4ac950b6a1a1fb308a04c53dc93 |
| ORCID | 0000-0002-4295-8247 0000-0001-9925-5465 0000-0002-6743-6269 |
| ParticipantIDs | crossref_primary_10_1016_j_jpowsour_2019_227015 crossref_citationtrail_10_1016_j_jpowsour_2019_227015 elsevier_sciencedirect_doi_10_1016_j_jpowsour_2019_227015 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-10-31 |
| PublicationDateYYYYMMDD | 2019-10-31 |
| PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-31 day: 31 |
| PublicationDecade | 2010 |
| PublicationTitle | Journal of power sources |
| PublicationYear | 2019 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Safari, Delacourt (bib29) 2011; 158 Pramanik, Anwar (bib13) 2016; 313 Chung, Andriiko, Mon'ko, Lee (bib10) 1999; 79 Jiang, Peng, Sun (bib21) 2013; 243 Bazinski, Wang, Sangeorzan, Guessous (bib27) 2016; 114 Hu, Li, Peng, Sun (bib7) 2013; 239 Jin, Gu, Zhang, Park, Sun (bib22) 2008; 12 Liu, Li, Fathy (bib8) 2016; 138 Ekström, Lindbergh (bib28) 2015; 162 Wang, Liu, Garner, Sherman, Soukiazian, Verbrugge, Tataria, Musser, Finamore (bib30) 2011; 196 Cope, Podrazhansky (bib14) 1999 Anseán, Dubarry, Devie, Liaw, García, Viera, González (bib1) 2016; 321 Zhang, Zhang, Xiong, Zhou (bib6) 2014; 7 Farkhondeh, Delacourt (bib23) 2011; 159 Notten, Op het Veld, Van Beek (bib11) 2005; 145 Sikha, Ramadass, Haran, White, Popov (bib9) 2003; 122 Wang, Srdjan (bib16) 2012 Vo, Chen, Shen, Kapoor (bib4) 2015; 273 Jalkanen, Aho, Vuorilehto (bib26) 2013; 243 Hellwig, Sörgel, Bessler (bib19) 2011; 35 Safari, Delacourt (bib24) 2011; 158 Gerver, Jeremy, Meyers (bib25) 2011; 158 Prada, Domenico, Creff, Bernard (bib18) 2012; 159 Guo, Yann Liaw, Qiu, Gao, Zhang (bib5) 2015; 274 Prada, Di Domenico, Creff, Bernard, Sauvant-Moynot, Huet (bib15) 2013; 160 Yang, Leng, Zhang, Ge, Wang (bib2) 2017; 360 Doyle, Newman, Gozdz, Schmutz, Tarascon (bib20) 1996; 143 Xu, Wang, Reichman, Wang (bib12) 2018; 20 Methekar, Ramadesigan, Braatz, Subramanian (bib3) 2010; 25 Remmlinger, Buchholz, Meiler, Bernreuter, Dietmayer (bib17) 2011; 196 Prada (10.1016/j.jpowsour.2019.227015_bib15) 2013; 160 Liu (10.1016/j.jpowsour.2019.227015_bib8) 2016; 138 Zhang (10.1016/j.jpowsour.2019.227015_bib6) 2014; 7 Hu (10.1016/j.jpowsour.2019.227015_bib7) 2013; 239 Ekström (10.1016/j.jpowsour.2019.227015_bib28) 2015; 162 Hellwig (10.1016/j.jpowsour.2019.227015_bib19) 2011; 35 Farkhondeh (10.1016/j.jpowsour.2019.227015_bib23) 2011; 159 Yang (10.1016/j.jpowsour.2019.227015_bib2) 2017; 360 Wang (10.1016/j.jpowsour.2019.227015_bib30) 2011; 196 Chung (10.1016/j.jpowsour.2019.227015_bib10) 1999; 79 Prada (10.1016/j.jpowsour.2019.227015_bib18) 2012; 159 Jalkanen (10.1016/j.jpowsour.2019.227015_bib26) 2013; 243 Jiang (10.1016/j.jpowsour.2019.227015_bib21) 2013; 243 Cope (10.1016/j.jpowsour.2019.227015_bib14) 1999 Anseán (10.1016/j.jpowsour.2019.227015_bib1) 2016; 321 Wang (10.1016/j.jpowsour.2019.227015_bib16) 2012 Bazinski (10.1016/j.jpowsour.2019.227015_bib27) 2016; 114 Pramanik (10.1016/j.jpowsour.2019.227015_bib13) 2016; 313 Vo (10.1016/j.jpowsour.2019.227015_bib4) 2015; 273 Safari (10.1016/j.jpowsour.2019.227015_bib29) 2011; 158 Guo (10.1016/j.jpowsour.2019.227015_bib5) 2015; 274 Xu (10.1016/j.jpowsour.2019.227015_bib12) 2018; 20 Jin (10.1016/j.jpowsour.2019.227015_bib22) 2008; 12 Safari (10.1016/j.jpowsour.2019.227015_bib24) 2011; 158 Doyle (10.1016/j.jpowsour.2019.227015_bib20) 1996; 143 Notten (10.1016/j.jpowsour.2019.227015_bib11) 2005; 145 Remmlinger (10.1016/j.jpowsour.2019.227015_bib17) 2011; 196 Sikha (10.1016/j.jpowsour.2019.227015_bib9) 2003; 122 Gerver (10.1016/j.jpowsour.2019.227015_bib25) 2011; 158 Methekar (10.1016/j.jpowsour.2019.227015_bib3) 2010; 25 |
| References_xml | – volume: 114 start-page: 1085 year: 2016 end-page: 1092 ident: bib27 article-title: Measuring and assessing the effective in-plane thermal conductivity of lithium iron phosphate pouch cells publication-title: Energy – volume: 243 start-page: 354 year: 2013 end-page: 360 ident: bib26 article-title: Entropy change effects on the thermal behavior of a LiFePO4/graphite lithium-ion cell at different states of charge publication-title: J. Power Sources – volume: 321 start-page: 201 year: 2016 end-page: 209 ident: bib1 article-title: Fast charging technique for high power LiFePO4 batteries: a mechanistic analysis of aging publication-title: J. Power Sources – volume: 159 start-page: A177 year: 2011 end-page: A192 ident: bib23 article-title: Mathematical modeling of commercial LiFePO4 electrodes based on variable solid-state diffusivity publication-title: J. Electrochem. Soc. – volume: 122 start-page: 67 year: 2003 end-page: 76 ident: bib9 article-title: Comparison of the capacity fade of Sony US 18650 cells charged with different protocols publication-title: J. Power Sources – volume: 313 start-page: 164 year: 2016 end-page: 177 ident: bib13 article-title: Electrochemical model based charge optimization for lithium-ion batteries publication-title: J. Power Sources – volume: 158 start-page: 1123 year: 2011 end-page: 1135 ident: bib29 article-title: Aging of a commercial graphite/LiFePO4 cell publication-title: J. Electrochem. Soc. – volume: 158 start-page: A63 year: 2011 end-page: A73 ident: bib24 article-title: Mathematical modeling of lithium iron phosphate electrode: galvanostatic charge/discharge and path dependence publication-title: J. Electrochem. Soc. – start-page: 233 year: 1999 end-page: 235 ident: bib14 article-title: The art of battery charging publication-title: Battery Conference on Applications and Advances – volume: 143 start-page: 1890 year: 1996 ident: bib20 publication-title: Electrochem. Soc. – volume: 12 start-page: 1549 year: 2008 end-page: 1554 ident: bib22 article-title: Effect of different carbon conductive additives on electrochemical properties of LiFePO4-C/Li batteries publication-title: J. Solid State Electrochem. – volume: 35 start-page: 215 year: 2011 end-page: 228 ident: bib19 article-title: A multi-scale electrochemical and thermal model of a LiFePO4 battery publication-title: Ecs Trans. – volume: 162 start-page: A1003 year: 2015 end-page: A1007 ident: bib28 article-title: A model for predicting capacity fade due to SEI formation in a commercial graphite/LiFePO4 cell publication-title: J. Electrochem. Soc. – volume: 243 start-page: 181 year: 2013 end-page: 194 ident: bib21 article-title: Thermal analyses of LiFePO 4/graphite battery discharge processes publication-title: J. Power Sources – volume: 160 start-page: A616 year: 2013 end-page: A628 ident: bib15 article-title: A simplified electrochemical and thermal aging model of LiFePO4-graphite li-ion batteries: power and capacity fade simulations publication-title: J. Electrochem. Soc. – volume: 7 start-page: 6783 year: 2014 end-page: 6797 ident: bib6 article-title: Study on the optimal charging strategy for lithium-ion batteries used in electric vehicles publication-title: Energies – volume: 138 year: 2016 ident: bib8 article-title: A computationally efficient approach for optimizing lithium-ion battery charging publication-title: J. Dyn. Syst. Meas. Control – volume: 360 start-page: 28 year: 2017 end-page: 40 ident: bib2 article-title: Modeling of lithium plating induced aging of lithium-ion batteries: transition from linear to nonlinear aging publication-title: J. Power Sources – volume: 20 start-page: 298 year: 2018 end-page: 309 ident: bib12 article-title: Modeling the effect of two-stage fast charging protocol on thermal behavior and charging energy efficiency of lithium-ion batteries publication-title: J. Energy Storage – volume: 25 start-page: 139 year: 2010 end-page: 146 ident: bib3 article-title: Optimum charging profile for lithium-ion batteries to maximize energy storage and utilization publication-title: ECS Trans. – volume: 159 start-page: A1508 year: 2012 end-page: A1519 ident: bib18 article-title: Simplified electrochemical and thermal model of LiFePO4-graphite Li-ion batteries for fast charge applications publication-title: J. Electrochem. Soc. – volume: 145 start-page: 89 year: 2005 end-page: 94 ident: bib11 article-title: Boostcharging Li-ion batteries: a challenging new charging concept publication-title: J. Power Sources – volume: 196 start-page: 3942 year: 2011 end-page: 3948 ident: bib30 article-title: Cycle-life model for graphite-LiFePO4 cells publication-title: J. Power Sources – volume: 273 start-page: 413 year: 2015 end-page: 422 ident: bib4 article-title: New charging strategy for lithium-ion batteries based on the integration of Taguchi method and state of charge estimation publication-title: J. Power Sources – volume: 196 start-page: 5357 year: 2011 end-page: 5363 ident: bib17 article-title: State-of-health monitoring of lithium-ion batteries in electric vehicles by on-board internal resistance estimation publication-title: J. Power Sources – volume: 239 start-page: 449 year: 2013 end-page: 457 ident: bib7 article-title: Charging time and loss optimization for LiNMC and LiFePO4 batteries based on equivalent circuit models publication-title: J. Power Sources – start-page: 1 year: 2012 end-page: 8 ident: bib16 article-title: Dynamic programming technique in hybrid electric vehicle optimization publication-title: 2012 IEEE International Electric Vehicle Conference – volume: 274 start-page: 957 year: 2015 end-page: 964 ident: bib5 article-title: Optimal charging method for lithium ion batteries using a universal voltage protocol accommodating aging publication-title: J. Power Sources – volume: 158 start-page: A835 year: 2011 end-page: A843 ident: bib25 article-title: Three-dimensional modeling of electrochemical performance and heat generation of lithium-ion batteries in tabbed planar configurations publication-title: J. Electrochem. Soc. – volume: 79 start-page: 205 year: 1999 end-page: 211 ident: bib10 article-title: On charge conditions for Li-ion and other secondary lithium batteries with solid intercalation electrodes publication-title: J. Power Sources – volume: 243 start-page: 354 year: 2013 ident: 10.1016/j.jpowsour.2019.227015_bib26 article-title: Entropy change effects on the thermal behavior of a LiFePO4/graphite lithium-ion cell at different states of charge publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.05.199 – volume: 243 start-page: 181 year: 2013 ident: 10.1016/j.jpowsour.2019.227015_bib21 article-title: Thermal analyses of LiFePO 4/graphite battery discharge processes publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.05.089 – volume: 158 start-page: A835 year: 2011 ident: 10.1016/j.jpowsour.2019.227015_bib25 article-title: Three-dimensional modeling of electrochemical performance and heat generation of lithium-ion batteries in tabbed planar configurations publication-title: J. Electrochem. Soc. doi: 10.1149/1.3591799 – volume: 35 start-page: 215 issue: 32 year: 2011 ident: 10.1016/j.jpowsour.2019.227015_bib19 article-title: A multi-scale electrochemical and thermal model of a LiFePO4 battery publication-title: Ecs Trans. doi: 10.1149/1.3655705 – volume: 273 start-page: 413 year: 2015 ident: 10.1016/j.jpowsour.2019.227015_bib4 article-title: New charging strategy for lithium-ion batteries based on the integration of Taguchi method and state of charge estimation publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.09.108 – volume: 160 start-page: A616 issue: 4 year: 2013 ident: 10.1016/j.jpowsour.2019.227015_bib15 article-title: A simplified electrochemical and thermal aging model of LiFePO4-graphite li-ion batteries: power and capacity fade simulations publication-title: J. Electrochem. Soc. doi: 10.1149/2.053304jes – start-page: 233 year: 1999 ident: 10.1016/j.jpowsour.2019.227015_bib14 article-title: The art of battery charging – volume: 196 start-page: 5357 year: 2011 ident: 10.1016/j.jpowsour.2019.227015_bib17 article-title: State-of-health monitoring of lithium-ion batteries in electric vehicles by on-board internal resistance estimation publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2010.08.035 – start-page: 1 year: 2012 ident: 10.1016/j.jpowsour.2019.227015_bib16 article-title: Dynamic programming technique in hybrid electric vehicle optimization – volume: 158 start-page: 1123 year: 2011 ident: 10.1016/j.jpowsour.2019.227015_bib29 article-title: Aging of a commercial graphite/LiFePO4 cell publication-title: J. Electrochem. Soc. doi: 10.1149/1.3614529 – volume: 158 start-page: A63 issue: 2 year: 2011 ident: 10.1016/j.jpowsour.2019.227015_bib24 article-title: Mathematical modeling of lithium iron phosphate electrode: galvanostatic charge/discharge and path dependence publication-title: J. Electrochem. Soc. doi: 10.1149/1.3515902 – volume: 360 start-page: 28 year: 2017 ident: 10.1016/j.jpowsour.2019.227015_bib2 article-title: Modeling of lithium plating induced aging of lithium-ion batteries: transition from linear to nonlinear aging publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.05.110 – volume: 12 start-page: 1549 year: 2008 ident: 10.1016/j.jpowsour.2019.227015_bib22 article-title: Effect of different carbon conductive additives on electrochemical properties of LiFePO4-C/Li batteries publication-title: J. Solid State Electrochem. doi: 10.1007/s10008-008-0509-3 – volume: 239 start-page: 449 year: 2013 ident: 10.1016/j.jpowsour.2019.227015_bib7 article-title: Charging time and loss optimization for LiNMC and LiFePO4 batteries based on equivalent circuit models publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.03.157 – volume: 114 start-page: 1085 year: 2016 ident: 10.1016/j.jpowsour.2019.227015_bib27 article-title: Measuring and assessing the effective in-plane thermal conductivity of lithium iron phosphate pouch cells publication-title: Energy doi: 10.1016/j.energy.2016.08.087 – volume: 7 start-page: 6783 issue: 10 year: 2014 ident: 10.1016/j.jpowsour.2019.227015_bib6 article-title: Study on the optimal charging strategy for lithium-ion batteries used in electric vehicles publication-title: Energies doi: 10.3390/en7106783 – volume: 20 start-page: 298 year: 2018 ident: 10.1016/j.jpowsour.2019.227015_bib12 article-title: Modeling the effect of two-stage fast charging protocol on thermal behavior and charging energy efficiency of lithium-ion batteries publication-title: J. Energy Storage doi: 10.1016/j.est.2018.09.004 – volume: 274 start-page: 957 year: 2015 ident: 10.1016/j.jpowsour.2019.227015_bib5 article-title: Optimal charging method for lithium ion batteries using a universal voltage protocol accommodating aging publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.10.185 – volume: 138 issue: 2 year: 2016 ident: 10.1016/j.jpowsour.2019.227015_bib8 article-title: A computationally efficient approach for optimizing lithium-ion battery charging publication-title: J. Dyn. Syst. Meas. Control doi: 10.1115/1.4032066 – volume: 196 start-page: 3942 year: 2011 ident: 10.1016/j.jpowsour.2019.227015_bib30 article-title: Cycle-life model for graphite-LiFePO4 cells publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2010.11.134 – volume: 159 start-page: A1508 year: 2012 ident: 10.1016/j.jpowsour.2019.227015_bib18 article-title: Simplified electrochemical and thermal model of LiFePO4-graphite Li-ion batteries for fast charge applications publication-title: J. Electrochem. Soc. doi: 10.1149/2.064209jes – volume: 25 start-page: 139 issue: 35 year: 2010 ident: 10.1016/j.jpowsour.2019.227015_bib3 article-title: Optimum charging profile for lithium-ion batteries to maximize energy storage and utilization publication-title: ECS Trans. doi: 10.1149/1.3414012 – volume: 145 start-page: 89 year: 2005 ident: 10.1016/j.jpowsour.2019.227015_bib11 article-title: Boostcharging Li-ion batteries: a challenging new charging concept publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2004.12.038 – volume: 79 start-page: 205 year: 1999 ident: 10.1016/j.jpowsour.2019.227015_bib10 article-title: On charge conditions for Li-ion and other secondary lithium batteries with solid intercalation electrodes publication-title: J. Power Sources doi: 10.1016/S0378-7753(99)00058-0 – volume: 313 start-page: 164 year: 2016 ident: 10.1016/j.jpowsour.2019.227015_bib13 article-title: Electrochemical model based charge optimization for lithium-ion batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.01.096 – volume: 159 start-page: A177 year: 2011 ident: 10.1016/j.jpowsour.2019.227015_bib23 article-title: Mathematical modeling of commercial LiFePO4 electrodes based on variable solid-state diffusivity publication-title: J. Electrochem. Soc. doi: 10.1149/2.073202jes – volume: 162 start-page: A1003 issue: 6 year: 2015 ident: 10.1016/j.jpowsour.2019.227015_bib28 article-title: A model for predicting capacity fade due to SEI formation in a commercial graphite/LiFePO4 cell publication-title: J. Electrochem. Soc. doi: 10.1149/2.0641506jes – volume: 143 start-page: 1890 year: 1996 ident: 10.1016/j.jpowsour.2019.227015_bib20 publication-title: Electrochem. Soc. doi: 10.1149/1.1836921 – volume: 321 start-page: 201 year: 2016 ident: 10.1016/j.jpowsour.2019.227015_bib1 article-title: Fast charging technique for high power LiFePO4 batteries: a mechanistic analysis of aging publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.04.140 – volume: 122 start-page: 67 year: 2003 ident: 10.1016/j.jpowsour.2019.227015_bib9 article-title: Comparison of the capacity fade of Sony US 18650 cells charged with different protocols publication-title: J. Power Sources doi: 10.1016/S0378-7753(03)00027-2 |
| SSID | ssj0001170 |
| Score | 2.6354077 |
| Snippet | Enabling fast charging of lithium-ion batteries may accelerate the commercial application of electric vehicles (EVs). The fast charging, however, could lead to... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 227015 |
| SubjectTerms | Cycle life Dynamic programming Electrochemical-thermal-capacity fade model Fast charging optimization Heat generation Lithium ion batteries |
| Title | Fast charging optimization for lithium-ion batteries based on dynamic programming algorithm and electrochemical-thermal-capacity fade coupled model |
| URI | https://dx.doi.org/10.1016/j.jpowsour.2019.227015 |
| Volume | 438 |
| WOSCitedRecordID | wos000490030800014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-2755 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001170 issn: 0378-7753 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZKlwMcEE-xvOQDt8oliZ3YPq7QrgChFYJFyi2ynQRatWnVbVb7Pzjun93xIyGiiwpCXNLGquOm89Xz2Zn5BqHXkurM6FoRYMOMgIdSRBpqiGY0UxnPUqWduv5Hfnoq8lx-Go2uulyYiwVvGnF5Kdf_1dTQBsa2qbN_Ye7-otAA78HocASzw_GPDH-izrcTJ4DkApphSliGXEsXUgi0-_usXRJ7rp24JqyVJ9aZlfbBQekr1HdxW0uXw7j4ttpAN19NIxTOMUFpgFgGuYRXA27XWE5fq9KGwLfrBVzSVdr5DQNe2wptE__4oKf2eev2aKvgUd1ev5-PPrezwTb3ykcX734sn6nhVkYsBz7A7a_t5Nj4vC5Y53LuJYWnlZ-mBack4V7gt5vHmZeJ2fEJfntiPp3DXdlbsvF8cpokPPKJpL_obX-xA9rxgNpa5aPoFjqAoaQYo4Oj98f5h97R26I97iFV-IKDBPSbR7uZ-wz4zNl9dC-YAR95AD1Ao6p5iO4O5CkfoR8WSriDEh5CCQOU8ABKuIcSdlDC0BSghAdQwj2UMEAJ74MStlDCAUrYQekx-npyfPb2HQlFPIihabwlmlNRS6G5ESYGchupyi7hYdmdlaKimqaKJYopI9NIZypWca1pJFTETEpLI-kTNG5WTfUU4VLHNJHC1GlVs5hFoiwtwVVKZZKxMjtEaffzFiYo3NtCK4uiC2WcF51ZCmuWwpvlEL3p-629xsveHrKzXhGYqmegBYBuT99n_9D3Obrz83_zAo23m7Z6iW6bi-3sfPMq4PMaWS3Eyg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+charging+optimization+for+lithium-ion+batteries+based+on+dynamic+programming+algorithm+and+electrochemical-thermal-capacity+fade+coupled+model&rft.jtitle=Journal+of+power+sources&rft.au=Xu%2C+Meng&rft.au=Wang%2C+Rui&rft.au=Zhao%2C+Peng&rft.au=Wang%2C+Xia&rft.date=2019-10-31&rft.pub=Elsevier+B.V&rft.issn=0378-7753&rft.eissn=1873-2755&rft.volume=438&rft_id=info:doi/10.1016%2Fj.jpowsour.2019.227015&rft.externalDocID=S0378775319310080 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7753&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7753&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7753&client=summon |