Two Projection Neural Networks With Reduced Model Complexity for Nonlinear Programming

Recent reports show that projection neural networks with a low-dimensional state space can enhance computation speed obviously. This paper proposes two projection neural networks with reduced model dimension and complexity (RDPNNs) for solving nonlinear programming (NP) problems. Compared with exist...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems Jg. 31; H. 6; S. 2020 - 2029
Hauptverfasser: Xia, Youshen, Wang, Jun, Guo, Wenzhong
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 01.06.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2162-237X, 2162-2388, 2162-2388
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recent reports show that projection neural networks with a low-dimensional state space can enhance computation speed obviously. This paper proposes two projection neural networks with reduced model dimension and complexity (RDPNNs) for solving nonlinear programming (NP) problems. Compared with existing projection neural networks for solving NP, the proposed two RDPNNs have a low-dimensional state space and low model complexity. Under the condition that the Hessian matrix of the associated Lagrangian function is positive semi-definite and positive definite at each Karush-Kuhn-Tucker point, the proposed two RDPNNs are proven to be globally stable in the sense of Lyapunov and converge globally to a point satisfying the reduced optimality condition of NP. Therefore, the proposed two RDPNNs are theoretically guaranteed to solve convex NP problems and a class of nonconvex NP problems. Computed results show that the proposed two RDPNNs have a faster computation speed than the existing projection neural networks for solving NP problems.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2162-237X
2162-2388
2162-2388
DOI:10.1109/TNNLS.2019.2927639