Two Projection Neural Networks With Reduced Model Complexity for Nonlinear Programming

Recent reports show that projection neural networks with a low-dimensional state space can enhance computation speed obviously. This paper proposes two projection neural networks with reduced model dimension and complexity (RDPNNs) for solving nonlinear programming (NP) problems. Compared with exist...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transaction on neural networks and learning systems Ročník 31; číslo 6; s. 2020 - 2029
Hlavní autoři: Xia, Youshen, Wang, Jun, Guo, Wenzhong
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.06.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2162-237X, 2162-2388, 2162-2388
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Recent reports show that projection neural networks with a low-dimensional state space can enhance computation speed obviously. This paper proposes two projection neural networks with reduced model dimension and complexity (RDPNNs) for solving nonlinear programming (NP) problems. Compared with existing projection neural networks for solving NP, the proposed two RDPNNs have a low-dimensional state space and low model complexity. Under the condition that the Hessian matrix of the associated Lagrangian function is positive semi-definite and positive definite at each Karush-Kuhn-Tucker point, the proposed two RDPNNs are proven to be globally stable in the sense of Lyapunov and converge globally to a point satisfying the reduced optimality condition of NP. Therefore, the proposed two RDPNNs are theoretically guaranteed to solve convex NP problems and a class of nonconvex NP problems. Computed results show that the proposed two RDPNNs have a faster computation speed than the existing projection neural networks for solving NP problems.
AbstractList Recent reports show that projection neural networks with a low-dimensional state space can enhance computation speed obviously. This paper proposes two projection neural networks with reduced model dimension and complexity (RDPNNs) for solving nonlinear programming (NP) problems. Compared with existing projection neural networks for solving NP, the proposed two RDPNNs have a low-dimensional state space and low model complexity. Under the condition that the Hessian matrix of the associated Lagrangian function is positive semi-definite and positive definite at each Karush-Kuhn-Tucker point, the proposed two RDPNNs are proven to be globally stable in the sense of Lyapunov and converge globally to a point satisfying the reduced optimality condition of NP. Therefore, the proposed two RDPNNs are theoretically guaranteed to solve convex NP problems and a class of nonconvex NP problems. Computed results show that the proposed two RDPNNs have a faster computation speed than the existing projection neural networks for solving NP problems.
Recent reports show that projection neural networks with a low-dimensional state space can enhance computation speed obviously. This paper proposes two projection neural networks with reduced model dimension and complexity (RDPNNs) for solving nonlinear programming (NP) problems. Compared with existing projection neural networks for solving NP, the proposed two RDPNNs have a low-dimensional state space and low model complexity. Under the condition that the Hessian matrix of the associated Lagrangian function is positive semi-definite and positive definite at each Karush-Kuhn-Tucker point, the proposed two RDPNNs are proven to be globally stable in the sense of Lyapunov and converge globally to a point satisfying the reduced optimality condition of NP. Therefore, the proposed two RDPNNs are theoretically guaranteed to solve convex NP problems and a class of nonconvex NP problems. Computed results show that the proposed two RDPNNs have a faster computation speed than the existing projection neural networks for solving NP problems.Recent reports show that projection neural networks with a low-dimensional state space can enhance computation speed obviously. This paper proposes two projection neural networks with reduced model dimension and complexity (RDPNNs) for solving nonlinear programming (NP) problems. Compared with existing projection neural networks for solving NP, the proposed two RDPNNs have a low-dimensional state space and low model complexity. Under the condition that the Hessian matrix of the associated Lagrangian function is positive semi-definite and positive definite at each Karush-Kuhn-Tucker point, the proposed two RDPNNs are proven to be globally stable in the sense of Lyapunov and converge globally to a point satisfying the reduced optimality condition of NP. Therefore, the proposed two RDPNNs are theoretically guaranteed to solve convex NP problems and a class of nonconvex NP problems. Computed results show that the proposed two RDPNNs have a faster computation speed than the existing projection neural networks for solving NP problems.
Author Guo, Wenzhong
Xia, Youshen
Wang, Jun
Author_xml – sequence: 1
  givenname: Youshen
  orcidid: 0000-0001-7502-913X
  surname: Xia
  fullname: Xia, Youshen
  email: ysxia@fzu.edu.cn
  organization: College of Mathematics and Computer Science, Fuzhou University, Fuzhou, China
– sequence: 2
  givenname: Jun
  orcidid: 0000-0002-1305-5735
  surname: Wang
  fullname: Wang, Jun
  email: jwang.cs@cityu.edu.hk
  organization: Department of Computer Science, City University of Hong Kong, Hong Kong
– sequence: 3
  givenname: Wenzhong
  orcidid: 0000-0003-4118-8823
  surname: Guo
  fullname: Guo, Wenzhong
  email: guowenzhong@fzu.edu.cn
  organization: College of Mathematics and Computer Science, Fuzhou University, Fuzhou, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31425123$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1vEzEQhi1UREvpHwAJrdQLlwR77F2vjyiigBRSBOHjZnm94-Kwuw72rkr_PQ5Jc-gBX8aH5xl75n1KToYwICHPGZ0zRtXr9Wq1_DIHytQcFMiKq0fkDFgFM-B1fXK8yx-n5CKlDc2nomUl1BNyypmAkgE_I9_Wt6H4FMMG7ejDUKxwiqbLZbwN8VcqvvvxZ_EZ28liW3wMLXbFIvTbDv_48a5wIRarMHR-QBN3bW6i6Xs_3Dwjj53pEl4c6jn5evV2vXg_W16_-7B4s5xZXrJx1nDpnAHVShCVsC1TdVtW0DhpHAhnm0rSPJmsVC2hBEcbmwVhJTRCccH4OXm177uN4feEadS9Txa7zgwYpqQhT1qWJReQ0csH6CZMcci_0yCo4lJxRTP18kBNTY-t3kbfm3in7zeWAdgDNoaUIrojwqjeJaP_JaN3yehDMlmqH0jWj2a38DEa3_1ffbFXPSIe36prKnit-F-695ov
CODEN ITNNAL
CitedBy_id crossref_primary_10_1109_TNNLS_2021_3080980
crossref_primary_10_1016_j_jfranklin_2021_11_009
crossref_primary_10_1109_TNNLS_2023_3263263
crossref_primary_10_1109_TFUZZ_2023_3297718
crossref_primary_10_1109_TETCI_2024_3369667
crossref_primary_10_1109_TIA_2025_3536425
crossref_primary_10_1109_TNNLS_2020_3027471
crossref_primary_10_1007_s00521_021_06867_x
crossref_primary_10_1109_TCYB_2019_2950779
crossref_primary_10_1088_1742_6596_1952_4_042075
crossref_primary_10_1177_1550147721992881
crossref_primary_10_1109_TNNLS_2023_3340730
crossref_primary_10_1007_s40435_022_01072_7
crossref_primary_10_1016_j_neucom_2024_128988
crossref_primary_10_1109_JAS_2021_1004048
crossref_primary_10_1109_TNNLS_2023_3236607
crossref_primary_10_3233_JIFS_210164
crossref_primary_10_1109_TCYB_2021_3090204
crossref_primary_10_1002_int_22943
crossref_primary_10_1016_j_neunet_2025_107344
crossref_primary_10_1016_j_neucom_2021_04_059
crossref_primary_10_1109_TCYB_2024_3398585
crossref_primary_10_1109_TITS_2023_3312373
crossref_primary_10_1016_j_neunet_2021_01_004
crossref_primary_10_1016_j_neunet_2022_03_011
crossref_primary_10_1016_j_neunet_2022_08_012
crossref_primary_10_1109_TNNLS_2024_3432166
crossref_primary_10_1109_TIA_2024_3471975
crossref_primary_10_1109_TNNLS_2023_3321761
crossref_primary_10_1016_j_neucom_2025_131068
crossref_primary_10_1109_TSMC_2024_3417900
crossref_primary_10_4018_JDM_321758
crossref_primary_10_1016_j_neunet_2021_04_038
crossref_primary_10_1016_j_neunet_2021_10_007
crossref_primary_10_61882_jiaeee_22_2_81
crossref_primary_10_1109_TNNLS_2021_3126730
crossref_primary_10_3390_en15249486
crossref_primary_10_1109_TNNLS_2021_3082528
crossref_primary_10_1109_TNNLS_2023_3236695
crossref_primary_10_1016_j_neucom_2022_07_034
crossref_primary_10_3389_fnbot_2022_945346
crossref_primary_10_1109_ACCESS_2020_2990298
Cites_doi 10.1162/neco.2007.10-06-376
10.1109/TCS.1986.1085953
10.1109/TCYB.2016.2567449
10.1016/j.sigpro.2005.12.004
10.1002/0471787779
10.1109/TCYB.2016.2611529
10.1109/31.1783
10.1109/82.160169
10.1109/TNNLS.2015.2500618
10.1109/TNN.2011.2109735
10.1109/TNN.2008.2006263
10.1109/TNN.2008.2000273
10.1109/TNNLS.2012.2184800
10.1016/j.neunet.2004.05.006
10.1109/TNN.2006.879775
10.1109/TNNLS.2013.2244908
10.1109/TCSI.2004.830694
10.1109/TNN.2010.2048123
10.1016/j.matcom.2014.02.006
10.1007/s11432-009-0168-8
10.1016/S0375-9601(01)00542-4
10.1109/TCSI.2004.834493
10.1109/TNN.2004.841779
10.1162/089976604322860730
10.1007/978-3-319-59072-1_60
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2019.2927639
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 2029
ExternalDocumentID 31425123
10_1109_TNNLS_2019_2927639
8804389
Genre orig-research
Journal Article
GrantInformation_xml – fundername: International Partnership Program of Chinese Academy of Sciences
  grantid: GJHZ1849
  funderid: 10.13039/501100002367
– fundername: National Natural Science Foundation of China
  grantid: 61672159; U1705262
  funderid: 10.13039/501100001809
– fundername: Research Grants Council, Hong Kong
  grantid: 11208517; 11202318; 11202019
  funderid: 10.13039/501100002920
– fundername: Fujian Provincial Key Laboratory of Network Computing and Intelligent Information Processing
– fundername: National Natural Science Foundation of China
  grantid: 61473330
  funderid: 10.13039/501100001809
– fundername: National Natural Science Foundation of China
  grantid: 61673330
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
RIG
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c351t-b37ffa29d72464cd198d562bf7af24fcb67063976987252f0bc7ff4c72b493413
IEDL.DBID RIE
ISICitedReferencesCount 48
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000542953000019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2162-237X
2162-2388
IngestDate Sun Nov 09 13:46:37 EST 2025
Sun Nov 09 08:29:33 EST 2025
Thu Jan 02 23:02:23 EST 2025
Tue Nov 18 22:33:35 EST 2025
Sat Nov 29 01:40:03 EST 2025
Wed Aug 27 02:32:54 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-b37ffa29d72464cd198d562bf7af24fcb67063976987252f0bc7ff4c72b493413
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1305-5735
0000-0003-4118-8823
0000-0001-7502-913X
PMID 31425123
PQID 2409379390
PQPubID 85436
PageCount 10
ParticipantIDs crossref_primary_10_1109_TNNLS_2019_2927639
proquest_journals_2409379390
pubmed_primary_31425123
proquest_miscellaneous_2314555342
crossref_citationtrail_10_1109_TNNLS_2019_2927639
ieee_primary_8804389
PublicationCentury 2000
PublicationDate 2020-06-01
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref32
ref10
mandic (ref3) 2001
ref1
gao (ref23) 2017; 28
ref17
grant (ref28) 2005
ref16
ref18
boyd (ref31) 2015
xia (ref19) 2008; 19
ref24
ref26
ref25
ref20
ref21
ref27
gao (ref22) 2009; 20
ortega (ref30) 1970
ref8
ref7
cochocki (ref2) 1993
ref4
kinderlehrer (ref29) 1980
hu (ref9) 2010; 21
ref6
ref5
References_xml – ident: ref7
  doi: 10.1162/neco.2007.10-06-376
– ident: ref4
  doi: 10.1109/TCS.1986.1085953
– ident: ref12
  doi: 10.1109/TCYB.2016.2567449
– ident: ref32
  doi: 10.1016/j.sigpro.2005.12.004
– year: 2005
  ident: ref28
  article-title: Disciplined convex programming
  publication-title: Global Optimization From Theory to Implementation
– ident: ref1
  doi: 10.1002/0471787779
– ident: ref24
  doi: 10.1109/TCYB.2016.2611529
– ident: ref13
  doi: 10.1109/31.1783
– year: 2015
  ident: ref31
  publication-title: Convex optimization
– ident: ref14
  doi: 10.1109/82.160169
– ident: ref25
  doi: 10.1109/TNNLS.2015.2500618
– volume: 28
  start-page: 2062
  year: 2017
  ident: ref23
  article-title: A novel neural network for generally constrained variational inequalities
  publication-title: IEEE Trans Neural Netw Learn Syst
– ident: ref10
  doi: 10.1109/TNN.2011.2109735
– volume: 20
  start-page: 373
  year: 2009
  ident: ref22
  article-title: A new projection-based neural network for constrained variational inequalities
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2008.2006263
– volume: 19
  start-page: 1340
  year: 2008
  ident: ref19
  article-title: A novel recurrent neural network for solving nonlinear optimization problems with inequality constraints
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2008.2000273
– ident: ref8
  doi: 10.1109/TNNLS.2012.2184800
– year: 1980
  ident: ref29
  publication-title: An Introduction to Variational Inequalities and Their Applications
– ident: ref15
  doi: 10.1016/j.neunet.2004.05.006
– ident: ref6
  doi: 10.1109/TNN.2006.879775
– ident: ref11
  doi: 10.1109/TNNLS.2013.2244908
– ident: ref16
  doi: 10.1109/TCSI.2004.830694
– volume: 21
  start-page: 1073
  year: 2010
  ident: ref9
  article-title: Design of recurrent neural networks for solving constrained least absolute deviation problems
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2010.2048123
– ident: ref27
  doi: 10.1016/j.matcom.2014.02.006
– year: 1993
  ident: ref2
  publication-title: Neural Networks for Optimization and Signal Processing
– ident: ref20
  doi: 10.1007/s11432-009-0168-8
– ident: ref21
  doi: 10.1016/S0375-9601(01)00542-4
– year: 2001
  ident: ref3
  article-title: Adaptive and learning systems for signal processing, communications and control
  publication-title: Recurrent Neural Networks for Prediction Learning Algorithms Architectures and Stability
– ident: ref5
  doi: 10.1109/TCSI.2004.834493
– ident: ref18
  doi: 10.1109/TNN.2004.841779
– ident: ref17
  doi: 10.1162/089976604322860730
– year: 1970
  ident: ref30
  publication-title: Iterative Solution of Nonlinear Equations in Several Variables
– ident: ref26
  doi: 10.1007/978-3-319-59072-1_60
SSID ssj0000605649
Score 2.5129914
Snippet Recent reports show that projection neural networks with a low-dimensional state space can enhance computation speed obviously. This paper proposes two...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2020
SubjectTerms Complexity
Computation
Computational complexity
Concave programming
Convex programming
fast computation
global stability
Hessian matrices
Lagrangian function
low-dimensional state space
Mathematical analysis
Matrix methods
Neural networks
nonconvex programming
Nonlinear programming
Optimization
Projection
Quadratic programming
Title Two Projection Neural Networks With Reduced Model Complexity for Nonlinear Programming
URI https://ieeexplore.ieee.org/document/8804389
https://www.ncbi.nlm.nih.gov/pubmed/31425123
https://www.proquest.com/docview/2409379390
https://www.proquest.com/docview/2314555342
Volume 31
WOSCitedRecordID wos000542953000019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 2162-2388
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605649
  issn: 2162-237X
  databaseCode: RIE
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB6SkEMvTZpH67xQILfUG1vyWqtjCFl6WMySbJK9GVkPEkh3y663of--M7LXUEgLvRksyUbfDPNpJH0DcCFxgWYVr2KXCR8TJ491SrVelLem73PhG6RHsigG06kab8DX7i6Mcy4cPnM9egx7-XZuVpQqu0Jbo2Ldm7AppWzuanX5lAR5eR7YLk9zHnMhp-s7Mom6mhTF6J4OcqkeVxx9Sv0Rh0Jhlb9zzBBrhjv_95e78LHllOy6MYJPsOFme7CzrtfAWvfdh8fJ25yNm9QLwsFImAP7Fc1J8CV7eqmf2R1puTrLqEjaK6NBSDKz_sWQ3bKiEdbQCxqGznV9x8h3AA_D28nNt7itqxAb0U_ruBLSe82VlTzLM2NTNbBIgyovteeZN1Uuw35frgaS97lPKoMdMiN5lSmKeoewNZvP3BdgyHZzn2gvJDeZ00pbEixEgG1uteMqgnQ9y6VpRcep9sVrGRYfiSoDMiUhU7bIRHDZ9fnRSG78s_U-QdC1bGc_gpM1mGXrlcsS2QuyMSVUEsF59xr9iTZJ9MzNV9hGkHR7X2Q8gs-NEXRj4yuig-Lo_W8ewwdOq_GQozmBrXqxcqewbX7WL8vFGRrtdHAWjPY3bBzntA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED6NDYm9sMEYBMYwEm-QLrGduH5EiGkTJZqgG32LHP8Qk7YWtSmI_547J42EBEi8RYrtRP7udJ_P9ncArxQu0JzmTeqlCClx8tTkVOtFB2eLUIrQIT1RVTWezfTFFrwZ7sJ47-PhMz-ix7iX7xZ2TamyE7Q1KtZ9B3YKKXne3dYaMioZMvMy8l2elzzlQs02t2QyfTKtqslnOsqlR1xz9Cr9WySKpVX-zjJjtDnd-7__3If7PatkbzszeABbfv4Q9jYVG1jvwAdwNf2xYBdd8gUBYSTNgf2q7iz4in25br-yT6Tm6h2jMmk3jAYh0cz2J0N-y6pOWsMsaRg62XWLse8RXJ6-n747S_vKCqkVRd6mjVAhGK6d4rKU1uV67JAINUGZwGWwTanijl-px4oXPGSNxQ7SKt5ITXHvELbni7l_Agz5bhkyE4TiVnqjjSPJQoTYlc54rhPIN7Nc2152nKpf3NRx-ZHpOiJTEzJ1j0wCr4c-3zrRjX-2PiAIhpb97CdwtAGz7v1yVSN_QT6mhc4SeDm8Ro-ibRIz94s1thEk3l4IyRN43BnBMDa-IkIonv75my_g3tn046SenFcfnsEup7V5zNgcwXa7XPvncNd-b69Xy-Nour8AJ_vqEw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two+Projection+Neural+Networks+With+Reduced+Model+Complexity+for+Nonlinear+Programming&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Xia%2C+Youshen&rft.au=Wang%2C+Jun&rft.au=Guo%2C+Wenzhong&rft.date=2020-06-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=31&rft.issue=6&rft.spage=2020&rft_id=info:doi/10.1109%2FTNNLS.2019.2927639&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon