Two Projection Neural Networks With Reduced Model Complexity for Nonlinear Programming
Recent reports show that projection neural networks with a low-dimensional state space can enhance computation speed obviously. This paper proposes two projection neural networks with reduced model dimension and complexity (RDPNNs) for solving nonlinear programming (NP) problems. Compared with exist...
Uloženo v:
| Vydáno v: | IEEE transaction on neural networks and learning systems Ročník 31; číslo 6; s. 2020 - 2029 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
IEEE
01.06.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2162-237X, 2162-2388, 2162-2388 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Recent reports show that projection neural networks with a low-dimensional state space can enhance computation speed obviously. This paper proposes two projection neural networks with reduced model dimension and complexity (RDPNNs) for solving nonlinear programming (NP) problems. Compared with existing projection neural networks for solving NP, the proposed two RDPNNs have a low-dimensional state space and low model complexity. Under the condition that the Hessian matrix of the associated Lagrangian function is positive semi-definite and positive definite at each Karush-Kuhn-Tucker point, the proposed two RDPNNs are proven to be globally stable in the sense of Lyapunov and converge globally to a point satisfying the reduced optimality condition of NP. Therefore, the proposed two RDPNNs are theoretically guaranteed to solve convex NP problems and a class of nonconvex NP problems. Computed results show that the proposed two RDPNNs have a faster computation speed than the existing projection neural networks for solving NP problems. |
|---|---|
| AbstractList | Recent reports show that projection neural networks with a low-dimensional state space can enhance computation speed obviously. This paper proposes two projection neural networks with reduced model dimension and complexity (RDPNNs) for solving nonlinear programming (NP) problems. Compared with existing projection neural networks for solving NP, the proposed two RDPNNs have a low-dimensional state space and low model complexity. Under the condition that the Hessian matrix of the associated Lagrangian function is positive semi-definite and positive definite at each Karush-Kuhn-Tucker point, the proposed two RDPNNs are proven to be globally stable in the sense of Lyapunov and converge globally to a point satisfying the reduced optimality condition of NP. Therefore, the proposed two RDPNNs are theoretically guaranteed to solve convex NP problems and a class of nonconvex NP problems. Computed results show that the proposed two RDPNNs have a faster computation speed than the existing projection neural networks for solving NP problems. Recent reports show that projection neural networks with a low-dimensional state space can enhance computation speed obviously. This paper proposes two projection neural networks with reduced model dimension and complexity (RDPNNs) for solving nonlinear programming (NP) problems. Compared with existing projection neural networks for solving NP, the proposed two RDPNNs have a low-dimensional state space and low model complexity. Under the condition that the Hessian matrix of the associated Lagrangian function is positive semi-definite and positive definite at each Karush-Kuhn-Tucker point, the proposed two RDPNNs are proven to be globally stable in the sense of Lyapunov and converge globally to a point satisfying the reduced optimality condition of NP. Therefore, the proposed two RDPNNs are theoretically guaranteed to solve convex NP problems and a class of nonconvex NP problems. Computed results show that the proposed two RDPNNs have a faster computation speed than the existing projection neural networks for solving NP problems.Recent reports show that projection neural networks with a low-dimensional state space can enhance computation speed obviously. This paper proposes two projection neural networks with reduced model dimension and complexity (RDPNNs) for solving nonlinear programming (NP) problems. Compared with existing projection neural networks for solving NP, the proposed two RDPNNs have a low-dimensional state space and low model complexity. Under the condition that the Hessian matrix of the associated Lagrangian function is positive semi-definite and positive definite at each Karush-Kuhn-Tucker point, the proposed two RDPNNs are proven to be globally stable in the sense of Lyapunov and converge globally to a point satisfying the reduced optimality condition of NP. Therefore, the proposed two RDPNNs are theoretically guaranteed to solve convex NP problems and a class of nonconvex NP problems. Computed results show that the proposed two RDPNNs have a faster computation speed than the existing projection neural networks for solving NP problems. |
| Author | Guo, Wenzhong Xia, Youshen Wang, Jun |
| Author_xml | – sequence: 1 givenname: Youshen orcidid: 0000-0001-7502-913X surname: Xia fullname: Xia, Youshen email: ysxia@fzu.edu.cn organization: College of Mathematics and Computer Science, Fuzhou University, Fuzhou, China – sequence: 2 givenname: Jun orcidid: 0000-0002-1305-5735 surname: Wang fullname: Wang, Jun email: jwang.cs@cityu.edu.hk organization: Department of Computer Science, City University of Hong Kong, Hong Kong – sequence: 3 givenname: Wenzhong orcidid: 0000-0003-4118-8823 surname: Guo fullname: Guo, Wenzhong email: guowenzhong@fzu.edu.cn organization: College of Mathematics and Computer Science, Fuzhou University, Fuzhou, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31425123$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kU1vEzEQhi1UREvpHwAJrdQLlwR77F2vjyiigBRSBOHjZnm94-Kwuw72rkr_PQ5Jc-gBX8aH5xl75n1KToYwICHPGZ0zRtXr9Wq1_DIHytQcFMiKq0fkDFgFM-B1fXK8yx-n5CKlDc2nomUl1BNyypmAkgE_I9_Wt6H4FMMG7ejDUKxwiqbLZbwN8VcqvvvxZ_EZ28liW3wMLXbFIvTbDv_48a5wIRarMHR-QBN3bW6i6Xs_3Dwjj53pEl4c6jn5evV2vXg_W16_-7B4s5xZXrJx1nDpnAHVShCVsC1TdVtW0DhpHAhnm0rSPJmsVC2hBEcbmwVhJTRCccH4OXm177uN4feEadS9Txa7zgwYpqQhT1qWJReQ0csH6CZMcci_0yCo4lJxRTP18kBNTY-t3kbfm3in7zeWAdgDNoaUIrojwqjeJaP_JaN3yehDMlmqH0jWj2a38DEa3_1ffbFXPSIe36prKnit-F-695ov |
| CODEN | ITNNAL |
| CitedBy_id | crossref_primary_10_1109_TNNLS_2021_3080980 crossref_primary_10_1016_j_jfranklin_2021_11_009 crossref_primary_10_1109_TNNLS_2023_3263263 crossref_primary_10_1109_TFUZZ_2023_3297718 crossref_primary_10_1109_TETCI_2024_3369667 crossref_primary_10_1109_TIA_2025_3536425 crossref_primary_10_1109_TNNLS_2020_3027471 crossref_primary_10_1007_s00521_021_06867_x crossref_primary_10_1109_TCYB_2019_2950779 crossref_primary_10_1088_1742_6596_1952_4_042075 crossref_primary_10_1177_1550147721992881 crossref_primary_10_1109_TNNLS_2023_3340730 crossref_primary_10_1007_s40435_022_01072_7 crossref_primary_10_1016_j_neucom_2024_128988 crossref_primary_10_1109_JAS_2021_1004048 crossref_primary_10_1109_TNNLS_2023_3236607 crossref_primary_10_3233_JIFS_210164 crossref_primary_10_1109_TCYB_2021_3090204 crossref_primary_10_1002_int_22943 crossref_primary_10_1016_j_neunet_2025_107344 crossref_primary_10_1016_j_neucom_2021_04_059 crossref_primary_10_1109_TCYB_2024_3398585 crossref_primary_10_1109_TITS_2023_3312373 crossref_primary_10_1016_j_neunet_2021_01_004 crossref_primary_10_1016_j_neunet_2022_03_011 crossref_primary_10_1016_j_neunet_2022_08_012 crossref_primary_10_1109_TNNLS_2024_3432166 crossref_primary_10_1109_TIA_2024_3471975 crossref_primary_10_1109_TNNLS_2023_3321761 crossref_primary_10_1016_j_neucom_2025_131068 crossref_primary_10_1109_TSMC_2024_3417900 crossref_primary_10_4018_JDM_321758 crossref_primary_10_1016_j_neunet_2021_04_038 crossref_primary_10_1016_j_neunet_2021_10_007 crossref_primary_10_61882_jiaeee_22_2_81 crossref_primary_10_1109_TNNLS_2021_3126730 crossref_primary_10_3390_en15249486 crossref_primary_10_1109_TNNLS_2021_3082528 crossref_primary_10_1109_TNNLS_2023_3236695 crossref_primary_10_1016_j_neucom_2022_07_034 crossref_primary_10_3389_fnbot_2022_945346 crossref_primary_10_1109_ACCESS_2020_2990298 |
| Cites_doi | 10.1162/neco.2007.10-06-376 10.1109/TCS.1986.1085953 10.1109/TCYB.2016.2567449 10.1016/j.sigpro.2005.12.004 10.1002/0471787779 10.1109/TCYB.2016.2611529 10.1109/31.1783 10.1109/82.160169 10.1109/TNNLS.2015.2500618 10.1109/TNN.2011.2109735 10.1109/TNN.2008.2006263 10.1109/TNN.2008.2000273 10.1109/TNNLS.2012.2184800 10.1016/j.neunet.2004.05.006 10.1109/TNN.2006.879775 10.1109/TNNLS.2013.2244908 10.1109/TCSI.2004.830694 10.1109/TNN.2010.2048123 10.1016/j.matcom.2014.02.006 10.1007/s11432-009-0168-8 10.1016/S0375-9601(01)00542-4 10.1109/TCSI.2004.834493 10.1109/TNN.2004.841779 10.1162/089976604322860730 10.1007/978-3-319-59072-1_60 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| DOI | 10.1109/TNNLS.2019.2927639 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic Materials Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2162-2388 |
| EndPage | 2029 |
| ExternalDocumentID | 31425123 10_1109_TNNLS_2019_2927639 8804389 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: International Partnership Program of Chinese Academy of Sciences grantid: GJHZ1849 funderid: 10.13039/501100002367 – fundername: National Natural Science Foundation of China grantid: 61672159; U1705262 funderid: 10.13039/501100001809 – fundername: Research Grants Council, Hong Kong grantid: 11208517; 11202318; 11202019 funderid: 10.13039/501100002920 – fundername: Fujian Provincial Key Laboratory of Network Computing and Intelligent Information Processing – fundername: National Natural Science Foundation of China grantid: 61473330 funderid: 10.13039/501100001809 – fundername: National Natural Science Foundation of China grantid: 61673330 funderid: 10.13039/501100001809 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION NPM RIG 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| ID | FETCH-LOGICAL-c351t-b37ffa29d72464cd198d562bf7af24fcb67063976987252f0bc7ff4c72b493413 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 48 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000542953000019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2162-237X 2162-2388 |
| IngestDate | Sun Nov 09 13:46:37 EST 2025 Sun Nov 09 08:29:33 EST 2025 Thu Jan 02 23:02:23 EST 2025 Tue Nov 18 22:33:35 EST 2025 Sat Nov 29 01:40:03 EST 2025 Wed Aug 27 02:32:54 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c351t-b37ffa29d72464cd198d562bf7af24fcb67063976987252f0bc7ff4c72b493413 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-1305-5735 0000-0003-4118-8823 0000-0001-7502-913X |
| PMID | 31425123 |
| PQID | 2409379390 |
| PQPubID | 85436 |
| PageCount | 10 |
| ParticipantIDs | crossref_primary_10_1109_TNNLS_2019_2927639 proquest_journals_2409379390 pubmed_primary_31425123 proquest_miscellaneous_2314555342 crossref_citationtrail_10_1109_TNNLS_2019_2927639 ieee_primary_8804389 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-06-01 |
| PublicationDateYYYYMMDD | 2020-06-01 |
| PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Piscataway |
| PublicationTitle | IEEE transaction on neural networks and learning systems |
| PublicationTitleAbbrev | TNNLS |
| PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref11 ref32 ref10 mandic (ref3) 2001 ref1 gao (ref23) 2017; 28 ref17 grant (ref28) 2005 ref16 ref18 boyd (ref31) 2015 xia (ref19) 2008; 19 ref24 ref26 ref25 ref20 ref21 ref27 gao (ref22) 2009; 20 ortega (ref30) 1970 ref8 ref7 cochocki (ref2) 1993 ref4 kinderlehrer (ref29) 1980 hu (ref9) 2010; 21 ref6 ref5 |
| References_xml | – ident: ref7 doi: 10.1162/neco.2007.10-06-376 – ident: ref4 doi: 10.1109/TCS.1986.1085953 – ident: ref12 doi: 10.1109/TCYB.2016.2567449 – ident: ref32 doi: 10.1016/j.sigpro.2005.12.004 – year: 2005 ident: ref28 article-title: Disciplined convex programming publication-title: Global Optimization From Theory to Implementation – ident: ref1 doi: 10.1002/0471787779 – ident: ref24 doi: 10.1109/TCYB.2016.2611529 – ident: ref13 doi: 10.1109/31.1783 – year: 2015 ident: ref31 publication-title: Convex optimization – ident: ref14 doi: 10.1109/82.160169 – ident: ref25 doi: 10.1109/TNNLS.2015.2500618 – volume: 28 start-page: 2062 year: 2017 ident: ref23 article-title: A novel neural network for generally constrained variational inequalities publication-title: IEEE Trans Neural Netw Learn Syst – ident: ref10 doi: 10.1109/TNN.2011.2109735 – volume: 20 start-page: 373 year: 2009 ident: ref22 article-title: A new projection-based neural network for constrained variational inequalities publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2008.2006263 – volume: 19 start-page: 1340 year: 2008 ident: ref19 article-title: A novel recurrent neural network for solving nonlinear optimization problems with inequality constraints publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2008.2000273 – ident: ref8 doi: 10.1109/TNNLS.2012.2184800 – year: 1980 ident: ref29 publication-title: An Introduction to Variational Inequalities and Their Applications – ident: ref15 doi: 10.1016/j.neunet.2004.05.006 – ident: ref6 doi: 10.1109/TNN.2006.879775 – ident: ref11 doi: 10.1109/TNNLS.2013.2244908 – ident: ref16 doi: 10.1109/TCSI.2004.830694 – volume: 21 start-page: 1073 year: 2010 ident: ref9 article-title: Design of recurrent neural networks for solving constrained least absolute deviation problems publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2010.2048123 – ident: ref27 doi: 10.1016/j.matcom.2014.02.006 – year: 1993 ident: ref2 publication-title: Neural Networks for Optimization and Signal Processing – ident: ref20 doi: 10.1007/s11432-009-0168-8 – ident: ref21 doi: 10.1016/S0375-9601(01)00542-4 – year: 2001 ident: ref3 article-title: Adaptive and learning systems for signal processing, communications and control publication-title: Recurrent Neural Networks for Prediction Learning Algorithms Architectures and Stability – ident: ref5 doi: 10.1109/TCSI.2004.834493 – ident: ref18 doi: 10.1109/TNN.2004.841779 – ident: ref17 doi: 10.1162/089976604322860730 – year: 1970 ident: ref30 publication-title: Iterative Solution of Nonlinear Equations in Several Variables – ident: ref26 doi: 10.1007/978-3-319-59072-1_60 |
| SSID | ssj0000605649 |
| Score | 2.5129914 |
| Snippet | Recent reports show that projection neural networks with a low-dimensional state space can enhance computation speed obviously. This paper proposes two... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2020 |
| SubjectTerms | Complexity Computation Computational complexity Concave programming Convex programming fast computation global stability Hessian matrices Lagrangian function low-dimensional state space Mathematical analysis Matrix methods Neural networks nonconvex programming Nonlinear programming Optimization Projection Quadratic programming |
| Title | Two Projection Neural Networks With Reduced Model Complexity for Nonlinear Programming |
| URI | https://ieeexplore.ieee.org/document/8804389 https://www.ncbi.nlm.nih.gov/pubmed/31425123 https://www.proquest.com/docview/2409379390 https://www.proquest.com/docview/2314555342 |
| Volume | 31 |
| WOSCitedRecordID | wos000542953000019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library customDbUrl: eissn: 2162-2388 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000605649 issn: 2162-237X databaseCode: RIE dateStart: 20120101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB6SkEMvTZpH67xQILfUG1vyWqtjCFl6WMySbJK9GVkPEkh3y663of--M7LXUEgLvRksyUbfDPNpJH0DcCFxgWYVr2KXCR8TJ491SrVelLem73PhG6RHsigG06kab8DX7i6Mcy4cPnM9egx7-XZuVpQqu0Jbo2Ldm7AppWzuanX5lAR5eR7YLk9zHnMhp-s7Mom6mhTF6J4OcqkeVxx9Sv0Rh0Jhlb9zzBBrhjv_95e78LHllOy6MYJPsOFme7CzrtfAWvfdh8fJ25yNm9QLwsFImAP7Fc1J8CV7eqmf2R1puTrLqEjaK6NBSDKz_sWQ3bKiEdbQCxqGznV9x8h3AA_D28nNt7itqxAb0U_ruBLSe82VlTzLM2NTNbBIgyovteeZN1Uuw35frgaS97lPKoMdMiN5lSmKeoewNZvP3BdgyHZzn2gvJDeZ00pbEixEgG1uteMqgnQ9y6VpRcep9sVrGRYfiSoDMiUhU7bIRHDZ9fnRSG78s_U-QdC1bGc_gpM1mGXrlcsS2QuyMSVUEsF59xr9iTZJ9MzNV9hGkHR7X2Q8gs-NEXRj4yuig-Lo_W8ewwdOq_GQozmBrXqxcqewbX7WL8vFGRrtdHAWjPY3bBzntA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED6NDYm9sMEYBMYwEm-QLrGduH5EiGkTJZqgG32LHP8Qk7YWtSmI_547J42EBEi8RYrtRP7udJ_P9ncArxQu0JzmTeqlCClx8tTkVOtFB2eLUIrQIT1RVTWezfTFFrwZ7sJ47-PhMz-ix7iX7xZ2TamyE7Q1KtZ9B3YKKXne3dYaMioZMvMy8l2elzzlQs02t2QyfTKtqslnOsqlR1xz9Cr9WySKpVX-zjJjtDnd-7__3If7PatkbzszeABbfv4Q9jYVG1jvwAdwNf2xYBdd8gUBYSTNgf2q7iz4in25br-yT6Tm6h2jMmk3jAYh0cz2J0N-y6pOWsMsaRg62XWLse8RXJ6-n747S_vKCqkVRd6mjVAhGK6d4rKU1uV67JAINUGZwGWwTanijl-px4oXPGSNxQ7SKt5ITXHvELbni7l_Agz5bhkyE4TiVnqjjSPJQoTYlc54rhPIN7Nc2152nKpf3NRx-ZHpOiJTEzJ1j0wCr4c-3zrRjX-2PiAIhpb97CdwtAGz7v1yVSN_QT6mhc4SeDm8Ro-ibRIz94s1thEk3l4IyRN43BnBMDa-IkIonv75my_g3tn046SenFcfnsEup7V5zNgcwXa7XPvncNd-b69Xy-Nour8AJ_vqEw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two+Projection+Neural+Networks+With+Reduced+Model+Complexity+for+Nonlinear+Programming&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Xia%2C+Youshen&rft.au=Wang%2C+Jun&rft.au=Guo%2C+Wenzhong&rft.date=2020-06-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=31&rft.issue=6&rft.spage=2020&rft_id=info:doi/10.1109%2FTNNLS.2019.2927639&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |