Optimal attitude tracking control for an unmanned aerial quadrotor under lumped disturbances

The robust control problem in attitude tracking of an unmanned aerial vehicle quadrotor is a challenging task due to strong parametric uncertainties, large nonlinearities and high couplings in flight dynamics. In this paper, a continuous nonsingular fast terminal sliding mode controller based on lin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of micro air vehicles Jg. 12
Hauptverfasser: Ding, Li, Li, Yangmin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London, England SAGE Publications 2020
Sage Publications Ltd
Schlagworte:
ISSN:1756-8293, 1756-8307
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The robust control problem in attitude tracking of an unmanned aerial vehicle quadrotor is a challenging task due to strong parametric uncertainties, large nonlinearities and high couplings in flight dynamics. In this paper, a continuous nonsingular fast terminal sliding mode controller based on linear extended state observer is proposed for attitude tracking control of a quadrotor under lumped disturbances. The proposed control method requires no prior knowledge of the attitude dynamics. It can ensure rapid convergence rate and high tracking precision due to terminal sliding mode surface and fast reaching law. The controller uses the linear extended state observer to reject the influence of both parametric uncertainties and external disturbances. Meanwhile, the nonsingular fast terminal sliding mode control strategy is designed to ensure the state variables to slide to desired points in finite time. To enhance the control performance, a self-adaptive fruit fly optimization algorithm is applied to parameters tuning of the proposed controller. The effectiveness of the proposed control approach is illustrated through numerical simulations and experimental verification.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1756-8293
1756-8307
DOI:10.1177/1756829320923563