EEG- and EOG-Based Asynchronous Hybrid BCI: A System Integrating a Speller, a Web Browser, an E-Mail Client, and a File Explorer
This paper presents a new asynchronous hybrid brain-computer interface (BCI) system that integrates a speller, a web browser, an e-mail client, and a file explorer using electroencephalographic (EEG) and electrooculography (EOG) signals. More specifically, an EOG-based button selection method, which...
Saved in:
| Published in: | IEEE transactions on neural systems and rehabilitation engineering Vol. 28; no. 2; pp. 519 - 530 |
|---|---|
| Main Authors: | , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
IEEE
01.02.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 1534-4320, 1558-0210, 1558-0210 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This paper presents a new asynchronous hybrid brain-computer interface (BCI) system that integrates a speller, a web browser, an e-mail client, and a file explorer using electroencephalographic (EEG) and electrooculography (EOG) signals. More specifically, an EOG-based button selection method, which requires the user to blink his/her eyes synchronously with the target button's flashes during button selection, is first presented. Next, we propose a mouse control method by combining EEG and EOG signals, in which the left-/right-hand motor imagery (MI)-related EEG is used to control the horizontal movement of the mouse and the blink-related EOG is used to control the vertical movement of the mouse and to select/reject a target. These two methods are further combined to develop the integrated hybrid BCI system. With the hybrid BCI, users can input text, access the internet, communicate with others via e-mail, and manage files in their computer using only EEG and EOG without any body movements. Ten healthy subjects participated in a comprehensive online experiment, and superior performance was achieved compared with our previously developed P300- and MI-based BCI and some other asynchronous BCIs, therefore demonstrating the system's effectiveness. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 1534-4320 1558-0210 1558-0210 |
| DOI: | 10.1109/TNSRE.2019.2961309 |