Efficient Sparse Representation for Learning With High-Dimensional Data

Due to the capability of effectively learning intrinsic structures from high-dimensional data, techniques based on sparse representation have begun to display an impressive impact on several fields, such as image processing, computer vision, and pattern recognition. Learning sparse representations i...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transaction on neural networks and learning systems Vol. 34; no. 8; pp. 4208 - 4222
Main Authors: Chen, Jie, Yang, Shengxiang, Wang, Zhu, Mao, Hua
Format: Journal Article
Language:English
Published: United States IEEE 01.08.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2162-237X, 2162-2388, 2162-2388
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Due to the capability of effectively learning intrinsic structures from high-dimensional data, techniques based on sparse representation have begun to display an impressive impact on several fields, such as image processing, computer vision, and pattern recognition. Learning sparse representations isoften computationally expensive due to the iterative computations needed to solve convex optimization problems in which the number of iterations is unknown before convergence. Moreover, most sparse representation algorithms focus only on determining the final sparse representation results and ignore the changes in the sparsity ratio (SR) during iterative computations. In this article, two algorithms are proposed to learn sparse representations based on locality-constrained linear representation learning with probabilistic simplex constraints. Specifically, the first algorithm, called approximated local linear representation (ALLR), obtains a closed-form solution from individual locality-constrained sparse representations. The second algorithm, called ALLR with symmetric constraints (ALLRSC), further obtains a symmetric sparse representation result with a limited number of computations; notably, the sparsity and convergence of sparse representations can be guaranteed based on theoretical analysis. The steady decline in the SR during iterative computations is a critical factor in practical applications. Experimental results based on public datasets demonstrate that the proposed algorithms perform better than several state-of-the-art algorithms for learning with high-dimensional data.
AbstractList Due to the capability of effectively learning intrinsic structures from high-dimensional data, techniques based on sparse representation have begun to display an impressive impact on several fields, such as image processing, computer vision, and pattern recognition. Learning sparse representations isoften computationally expensive due to the iterative computations needed to solve convex optimization problems in which the number of iterations is unknown before convergence. Moreover, most sparse representation algorithms focus only on determining the final sparse representation results and ignore the changes in the sparsity ratio (SR) during iterative computations. In this article, two algorithms are proposed to learn sparse representations based on locality-constrained linear representation learning with probabilistic simplex constraints. Specifically, the first algorithm, called approximated local linear representation (ALLR), obtains a closed-form solution from individual locality-constrained sparse representations. The second algorithm, called ALLR with symmetric constraints (ALLRSC), further obtains a symmetric sparse representation result with a limited number of computations; notably, the sparsity and convergence of sparse representations can be guaranteed based on theoretical analysis. The steady decline in the SR during iterative computations is a critical factor in practical applications. Experimental results based on public datasets demonstrate that the proposed algorithms perform better than several state-of-the-art algorithms for learning with high-dimensional data.Due to the capability of effectively learning intrinsic structures from high-dimensional data, techniques based on sparse representation have begun to display an impressive impact on several fields, such as image processing, computer vision, and pattern recognition. Learning sparse representations isoften computationally expensive due to the iterative computations needed to solve convex optimization problems in which the number of iterations is unknown before convergence. Moreover, most sparse representation algorithms focus only on determining the final sparse representation results and ignore the changes in the sparsity ratio (SR) during iterative computations. In this article, two algorithms are proposed to learn sparse representations based on locality-constrained linear representation learning with probabilistic simplex constraints. Specifically, the first algorithm, called approximated local linear representation (ALLR), obtains a closed-form solution from individual locality-constrained sparse representations. The second algorithm, called ALLR with symmetric constraints (ALLRSC), further obtains a symmetric sparse representation result with a limited number of computations; notably, the sparsity and convergence of sparse representations can be guaranteed based on theoretical analysis. The steady decline in the SR during iterative computations is a critical factor in practical applications. Experimental results based on public datasets demonstrate that the proposed algorithms perform better than several state-of-the-art algorithms for learning with high-dimensional data.
Due to the capability of effectively learning intrinsic structures from high-dimensional data, techniques based on sparse representation have begun to display an impressive impact on several fields, such as image processing, computer vision, and pattern recognition. Learning sparse representations isoften computationally expensive due to the iterative computations needed to solve convex optimization problems in which the number of iterations is unknown before convergence. Moreover, most sparse representation algorithms focus only on determining the final sparse representation results and ignore the changes in the sparsity ratio (SR) during iterative computations. In this article, two algorithms are proposed to learn sparse representations based on locality-constrained linear representation learning with probabilistic simplex constraints. Specifically, the first algorithm, called approximated local linear representation (ALLR), obtains a closed-form solution from individual locality-constrained sparse representations. The second algorithm, called ALLR with symmetric constraints (ALLRSC), further obtains a symmetric sparse representation result with a limited number of computations; notably, the sparsity and convergence of sparse representations can be guaranteed based on theoretical analysis. The steady decline in the SR during iterative computations is a critical factor in practical applications. Experimental results based on public datasets demonstrate that the proposed algorithms perform better than several state-of-the-art algorithms for learning with high-dimensional data.
Author Wang, Zhu
Yang, Shengxiang
Mao, Hua
Chen, Jie
Author_xml – sequence: 1
  givenname: Jie
  orcidid: 0000-0003-0827-8819
  surname: Chen
  fullname: Chen, Jie
  email: chenjie2010@scu.edu.cn
  organization: College of Computer Science, Sichuan University, Chengdu, China
– sequence: 2
  givenname: Shengxiang
  orcidid: 0000-0001-7222-4917
  surname: Yang
  fullname: Yang, Shengxiang
  email: syang@dmu.ac.uk
  organization: School of Computer Science and Informatics, De Montfort University, Leicester, U.K
– sequence: 3
  givenname: Zhu
  orcidid: 0000-0002-7752-3606
  surname: Wang
  fullname: Wang, Zhu
  email: wangzhu@scu.edu.cn
  organization: Law School, Sichuan University, Chengdu, China
– sequence: 4
  givenname: Hua
  orcidid: 0000-0003-3198-6282
  surname: Mao
  fullname: Mao, Hua
  email: hua.mao@northumbria.ac.uk
  organization: Department of Computer and Information Sciences, Northumbria University, Newcastle, U.K
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34695005$$D View this record in MEDLINE/PubMed
BookMark eNp9kctOwzAQRS1UxKP0B0BCkdiwSfEzdpaoPKUIJCiCXeQ6k-IqTYqdLPh7XFK66AJvxhqdM7bmHqNB3dSA0CnBY0JwejV9espexxRTMmaEpFSqPXRESUJjypQabO_y4xCNvF_gcBIsEp4eoEPGk1RgLI7Q_W1ZWmOhbqPXlXYeohdYOfChoVvb1FHZuCgD7Wpbz6N3235GD3b-Gd_YJdQ-ALqKbnSrT9B-qSsPo00dore72-nkIc6e7x8n11lsmCBtrCWlBSEl5nKWGAKl1kwIU5g0ZazAhs0AawalYZJLbkjCMBcElBJYSVpgNkSX_dyVa7468G2-tN5AVekams7nVKgkGJKkAb3YQRdN58KHA6W4kEmYSgJ1vqG62RKKfOXsUrvv_G9FAaA9YFzjvYNyixCcr6PIf6PI11HkmyiCpHYkY_uFtk7b6n_1rFctAGzfSoUSjHP2A7IOlDQ
CODEN ITNNAL
CitedBy_id crossref_primary_10_1007_s10489_022_03881_x
crossref_primary_10_1016_j_optlastec_2024_111570
crossref_primary_10_1109_ACCESS_2025_3596549
crossref_primary_10_1007_s11760_025_03869_3
crossref_primary_10_1109_TII_2024_3514172
crossref_primary_10_1088_1361_6501_ad9103
crossref_primary_10_1109_TGRS_2024_3418785
crossref_primary_10_1109_TGRS_2024_3437346
crossref_primary_10_3390_electronics14142856
Cites_doi 10.1109/CVPR42600.2020.00421
10.1016/j.patcog.2011.11.017
10.1109/TIP.2018.2855418
10.1016/j.neucom.2018.07.031
10.1109/TCSVT.2020.3020717
10.7551/mitpress/7503.003.0105
10.1109/TNNLS.2019.2954545
10.1109/TPAMI.2012.88
10.1109/TIP.2018.2842152
10.1109/TPAMI.2019.2913863
10.1109/TNNLS.2017.2671845
10.1007/s003659900033
10.1016/j.knosys.2017.02.031
10.1016/j.neucom.2015.08.077
10.1109/TGRS.2016.2613848
10.1109/TNNLS.2015.2508025
10.1109/CVPR.2017.317
10.1109/ICCV.2013.34
10.1016/j.knosys.2021.107053
10.1145/2746539.2746554
10.1109/CVPR.2010.5540018
10.1109/34.291440
10.1016/S0747-7171(08)80013-2
10.1214/009053604000000067
10.1145/3343031.3351023
10.1109/TIP.2017.2675341
10.1111/j.2517-6161.1996.tb02080.x
10.1109/34.868688
10.1109/TCYB.2018.2883566
10.1109/TNNLS.2019.2910991
10.1017/CBO9780511809071
10.1109/TNNLS.2018.2874432
10.1109/TPAMI.2016.2605097
10.1109/JPROC.2010.2044470
10.1109/TIP.2016.2545249
10.1109/TPAMI.2013.57
10.1109/TNNLS.2020.2979607
10.1109/TCYB.2016.2521428
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2021.3119278
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Materials Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 4222
ExternalDocumentID 34695005
10_1109_TNNLS_2021_3119278
9585344
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Sichuan Science and Technology Program
  grantid: 2021YJ0078
  funderid: 10.13039/100012542
– fundername: National Natural Science Foundation of China (NSFC)
  grantid: 61303015; 61673331
  funderid: 10.13039/501100001809
– fundername: National Key Research and Development Program of China (Studies on Key Technologies and Equipment Supporting a High Quality and Highly Efficient Court Trial and AI in Law Advanced Deployed Discipline of Sichuan University)
  grantid: 2018YFC0830300
  funderid: 10.13039/501100012166
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
RIG
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c351t-a722d11f047b6c1efaa355cdc9933d0c3be0a3efc37474c1630451e8850872d03
IEDL.DBID RIE
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000732231200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2162-237X
2162-2388
IngestDate Thu Oct 02 15:49:29 EDT 2025
Mon Jun 30 05:26:56 EDT 2025
Mon Jul 21 05:59:53 EDT 2025
Sat Nov 29 01:40:16 EST 2025
Tue Nov 18 22:31:03 EST 2025
Wed Aug 27 02:55:13 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-a722d11f047b6c1efaa355cdc9933d0c3be0a3efc37474c1630451e8850872d03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7222-4917
0000-0003-0827-8819
0000-0003-3198-6282
0000-0002-7752-3606
PMID 34695005
PQID 2845768851
PQPubID 85436
PageCount 15
ParticipantIDs proquest_miscellaneous_2586451719
pubmed_primary_34695005
proquest_journals_2845768851
crossref_primary_10_1109_TNNLS_2021_3119278
ieee_primary_9585344
crossref_citationtrail_10_1109_TNNLS_2021_3119278
PublicationCentury 2000
PublicationDate 2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref56
ref14
ref53
ref52
ref11
verma (ref42) 2017
ref10
ref54
duchi (ref12) 2008
ref16
lin (ref29) 2011
zhu (ref55) 2002
ref19
ref18
wan (ref43) 2021
fanty (ref15) 1991
li (ref26) 2020
ref51
ref46
ref45
xiang (ref48) 2011
ref47
boob (ref3) 2020
lu (ref33) 2020
ref44
li (ref27) 2018
ref49
shi (ref38) 2000; 22
gamarnik (ref17) 2019
ref8
ref7
ref9
ref4
ref6
ref5
ref40
ref34
ref37
ref31
ref30
ref32
ref1
yu (ref50) 2009
nene (ref36) 1996
ref23
ref25
ref20
shu (ref39) 2018; 29
tibshirani (ref41) 1996; 58
ref22
ref21
matsushima (ref35) 2019
ref28
lee (ref24) 2005; 27
axiotis (ref2) 2020
References_xml – year: 2002
  ident: ref55
  article-title: Learning from labeled and unlabeled data with label propagation
– year: 1996
  ident: ref36
  article-title: Columbia object image library (COIL-20)
– ident: ref9
  doi: 10.1109/CVPR42600.2020.00421
– ident: ref51
  doi: 10.1016/j.patcog.2011.11.017
– year: 2020
  ident: ref26
  article-title: Learnable subspace clustering
  publication-title: IEEE Trans Neural Netw Learn Syst
– start-page: 272
  year: 2008
  ident: ref12
  article-title: Efficient projections onto the l?-ball for learning in high dimensions
  publication-title: Proc 25th Int Conf Mach Learn (ICML)
– start-page: 452
  year: 2020
  ident: ref2
  article-title: Sparse convex optimization via adaptively regularized hard thresholding
  publication-title: Proc 38th Int Conf Mach Learn (ICML)
– start-page: 12852
  year: 2019
  ident: ref17
  article-title: Sparse high-dimensional isotonic regression
  publication-title: Proc Adv Neural Inf Process Syst (NIPS)
– volume: 27
  start-page: 1537
  year: 2005
  ident: ref24
  article-title: Acquiring linear subspaces for face recognition under variable lighting
  publication-title: IEEE Trans Pattern Anal Mach Intell
– ident: ref19
  doi: 10.1109/TIP.2018.2855418
– ident: ref7
  doi: 10.1016/j.neucom.2018.07.031
– ident: ref32
  doi: 10.1109/TCSVT.2020.3020717
– ident: ref23
  doi: 10.7551/mitpress/7503.003.0105
– ident: ref40
  doi: 10.1109/TNNLS.2019.2954545
– ident: ref30
  doi: 10.1109/TPAMI.2012.88
– ident: ref46
  doi: 10.1109/TIP.2018.2842152
– ident: ref49
  doi: 10.1109/TPAMI.2019.2913863
– ident: ref20
  doi: 10.1109/TNNLS.2017.2671845
– ident: ref11
  doi: 10.1007/s003659900033
– ident: ref5
  doi: 10.1016/j.knosys.2017.02.031
– ident: ref8
  doi: 10.1016/j.neucom.2015.08.077
– ident: ref16
  doi: 10.1109/TGRS.2016.2613848
– ident: ref28
  doi: 10.1109/TNNLS.2015.2508025
– ident: ref52
  doi: 10.1109/CVPR.2017.317
– year: 2021
  ident: ref43
  article-title: Robust facial landmark detection by multiorder multiconstraint deep networks
  publication-title: IEEE Trans Neural Netw Learn Syst
– ident: ref56
  doi: 10.1109/ICCV.2013.34
– ident: ref6
  doi: 10.1016/j.knosys.2021.107053
– start-page: 176
  year: 2018
  ident: ref27
  article-title: Low-rank-sparse subspace representation for robust regression
  publication-title: Proc Adv Neural Inf Process Syst (NIPS)
– ident: ref1
  doi: 10.1145/2746539.2746554
– ident: ref44
  doi: 10.1109/CVPR.2010.5540018
– start-page: 2223
  year: 2009
  ident: ref50
  article-title: Nonlinear learning using local coordinate coding
  publication-title: Proc Adv Neural Inf Process Syst (NIPS)
– ident: ref21
  doi: 10.1109/34.291440
– start-page: 612
  year: 2011
  ident: ref48
  article-title: Learning sparse representations of high dimensional data on large scale dictionaries
  publication-title: Proc Adv Neural Inf Process Syst (NIPS)
– ident: ref10
  doi: 10.1016/S0747-7171(08)80013-2
– ident: ref13
  doi: 10.1214/009053604000000067
– ident: ref53
  doi: 10.1145/3343031.3351023
– ident: ref18
  doi: 10.1109/TIP.2017.2675341
– volume: 58
  start-page: 267
  year: 1996
  ident: ref41
  article-title: Regression shrinkage and selection via the lasso: A retrospective
  publication-title: J Roy Stat Soc
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 22
  start-page: 888
  year: 2000
  ident: ref38
  article-title: Normalized cuts and image segmentation
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.868688
– ident: ref4
  doi: 10.1109/TCYB.2018.2883566
– start-page: 612
  year: 2011
  ident: ref29
  article-title: Linearized alternating direction method with adaptive penalty for low-rank representation
  publication-title: Proc Adv Neural Inf Process Syst (NIPS)
– ident: ref25
  doi: 10.1109/TNNLS.2019.2910991
– ident: ref34
  doi: 10.1017/CBO9780511809071
– ident: ref37
  doi: 10.1109/TNNLS.2018.2874432
– ident: ref54
  doi: 10.1109/TPAMI.2016.2605097
– ident: ref47
  doi: 10.1109/JPROC.2010.2044470
– ident: ref22
  doi: 10.1109/TIP.2016.2545249
– ident: ref14
  doi: 10.1109/TPAMI.2013.57
– start-page: 220
  year: 1991
  ident: ref15
  article-title: Spoken letter recognition
  publication-title: Proc Adv Neural Inf Process Syst (NIPS)
– ident: ref45
  doi: 10.1109/TNNLS.2020.2979607
– start-page: 88
  year: 2017
  ident: ref42
  article-title: Hunt for the unique, stable, sparse and fast feature learning on graphs
  publication-title: Proc Adv Neural Inf Process Syst (NIPS)
– year: 2020
  ident: ref33
  article-title: Generalized embedding regression: A framework for supervised feature extraction
  publication-title: IEEE Trans Neural Netw Learn Syst
– start-page: 1
  year: 2020
  ident: ref3
  article-title: A feasible level proximal point method for nonconvex sparse constrained optimization
  publication-title: Proc Adv Neural Inf Process Syst (NIPS)
– ident: ref31
  doi: 10.1109/TCYB.2016.2521428
– start-page: 12416
  year: 2019
  ident: ref35
  article-title: Selective sampling-based scalable sparse subspace clustering
  publication-title: Proc Adv Neural Inf Process Syst (NIPS)
– volume: 29
  start-page: 1503
  year: 2018
  ident: ref39
  article-title: Discriminative sparse neighbor approximation for imbalanced learning
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2017.2671845
SSID ssj0000605649
Score 2.523456
Snippet Due to the capability of effectively learning intrinsic structures from high-dimensional data, techniques based on sparse representation have begun to display...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4208
SubjectTerms Algorithms
Approximation algorithms
Computational geometry
Computer vision
Constraints
Convergence
Convex functions
Convexity
Dictionaries
Image processing
Iterative algorithms
Iterative methods
Learning
Linear representation
low-dimensional structures
Machine learning
Optimization
Pattern recognition
probabilistic simplex
Representations
Sparse matrices
sparse representation
Sparsity
Theoretical analysis
Title Efficient Sparse Representation for Learning With High-Dimensional Data
URI https://ieeexplore.ieee.org/document/9585344
https://www.ncbi.nlm.nih.gov/pubmed/34695005
https://www.proquest.com/docview/2845768851
https://www.proquest.com/docview/2586451719
Volume 34
WOSCitedRecordID wos000732231200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2162-2388
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605649
  issn: 2162-237X
  databaseCode: RIE
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9UwDLe2iQMXBoyPwpiCxA3C0qZtmiNiGxzQE2JDvFuVJu6YhPqmrY-_HztNKw6AxK1Sk37EjvyzY_sH8KrpLOGOrpcc5Jdceilt31npSxfKUJGRDX0kmzCrVbNe28878GaphUHEmHyGb_kynuWHjd9yqOzYErbVZbkLu8bUU63WEk9RhMvriHaLvC5koc16rpFR9vhitfp0Tt5gkZOTSqDGME-fJtewUkxc95tJihwrf4eb0eyc7f_fB9-HewleineTPjyAHRwewv5M3SDSTj6AD6exdQTNFufX5Nui-BJTYlMl0iAIy4rUe_VSfLsavwvOCJEnTAYwNfIQJ250j-Dr2enF-48ycSpIr6t8lM4URcjzXpWmq32OvXOEOHzwhFN0UF53qJzG3mvyM0pPaI0b0GDTEJAzRVD6MewNmwGfgvB96QPzWRHCKAtlXWe875EBB1ZoMIN8XtbWp4bjzHvxo42Oh7JtlErLUmmTVDJ4vcy5ntpt_HP0Aa_5MjItdwaHs_TatCNvWzLD7FoRwMzg5XKb9hIfkLgBN1saUzU1_a3JbQZPJqkvz56V5dmf3_kc7jIR_ZQaeAh7480WX8Ad_3O8ur05IoVdN0dRYX8B0_Li2g
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9UwFD5BMJEXARGdgtTENy10a3e7PhIBIVwXI9d435au7ZCE7BLY9e_3tOsWH9CEtyVr96Onzfm-9pzzAXwoaoW4o26o3-SnPvWSqqZW1Ahthc3RydomiE3Isizmc_VtBT6NuTDOuRB85g78ZTjLtwuz9FtlhwqxLRfiCazlQmSsz9Yad1QYIvNJwLtZOsloxuV8yJJh6nBWltNL5INZijQVYY30Sn0cyWHOvHTdX04pqKz8G3AGx3O68bhP3oTnEWCSo35GbMGKa1_AxiDeQOJa3oYvJ6F4BPYml7fIbh35HoJiYy5SSxDNklh99Yr8vO5-ER8TQo-9HEBfyoMc606_hB-nJ7PPZzSqKlDD87SjWmaZTdOGCVlPTOoarRFzGGsQqXDLDK8d09w1hiPTEAbxmi9B44oCoZzMLOM7sNouWvcaiGmEsV7RCjEG2kPpWhrTOA85XO6kSyAdhrUyseS4V764qQL1YKoKVqm8VapolQQ-jn1u-4Ib_2297cd8bBmHO4HdwXpVXJP3FTpiT64QYibwfryNq8kfkejWLZbYJi8m-LcyVQm86q0-PnuYLG8efuc-PDubfZ1W0_Py4i2se1n6PlBwF1a7u6Xbg6fmd3d9f_cuTNs_cFvlOQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+Sparse+Representation+for+Learning+With+High-Dimensional+Data&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Chen%2C+Jie&rft.au=Yang%2C+Shengxiang&rft.au=Wang%2C+Zhu&rft.au=Mao%2C+Hua&rft.date=2023-08-01&rft.eissn=2162-2388&rft.volume=34&rft.issue=8&rft.spage=4208&rft_id=info:doi/10.1109%2FTNNLS.2021.3119278&rft_id=info%3Apmid%2F34695005&rft.externalDocID=34695005
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon