Secure Communication via Chaotic Synchronization Based on Reservoir Computing
Information security occupies a very important part of national security. Chaos communication can provide high-level physical layer security, but its harsh claims on the chaotic system parameters of the transmitter and the receiver resulting in reduced synchronization coefficient and more difficult...
Uložené v:
| Vydané v: | IEEE transaction on neural networks and learning systems Ročník 35; číslo 1; s. 285 - 299 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
IEEE
01.01.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 2162-237X, 2162-2388, 2162-2388 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Information security occupies a very important part of national security. Chaos communication can provide high-level physical layer security, but its harsh claims on the chaotic system parameters of the transmitter and the receiver resulting in reduced synchronization coefficient and more difficult consistent synchronization of point to multipoint networking. In this article, a chaotic synchronization and communication system based on reservoir computing (RC) has been proposed. In this scheme, the trained RC highly synchronized with the emitter acts as the receiver with simplified structure under the premise of ensuring safety. Simultaneously, the cross-prediction algorithm has been proposed to weaken the accumulation effect of prediction synchronization error of RC and facilitate the realization of long-term communication. Furthermore, the tolerance of the system performance to the signal-to-noise ratio with the variations of the mask coefficients has been investigated, and the optimal operation point under the condition of the adjustable number of nodes and leakage rate of RC has been numerically analyzed. The simulation results show that the normalized mean-square error of synchronization of 10−6 magnitude and the bit error rate of decryption at 10−8 level can be obtained. Finally, from the operational perspective, a 100-m short-distance experiment confirms that its communication performance is consistent with the simulation results. We strongly believe that the proposed system offers the opportunity of a new research direction in chaotic secure communications. |
|---|---|
| AbstractList | Information security occupies a very important part of national security. Chaos communication can provide high-level physical layer security, but its harsh claims on the chaotic system parameters of the transmitter and the receiver resulting in reduced synchronization coefficient and more difficult consistent synchronization of point to multipoint networking. In this article, a chaotic synchronization and communication system based on reservoir computing (RC) has been proposed. In this scheme, the trained RC highly synchronized with the emitter acts as the receiver with simplified structure under the premise of ensuring safety. Simultaneously, the cross-prediction algorithm has been proposed to weaken the accumulation effect of prediction synchronization error of RC and facilitate the realization of long-term communication. Furthermore, the tolerance of the system performance to the signal-to-noise ratio with the variations of the mask coefficients has been investigated, and the optimal operation point under the condition of the adjustable number of nodes and leakage rate of RC has been numerically analyzed. The simulation results show that the normalized mean-square error of synchronization of 10-6 magnitude and the bit error rate of decryption at 10-8 level can be obtained. Finally, from the operational perspective, a 100-m short-distance experiment confirms that its communication performance is consistent with the simulation results. We strongly believe that the proposed system offers the opportunity of a new research direction in chaotic secure communications. Information security occupies a very important part of national security. Chaos communication can provide high-level physical layer security, but its harsh claims on the chaotic system parameters of the transmitter and the receiver resulting in reduced synchronization coefficient and more difficult consistent synchronization of point to multipoint networking. In this article, a chaotic synchronization and communication system based on reservoir computing (RC) has been proposed. In this scheme, the trained RC highly synchronized with the emitter acts as the receiver with simplified structure under the premise of ensuring safety. Simultaneously, the cross-prediction algorithm has been proposed to weaken the accumulation effect of prediction synchronization error of RC and facilitate the realization of long-term communication. Furthermore, the tolerance of the system performance to the signal-to-noise ratio with the variations of the mask coefficients has been investigated, and the optimal operation point under the condition of the adjustable number of nodes and leakage rate of RC has been numerically analyzed. The simulation results show that the normalized mean-square error of synchronization of 10−6 magnitude and the bit error rate of decryption at 10−8 level can be obtained. Finally, from the operational perspective, a 100-m short-distance experiment confirms that its communication performance is consistent with the simulation results. We strongly believe that the proposed system offers the opportunity of a new research direction in chaotic secure communications. Information security occupies a very important part of national security. Chaos communication can provide high-level physical layer security, but its harsh claims on the chaotic system parameters of the transmitter and the receiver resulting in reduced synchronization coefficient and more difficult consistent synchronization of point to multipoint networking. In this article, a chaotic synchronization and communication system based on reservoir computing (RC) has been proposed. In this scheme, the trained RC highly synchronized with the emitter acts as the receiver with simplified structure under the premise of ensuring safety. Simultaneously, the cross-prediction algorithm has been proposed to weaken the accumulation effect of prediction synchronization error of RC and facilitate the realization of long-term communication. Furthermore, the tolerance of the system performance to the signal-to-noise ratio with the variations of the mask coefficients has been investigated, and the optimal operation point under the condition of the adjustable number of nodes and leakage rate of RC has been numerically analyzed. The simulation results show that the normalized mean-square error of synchronization of 10-6 magnitude and the bit error rate of decryption at 10-8 level can be obtained. Finally, from the operational perspective, a 100-m short-distance experiment confirms that its communication performance is consistent with the simulation results. We strongly believe that the proposed system offers the opportunity of a new research direction in chaotic secure communications.Information security occupies a very important part of national security. Chaos communication can provide high-level physical layer security, but its harsh claims on the chaotic system parameters of the transmitter and the receiver resulting in reduced synchronization coefficient and more difficult consistent synchronization of point to multipoint networking. In this article, a chaotic synchronization and communication system based on reservoir computing (RC) has been proposed. In this scheme, the trained RC highly synchronized with the emitter acts as the receiver with simplified structure under the premise of ensuring safety. Simultaneously, the cross-prediction algorithm has been proposed to weaken the accumulation effect of prediction synchronization error of RC and facilitate the realization of long-term communication. Furthermore, the tolerance of the system performance to the signal-to-noise ratio with the variations of the mask coefficients has been investigated, and the optimal operation point under the condition of the adjustable number of nodes and leakage rate of RC has been numerically analyzed. The simulation results show that the normalized mean-square error of synchronization of 10-6 magnitude and the bit error rate of decryption at 10-8 level can be obtained. Finally, from the operational perspective, a 100-m short-distance experiment confirms that its communication performance is consistent with the simulation results. We strongly believe that the proposed system offers the opportunity of a new research direction in chaotic secure communications. |
| Author | Zhang, Jianguo Wang, Yuncai Liu, Jiayue |
| Author_xml | – sequence: 1 givenname: Jiayue orcidid: 0000-0001-8775-6262 surname: Liu fullname: Liu, Jiayue email: liujiayue0869@link.tyut.edu.cn organization: Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education of China, College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan, China – sequence: 2 givenname: Jianguo orcidid: 0000-0002-3142-1567 surname: Zhang fullname: Zhang, Jianguo email: zhangjianguo@tyut.edu.cn organization: Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education of China, College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan, China – sequence: 3 givenname: Yuncai orcidid: 0000-0003-2319-8913 surname: Wang fullname: Wang, Yuncai email: wangyc@gdut.edu.cn organization: Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education of China, College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35653446$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kctKAzEUhoMoXvsCCjLgxk1r7k2WWrxBVbAK7kImk2qkk9RkplCf3vTmwoXZ5EC-73By_gOw7YO3ABwj2EMIyouXx8fhqIchxj2C-oQhvgX2MeK4i4kQ2791_20PdFL6hPlwyDiVu2CPMM4IpXwfPIysaaMtBqGuW--MblzwxczpYvChQ-NMMZp78xGDd9-rtyudbFXk4tkmG2fBxYU8bRvn34_AzlhPku2s70PwenP9MrjrDp9u7weXw67JgzZdzamG3FRGaDwukZYlRpJLygmryvw7iGnFJOMVEoRAzbjEZaUxwsYKSJkhh-B81Xcaw1drU6Nql4ydTLS3oU0K8z4hjFEkM3r2B_0MbfR5OoUlQlQIhkimTtdUW9a2UtPoah3narOoDIgVYGJIKdqxMq5ZLqSJ2k0UgmoRi1rGohaxqHUsWcV_1E33f6WTleSstb-C7Asu8kQ_fMeWrQ |
| CODEN | ITNNAL |
| CitedBy_id | crossref_primary_10_1007_s11071_025_11281_2 crossref_primary_10_1109_TCSI_2023_3241350 crossref_primary_10_1007_s11071_024_09587_8 crossref_primary_10_1088_1751_8121_ad5d31 crossref_primary_10_1109_LCSYS_2024_3410151 crossref_primary_10_1109_TASE_2025_3581426 crossref_primary_10_1088_1402_4896_ad9e3c crossref_primary_10_3390_fractalfract9060379 crossref_primary_10_1364_PRJ_535334 crossref_primary_10_1007_s11071_025_11410_x crossref_primary_10_1109_JLT_2024_3357745 crossref_primary_10_1109_TCYB_2025_3544074 crossref_primary_10_1109_JSTQE_2024_3480455 crossref_primary_10_3390_fractalfract7040282 crossref_primary_10_3390_math12192983 crossref_primary_10_3390_math13172825 crossref_primary_10_1016_j_chaos_2024_115526 crossref_primary_10_1016_j_eswa_2025_126774 crossref_primary_10_1016_j_neunet_2025_107931 crossref_primary_10_1049_cmu2_12559 crossref_primary_10_3390_math12203177 crossref_primary_10_1117_1_AP_6_6_066004 |
| Cites_doi | 10.1063/1.5081797 10.35848/1347-4065/ab7860 10.1142/s021812749300129x 10.1364/prj.409114 10.1103/physrevapplied.12.024052 10.1063/5.0017974 10.1364/osac.2.003422 10.1063/1.5118725 10.1103/physreve.98.012215 10.1007/s11770-018-0681-x 10.1109/82.246163 10.1364/oe.26.032404 10.1063/1.5120867 10.1109/SPAWC.2018.8445920 10.1109/JSTQE.2019.2936947 10.1016/j.chaos.2020.110131 10.1038/ncomms1476 10.1109/JLT.2010.2050858 10.1007/978-3-642-31965-5_5 10.1364/oe.24.008679 10.1007/978-3-319-91253-0_22 10.1016/j.cosrev.2009.03.005 10.3390/s130202494 10.1103/physreve.78.036203 10.1364/ol.29.002497 10.1364/ol.44.005776 10.1109/JSTQE.2020.3011879 10.1038/nature04275 10.1109/MCOM.2019.1900093 10.1016/j.physa.2019.122273 10.1103/physrevlett.120.024102 10.1109/JPHOT.2019.2931615 10.1016/j.jmmm.2020.167251 10.1103/physrevlett.97.123902 10.1109/ACCESS.2019.2905422 10.1007/bf00114800 10.1063/1.5120822 10.1063/1.5022276 10.1109/TNNLS.2016.2598655 10.1103/physreve.99.042203 10.1063/1.5120710 10.1063/1.4979665 10.1103/physreva.72.053810 10.1142/s0218127409023688 10.1016/j.optcom.2018.10.014 10.1162/neco_a_01198 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| DOI | 10.1109/TNNLS.2022.3173516 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
| DatabaseTitleList | PubMed Materials Research Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2162-2388 |
| EndPage | 299 |
| ExternalDocumentID | 35653446 10_1109_TNNLS_2022_3173516 9786865 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61731014 funderid: 10.13039/501100001809 – fundername: General Project of Shanxi Natural Science Foundation grantid: 201801D121145 funderid: 10.13039/501100004480 – fundername: National Key Research and Development Program “Broadband Optical Transceiver Integrated Devices and Modules for Data Center Applications” grantid: 2018YFB2200900 – fundername: National Natural Science Foundation of China grantid: 61875147 funderid: 10.13039/501100001809 – fundername: National Key Research and Development Program of China grantid: 2019YFB1803505 funderid: 10.13039/501100012166 – fundername: Natural Science Foundation of Shanxi Province, China grantid: 202103021224038 funderid: 10.13039/501100004480 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION NPM RIG 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| ID | FETCH-LOGICAL-c351t-a64a06cdc8a2fb1a9b219694635db110024d5956d18330a5692bda212ce8045c3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 37 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000809371300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2162-237X 2162-2388 |
| IngestDate | Thu Oct 02 09:50:43 EDT 2025 Sun Nov 30 05:25:35 EST 2025 Thu Jan 02 22:28:59 EST 2025 Sat Nov 29 01:40:20 EST 2025 Tue Nov 18 21:05:09 EST 2025 Wed Aug 27 02:33:15 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c351t-a64a06cdc8a2fb1a9b219694635db110024d5956d18330a5692bda212ce8045c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-2319-8913 0000-0001-8775-6262 0000-0002-3142-1567 |
| PMID | 35653446 |
| PQID | 2911488513 |
| PQPubID | 85436 |
| PageCount | 15 |
| ParticipantIDs | crossref_citationtrail_10_1109_TNNLS_2022_3173516 proquest_miscellaneous_2673355419 proquest_journals_2911488513 ieee_primary_9786865 crossref_primary_10_1109_TNNLS_2022_3173516 pubmed_primary_35653446 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-Jan. 2024-1-00 2024-Jan 20240101 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – month: 01 year: 2024 text: 2024-Jan. |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Piscataway |
| PublicationTitle | IEEE transaction on neural networks and learning systems |
| PublicationTitleAbbrev | TNNLS |
| PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 ref24 ref46 ref23 ref45 ref26 ref25 ref20 ref42 ref41 ref22 ref44 ref21 ref43 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
| References_xml | – ident: ref19 doi: 10.1063/1.5081797 – ident: ref15 doi: 10.35848/1347-4065/ab7860 – ident: ref46 doi: 10.1142/s021812749300129x – ident: ref35 doi: 10.1364/prj.409114 – ident: ref20 doi: 10.1103/physrevapplied.12.024052 – ident: ref24 doi: 10.1063/5.0017974 – ident: ref1 doi: 10.1364/osac.2.003422 – ident: ref22 doi: 10.1063/1.5118725 – ident: ref36 doi: 10.1103/physreve.98.012215 – ident: ref37 doi: 10.1007/s11770-018-0681-x – ident: ref4 doi: 10.1109/82.246163 – ident: ref3 doi: 10.1364/oe.26.032404 – ident: ref31 doi: 10.1063/1.5120867 – ident: ref11 doi: 10.1109/SPAWC.2018.8445920 – ident: ref33 doi: 10.1109/JSTQE.2019.2936947 – ident: ref14 doi: 10.1016/j.chaos.2020.110131 – ident: ref34 doi: 10.1038/ncomms1476 – ident: ref10 doi: 10.1109/JLT.2010.2050858 – ident: ref41 doi: 10.1007/978-3-642-31965-5_5 – ident: ref28 doi: 10.1364/oe.24.008679 – ident: ref21 doi: 10.1007/978-3-319-91253-0_22 – ident: ref38 doi: 10.1016/j.cosrev.2009.03.005 – ident: ref6 doi: 10.3390/s130202494 – ident: ref43 doi: 10.1103/physreve.78.036203 – ident: ref45 doi: 10.1364/ol.29.002497 – ident: ref2 doi: 10.1364/ol.44.005776 – ident: ref18 doi: 10.1109/JSTQE.2020.3011879 – ident: ref7 doi: 10.1038/nature04275 – ident: ref12 doi: 10.1109/MCOM.2019.1900093 – ident: ref29 doi: 10.1016/j.physa.2019.122273 – ident: ref39 doi: 10.1103/physrevlett.120.024102 – ident: ref8 doi: 10.1109/JPHOT.2019.2931615 – ident: ref13 doi: 10.1016/j.jmmm.2020.167251 – ident: ref9 doi: 10.1103/physrevlett.97.123902 – ident: ref17 doi: 10.1109/ACCESS.2019.2905422 – ident: ref5 doi: 10.1007/bf00114800 – ident: ref25 doi: 10.1063/1.5120822 – ident: ref30 doi: 10.1063/1.5022276 – ident: ref32 doi: 10.1109/TNNLS.2016.2598655 – ident: ref26 doi: 10.1103/physreve.99.042203 – ident: ref27 doi: 10.1063/1.5120710 – ident: ref40 doi: 10.1063/1.4979665 – ident: ref44 doi: 10.1103/physreva.72.053810 – ident: ref42 doi: 10.1142/s0218127409023688 – ident: ref16 doi: 10.1016/j.optcom.2018.10.014 – ident: ref23 doi: 10.1162/neco_a_01198 |
| SSID | ssj0000605649 |
| Score | 2.5737724 |
| Snippet | Information security occupies a very important part of national security. Chaos communication can provide high-level physical layer security, but its harsh... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 285 |
| SubjectTerms | Algorithms Bit error rate Chaos synchronization and communication Chaos theory Chaotic communication Communication Communications systems Computation cross-prediction algorithm Cryptography Emitters Neural networks Prediction algorithms Reservoir computing reservoir computing (RC) Signal to noise ratio Synchronism Synchronization |
| Title | Secure Communication via Chaotic Synchronization Based on Reservoir Computing |
| URI | https://ieeexplore.ieee.org/document/9786865 https://www.ncbi.nlm.nih.gov/pubmed/35653446 https://www.proquest.com/docview/2911488513 https://www.proquest.com/docview/2673355419 |
| Volume | 35 |
| WOSCitedRecordID | wos000809371300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 2162-2388 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000605649 issn: 2162-237X databaseCode: RIE dateStart: 20120101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB7WxYMXV10f9UUEb1ptkzZtjiouHtZF8MHeSpqmuCCt7Av8907SBwoqeCs0SdPMhPlmkvkG4DQPBENczl2Zx-ig6JC5MU2Fy1mmVKzyQNnybS_DaDSKx2Px0IHzNhdGa20vn-kL82jP8rNSLUyozLDB8piHK7ASRbzK1WrjKR7icm7RLvU5dSmLxk2OjCcun0aj4SN6g5Sikxqx0DelixiCGRYY6PvFJNkaK7_DTWt2Br3_TXgD1mt4Sa4qfdiEji62oNeUbiD1Tu7DvY2za_ItP4QsJ5LcvMoSO5PHj0JZ4twqT5Nco7nLCD6Yu3rTZTmZkmpYtH3b8Dy4fbq5c-vKCq7Cf5-7kgfS4ypTsaR56kuRUkOTEyD6yFJDIkeDLETPKcMNzzwZckHTTKKVUzpGDKjYDnSLstB7QAy1bag8LgyTXpRLqX3NZejludY-9XMH_GZxE1XTjpvqF2-JdT88kVjZJEY2SS0bB87aPu8V6cafrftm5duW9aI7cNjIMKn35Syhwvh_iDKZAyfta9xR5phEFrpcYBseMYPCfOHAbiX7duxGZfZ__uYBrOHMgipEcwjd-XShj2BVLeeT2fQY1XYcH1u1_QSdbeVT |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS90wFD-4u8F80W1Orbotwt602iZp2jyqKI5di-BV7ltJ0xQvSCv3C_zvPUk_mKAD3wpN0jQnh_M7Jzm_A_C75JIhLhe-KhN0UEzE_ITm0hes0DrRJdeufNvdME7TZDyW1ytw2OfCGGPc5TNzZB_dWX5R64UNlVk2WJGI6AN8jDinQZOt1UdUAkTmwuFdGgrqUxaPuyyZQB6P0nR4g_4gpeimxiwKbfEihnCGcQt-_zFKrsrK24DTGZ6L9fdN-QustQCTnDQ74iusmOobrHfFG0iryxtw5SLthrzIECHLiSJn96rGzuTmqdKOOrfJ1CSnaPAKgg_2tt50WU-mpBkWrd93uL04H51d-m1tBV_jv899JbgKhC50omiZh0rm1BLlcMQfRW5p5CgvIvSdClR5FqhISJoXCu2cNgmiQM02YVDVldkGYsltIx0Iabn04lIpExqhoqAsjQlpWHoQdoub6ZZ43Na_eMicAxLIzMkms7LJWtl4cND3eWxoN_7besOufN-yXXQP9joZZq1mzjIqrQeIOJN5sN-_Rp2yByWqMvUC24iYWRwWSg-2Gtn3Y3dbZuf1b_6Cz5ejq2E2_JP-3YVVnCVvAjZ7MJhPF-YHfNLL-WQ2_ek27zNLROey |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Secure+Communication+via+Chaotic+Synchronization+Based+on+Reservoir+Computing&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Liu%2C+Jiayue&rft.au=Zhang%2C+Jianguo&rft.au=Wang%2C+Yuncai&rft.date=2024-01-01&rft.eissn=2162-2388&rft.volume=35&rft.issue=1&rft.spage=285&rft_id=info:doi/10.1109%2FTNNLS.2022.3173516&rft_id=info%3Apmid%2F35653446&rft.externalDocID=35653446 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |