On the hardness of quadratic unconstrained binary optimization problems

We use exact enumeration to characterize the solutions of quadratic unconstrained binary optimization problems of less than 21 variables in terms of their distributions of Hamming distances to close-by solutions. We also perform experiments with the D-Wave Advantage 5.1 quantum annealer, solving man...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Frontiers in physics Ročník 10
Hlavní autori: Mehta, V., Jin, F., Michielsen, K., De Raedt, H.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Frontiers Media S.A 31.08.2022
Predmet:
ISSN:2296-424X, 2296-424X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We use exact enumeration to characterize the solutions of quadratic unconstrained binary optimization problems of less than 21 variables in terms of their distributions of Hamming distances to close-by solutions. We also perform experiments with the D-Wave Advantage 5.1 quantum annealer, solving many instances of up to 170-variable, quadratic unconstrained binary optimization problems. Our results demonstrate that the exponents characterizing the success probability of a D-Wave annealer to solve a quadratic unconstrained binary optimization correlate very well with the predictions based on the Hamming distance distributions computed for small problem instances.
ISSN:2296-424X
2296-424X
DOI:10.3389/fphy.2022.956882