Deblurring Images via Dark Channel Prior

We present an effective blind image deblurring algorithm based on the dark channel prior. The motivation of this work is an interesting observation that the dark channel of blurred images is less sparse. While most patches in a clean image contain some dark pixels, this is not the case when they are...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on pattern analysis and machine intelligence Vol. 40; no. 10; pp. 2315 - 2328
Main Authors: Pan, Jinshan, Sun, Deqing, Pfister, Hanspeter, Yang, Ming-Hsuan
Format: Journal Article
Language:English
Published: United States IEEE 01.10.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0162-8828, 1939-3539, 2160-9292, 1939-3539
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We present an effective blind image deblurring algorithm based on the dark channel prior. The motivation of this work is an interesting observation that the dark channel of blurred images is less sparse. While most patches in a clean image contain some dark pixels, this is not the case when they are averaged with neighboring ones by motion blur. This change in sparsity of the dark channel pixels is an inherent property of the motion blur process, which we prove mathematically and validate using image data. Enforcing sparsity of the dark channel thus helps blind deblurring in various scenarios such as natural, face, text, and low-illumination images. However, imposing sparsity of the dark channel introduces a non-convex non-linear optimization problem. In this work, we introduce a linear approximation to address this issue. Extensive experiments demonstrate that the proposed deblurring algorithm achieves the state-of-the-art results on natural images and performs favorably against methods designed for specific scenarios. In addition, we show that the proposed method can be applied to image dehazing.
AbstractList We present an effective blind image deblurring algorithm based on the dark channel prior. The motivation of this work is an interesting observation that the dark channel of blurred images is less sparse. While most patches in a clean image contain some dark pixels, this is not the case when they are averaged with neighboring ones by motion blur. This change in sparsity of the dark channel pixels is an inherent property of the motion blur process, which we prove mathematically and validate using image data. Enforcing sparsity of the dark channel thus helps blind deblurring in various scenarios such as natural, face, text, and low-illumination images. However, imposing sparsity of the dark channel introduces a non-convex non-linear optimization problem. In this work, we introduce a linear approximation to address this issue. Extensive experiments demonstrate that the proposed deblurring algorithm achieves the state-of-the-art results on natural images and performs favorably against methods designed for specific scenarios. In addition, we show that the proposed method can be applied to image dehazing.
We present an effective blind image deblurring algorithm based on the dark channel prior. The motivation of this work is an interesting observation that the dark channel of blurred images is less sparse. While most patches in a clean image contain some dark pixels, this is not the case when they are averaged with neighboring ones by motion blur. This change in sparsity of the dark channel pixels is an inherent property of the motion blur process, which we prove mathematically and validate using image data. Enforcing sparsity of the dark channel thus helps blind deblurring in various scenarios such as natural, face, text, and low-illumination images. However, imposing sparsity of the dark channel introduces a non-convex non-linear optimization problem. In this work, we introduce a linear approximation to address this issue. Extensive experiments demonstrate that the proposed deblurring algorithm achieves the state-of-the-art results on natural images and performs favorably against methods designed for specific scenarios. In addition, we show that the proposed method can be applied to image dehazing.We present an effective blind image deblurring algorithm based on the dark channel prior. The motivation of this work is an interesting observation that the dark channel of blurred images is less sparse. While most patches in a clean image contain some dark pixels, this is not the case when they are averaged with neighboring ones by motion blur. This change in sparsity of the dark channel pixels is an inherent property of the motion blur process, which we prove mathematically and validate using image data. Enforcing sparsity of the dark channel thus helps blind deblurring in various scenarios such as natural, face, text, and low-illumination images. However, imposing sparsity of the dark channel introduces a non-convex non-linear optimization problem. In this work, we introduce a linear approximation to address this issue. Extensive experiments demonstrate that the proposed deblurring algorithm achieves the state-of-the-art results on natural images and performs favorably against methods designed for specific scenarios. In addition, we show that the proposed method can be applied to image dehazing.
Author Pan, Jinshan
Pfister, Hanspeter
Yang, Ming-Hsuan
Sun, Deqing
Author_xml – sequence: 1
  givenname: Jinshan
  orcidid: 0000-0003-0304-9507
  surname: Pan
  fullname: Pan, Jinshan
  email: sdluran@gmail.com
  organization: Nanjing University of Science and Technology, Nanjing, China
– sequence: 2
  givenname: Deqing
  surname: Sun
  fullname: Sun, Deqing
  email: deqings@nvidia.com
  organization: NVIDIA, Westford, MA
– sequence: 3
  givenname: Hanspeter
  surname: Pfister
  fullname: Pfister, Hanspeter
  email: pfister@seas.harvard.edu
  organization: Harvard University, Cambridge, MA
– sequence: 4
  givenname: Ming-Hsuan
  orcidid: 0000-0003-4848-2304
  surname: Yang
  fullname: Yang, Ming-Hsuan
  email: mhyang@ucmerced.edu
  organization: University of California, Merced, CA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28952935$$D View this record in MEDLINE/PubMed
BookMark eNp9kLtOxDAQAC0EguPxAyChSDQ0ObxrO4lLdLxOAkEBteU4GzDkErATJP6ewB0UFFQudmbXmm223nYtMbYPfArA9cn93enNfIoc8inmShRcrrEJQsZTjRrX2YRDhmlRYLHFtmN85hyk4mKTbWGhFWqhJuz4jMpmCMG3j8l8YR8pJu_eJmc2vCSzJ9u21CR3wXdhl23Utom0t3p32MPF-f3sKr2-vZzPTq9TJxT0qSZpLc9VWeVIdV6j4rbOKlcXZDMHtbTSCpIVQekk8FKV6CAn1NI5rLASO-x4ufc1dG8Dxd4sfHTUNLalbogGtBSZEgLUiB79QZ-7IbTj7wwC5GMILvVIHa6ooVxQZV6DX9jwYX4ajAAuARe6GAPVvwhw8xXafIc2X6HNKvQoFX8k53vb-67tg_XN_-rBUvVE9HtrnBRKCvEJlmSI8Q
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1109_TCSVT_2023_3250509
crossref_primary_10_3390_app10030939
crossref_primary_10_1109_LSP_2022_3212641
crossref_primary_10_1007_s10489_023_05122_1
crossref_primary_10_1007_s11263_018_01146_0
crossref_primary_10_3390_s21103484
crossref_primary_10_1007_s11042_023_14335_y
crossref_primary_10_1016_j_dsp_2023_103912
crossref_primary_10_1109_TIP_2020_2980173
crossref_primary_10_1007_s13042_023_01984_6
crossref_primary_10_1109_ACCESS_2019_2956947
crossref_primary_10_1007_s00371_019_01762_y
crossref_primary_10_3390_jmse9060570
crossref_primary_10_1109_TIP_2021_3076367
crossref_primary_10_1007_s11760_024_03657_5
crossref_primary_10_1007_s00371_024_03632_8
crossref_primary_10_1016_j_cviu_2020_103100
crossref_primary_10_1109_ACCESS_2022_3226812
crossref_primary_10_1109_TPAMI_2020_3036667
crossref_primary_10_1109_TPAMI_2021_3063604
crossref_primary_10_1038_s41598_024_60157_9
crossref_primary_10_1007_s11760_021_01977_4
crossref_primary_10_1016_j_neunet_2023_08_010
crossref_primary_10_3390_info14050296
crossref_primary_10_3390_s21082625
crossref_primary_10_1016_j_dsp_2021_103008
crossref_primary_10_1109_ACCESS_2020_3045857
crossref_primary_10_1109_JOE_2024_3463840
crossref_primary_10_1016_j_patcog_2022_108988
crossref_primary_10_3390_e24101414
crossref_primary_10_1007_s11760_023_02888_2
crossref_primary_10_1016_j_sysarc_2022_102584
crossref_primary_10_1109_TCDS_2022_3157766
crossref_primary_10_1016_j_asoc_2020_106296
crossref_primary_10_1016_j_ipm_2021_102675
crossref_primary_10_1007_s11760_021_01929_y
crossref_primary_10_1364_PRJ_488310
crossref_primary_10_1109_TPAMI_2021_3115139
crossref_primary_10_1007_s00034_024_02865_1
crossref_primary_10_1109_TCSVT_2022_3190516
crossref_primary_10_1109_TIP_2020_3016134
crossref_primary_10_1109_TIP_2024_3442613
crossref_primary_10_1109_TIP_2023_3328486
crossref_primary_10_1016_j_ins_2022_05_033
crossref_primary_10_1109_TPAMI_2021_3138787
crossref_primary_10_3390_s22062168
crossref_primary_10_1016_j_jvcir_2022_103717
crossref_primary_10_1109_TCSVT_2023_3270173
crossref_primary_10_1109_TGRS_2020_2987400
crossref_primary_10_1109_TIP_2024_3425169
crossref_primary_10_1016_j_sigpro_2019_107453
crossref_primary_10_1109_ACCESS_2021_3067055
crossref_primary_10_1109_TIP_2020_3016490
crossref_primary_10_1016_j_optlaseng_2025_109235
crossref_primary_10_1016_j_neucom_2020_01_004
crossref_primary_10_1109_TCSVT_2025_3541429
crossref_primary_10_1007_s11263_023_01957_w
crossref_primary_10_1007_s12206_022_0640_6
crossref_primary_10_1109_TIP_2024_3364529
crossref_primary_10_1049_ipr2_12362
crossref_primary_10_1109_TGRS_2019_2935150
crossref_primary_10_1109_TPAMI_2023_3243059
crossref_primary_10_3390_s24206545
crossref_primary_10_1109_TCI_2020_2964202
crossref_primary_10_1109_TIP_2021_3073856
crossref_primary_10_1007_s13369_023_07986_4
crossref_primary_10_1016_j_media_2024_103319
crossref_primary_10_1117_1_JEI_32_6_063022
crossref_primary_10_1007_s11042_020_09012_3
crossref_primary_10_1016_j_dsp_2019_01_004
crossref_primary_10_1364_AO_510746
crossref_primary_10_1016_j_optcom_2022_128961
crossref_primary_10_1007_s00521_024_09495_3
crossref_primary_10_1007_s00034_025_03106_9
crossref_primary_10_1016_j_patcog_2020_107597
crossref_primary_10_1007_s11760_025_04294_2
crossref_primary_10_1007_s00371_023_03014_6
crossref_primary_10_1016_j_autcon_2024_105727
crossref_primary_10_1016_j_inffus_2024_102857
crossref_primary_10_3390_s22166216
crossref_primary_10_1109_ACCESS_2021_3112491
crossref_primary_10_1109_TGRS_2022_3202867
crossref_primary_10_1016_j_patcog_2025_112358
crossref_primary_10_1109_TPAMI_2021_3116135
crossref_primary_10_1109_TIE_2024_3447752
crossref_primary_10_1109_TIP_2023_3280358
crossref_primary_10_1016_j_dsp_2023_103953
crossref_primary_10_1016_j_jvcir_2020_102921
crossref_primary_10_1088_1742_6596_1627_1_012017
crossref_primary_10_3390_s25165211
crossref_primary_10_1109_TIP_2022_3216216
crossref_primary_10_1109_TNNLS_2022_3151099
crossref_primary_10_3390_electronics10172045
crossref_primary_10_1007_s11063_019_10123_8
crossref_primary_10_1109_TPAMI_2019_2920591
crossref_primary_10_3390_s21103317
crossref_primary_10_1007_s13042_022_01659_8
crossref_primary_10_1007_s11042_020_09762_0
crossref_primary_10_1002_cav_2066
crossref_primary_10_1109_TIP_2021_3092814
crossref_primary_10_1016_j_jvcir_2025_104388
crossref_primary_10_1364_AO_571832
crossref_primary_10_1109_TCI_2023_3323835
crossref_primary_10_1007_s11801_021_0081_y
crossref_primary_10_1109_TMM_2021_3090206
crossref_primary_10_1016_j_knosys_2020_106617
crossref_primary_10_1109_JSTARS_2023_3269784
crossref_primary_10_1145_3735649
crossref_primary_10_1016_j_knosys_2024_112138
crossref_primary_10_1007_s11042_020_10232_w
crossref_primary_10_1007_s10851_020_00949_6
crossref_primary_10_3390_math10081238
crossref_primary_10_1109_ACCESS_2021_3120058
crossref_primary_10_1109_TCSVT_2023_3319330
crossref_primary_10_1016_j_cosrev_2024_100669
crossref_primary_10_1016_j_autcon_2022_104595
crossref_primary_10_1109_ACCESS_2021_3116194
crossref_primary_10_1109_ACCESS_2020_3007972
crossref_primary_10_1007_s00034_023_02327_0
crossref_primary_10_1109_TMM_2022_3152090
crossref_primary_10_1109_TNNLS_2023_3340730
crossref_primary_10_1007_s11045_022_00863_7
crossref_primary_10_1109_TCSVT_2024_3385468
crossref_primary_10_1007_s11263_023_01833_7
crossref_primary_10_1109_TIM_2022_3230482
crossref_primary_10_1016_j_patcog_2020_107300
crossref_primary_10_1109_TCI_2024_3377132
crossref_primary_10_1016_j_neucom_2019_11_063
crossref_primary_10_1109_TCI_2021_3100998
crossref_primary_10_1016_j_patrec_2021_12_009
crossref_primary_10_1109_TCSVT_2020_3034137
crossref_primary_10_1007_s11801_022_1111_0
crossref_primary_10_1016_j_imavis_2024_105080
crossref_primary_10_1109_TGRS_2022_3207828
crossref_primary_10_1016_j_displa_2024_102860
crossref_primary_10_1049_itr2_12269
crossref_primary_10_1109_TPAMI_2021_3102575
crossref_primary_10_3390_electronics11142177
crossref_primary_10_1007_s00138_021_01201_w
crossref_primary_10_1088_1361_6420_acc2e0
crossref_primary_10_1007_s11801_025_3275_x
crossref_primary_10_1016_j_optlaseng_2024_108431
crossref_primary_10_1016_j_eswa_2023_123005
crossref_primary_10_1007_s11263_022_01583_y
crossref_primary_10_1109_TPAMI_2022_3226276
crossref_primary_10_1016_j_patcog_2023_109719
crossref_primary_10_1049_ipr2_12832
Cites_doi 10.1109/ICCV.2011.6126276
10.1145/1360612.1360672
10.1109/CVPR.2016.180
10.1017/CBO9781107360181.002
10.1007/s11263-015-0857-2
10.1109/TPAMI.2015.2481418
10.1109/TPAMI.2010.222
10.1109/TPAMI.2016.2551244
10.1109/CVPR.2011.5995568
10.1109/CVPR.2015.7298677
10.1109/CVPR.2014.372
10.1086/111605
10.1007/978-3-642-33715-4_38
10.1109/CVPR.2011.5995521
10.1109/CVPR.2011.5995308
10.1109/CVPR.2009.5206815
10.1007/978-3-642-15549-9_12
10.1109/ICCV.2007.4408922
10.1109/CVPR.2014.432
10.1137/080724265
10.1109/CVPR.2013.147
10.1109/ICCV.2011.6126280
10.1109/ICCV.2011.6126278
10.1109/83.661187
10.1007/978-3-319-46487-9_45
10.1109/TIP.2011.2164413
10.1145/1661412.1618491
10.1109/ICCV.2001.937655
10.1145/1141911.1141956
10.1109/ICCV.2013.296
10.1007/s10851-010-0220-8
10.1109/CVPR.2008.4587834
10.1109/CVPR.2016.306
10.1109/TIP.2007.918028
10.1007/s11263-011-0502-7
10.1109/TPAMI.2016.2608882
10.1007/978-3-642-33715-4_5
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TPAMI.2017.2753804
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Technology Research Database
MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2160-9292
1939-3539
EndPage 2328
ExternalDocumentID 28952935
10_1109_TPAMI_2017_2753804
8048543
Genre orig-research
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: IARPA via DoI/IBC
  grantid: D16PC00002
– fundername: National Key R&D Program of China
  grantid: 2016YFB1001001
– fundername: US National Science Foundation
  grantid: IIS-1447344; IIS-1607800
– fundername: 973 Program of China
  grantid: 2014CB347600
– fundername: US National Science Foundation CAREER
  grantid: 1149783
– fundername: NSF of China
  grantid: 61732007
– fundername: Adobe and Nvidia
– fundername: NSF of Jiangsu Province
  grantid: BK20140058
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
~02
AAYXX
CITATION
5VS
9M8
AAYOK
ABFSI
ADRHT
AETIX
AGSQL
AI.
AIBXA
ALLEH
FA8
H~9
IBMZZ
ICLAB
IFJZH
NPM
PKN
RIC
RIG
RNI
RZB
VH1
XJT
Z5M
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c351t-9e4aa075bd72ef7f250af6dcf8ea6c1f4a4a3e4de1bc410b5b2c17e294cc2d2d3
IEDL.DBID RIE
ISICitedReferencesCount 210
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000443875500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0162-8828
1939-3539
IngestDate Sun Sep 28 05:13:12 EDT 2025
Mon Dec 01 00:29:25 EST 2025
Wed Feb 19 02:33:54 EST 2025
Tue Nov 18 22:17:44 EST 2025
Sat Nov 29 05:15:58 EST 2025
Wed Aug 27 02:56:05 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-9e4aa075bd72ef7f250af6dcf8ea6c1f4a4a3e4de1bc410b5b2c17e294cc2d2d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0304-9507
0000-0003-4848-2304
PMID 28952935
PQID 2117160049
PQPubID 85458
PageCount 14
ParticipantIDs proquest_miscellaneous_1943653315
proquest_journals_2117160049
crossref_primary_10_1109_TPAMI_2017_2753804
pubmed_primary_28952935
crossref_citationtrail_10_1109_TPAMI_2017_2753804
ieee_primary_8048543
PublicationCentury 2000
PublicationDate 2018-10-01
PublicationDateYYYYMMDD 2018-10-01
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref15
ref14
ref11
ref10
sun (ref18) 2013
gupta (ref38) 2010
ref16
ref19
lemire (ref49) 2006; 13
xu (ref34) 2011; 30
wieschollek (ref31) 2016
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
he (ref32) 2009
ref8
ref9
ref4
ref3
michaeli (ref12) 2014
ref5
ref40
ref35
ref37
ref36
ref30
ref33
ref2
ref1
ref39
zhang (ref24) 2011
shan (ref7) 2008; 27
zoran (ref29) 2016
ref23
ref26
ref25
ref20
ref22
ref21
pan (ref13) 2014
köhler (ref17) 2012
ref28
ref27
chen (ref50) 2016
pan (ref6) 2014
References_xml – ident: ref39
  doi: 10.1109/ICCV.2011.6126276
– volume: 27
  year: 2008
  ident: ref7
  article-title: High-quality motion deblurring from a single image
  publication-title: ACM SIGGRAPH
  doi: 10.1145/1360612.1360672
– ident: ref19
  doi: 10.1109/CVPR.2016.180
– ident: ref20
  doi: 10.1017/CBO9781107360181.002
– ident: ref44
  doi: 10.1007/s11263-015-0857-2
– start-page: 221
  year: 2016
  ident: ref29
  article-title: A neural approach to blind motion deblurring
  publication-title: Proc Eur Conf Comput Vis
– ident: ref28
  doi: 10.1109/TPAMI.2015.2481418
– ident: ref41
  doi: 10.1109/TPAMI.2010.222
– ident: ref37
  doi: 10.1109/TPAMI.2016.2551244
– start-page: 171
  year: 2010
  ident: ref38
  article-title: Single image deblurring using motion density functions
  publication-title: Proc Eur Conf Comput Vis
– ident: ref14
  doi: 10.1109/CVPR.2011.5995568
– ident: ref30
  doi: 10.1109/CVPR.2015.7298677
– start-page: 783
  year: 2014
  ident: ref12
  article-title: Blind deblurring using internal patch recurrence
  publication-title: Proc Eur Conf Comput Vis
– ident: ref25
  doi: 10.1109/CVPR.2014.372
– ident: ref1
  doi: 10.1086/111605
– start-page: 27
  year: 2012
  ident: ref17
  article-title: Recording and playback of camera shake: Benchmarking blind deconvolution with a real-world database
  publication-title: Proc Eur Conf Comput Vis
– ident: ref15
  doi: 10.1007/978-3-642-33715-4_38
– ident: ref4
  doi: 10.1109/CVPR.2011.5995521
– volume: 13
  start-page: 328
  year: 2006
  ident: ref49
  article-title: Streaming maximum-minimum filter using no more than three comparisons per element
  publication-title: Nordic J Comput
– ident: ref5
  doi: 10.1109/CVPR.2011.5995308
– ident: ref9
  doi: 10.1109/CVPR.2009.5206815
– start-page: 1956
  year: 2009
  ident: ref32
  article-title: Single image haze removal using dark channel prior
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– ident: ref11
  doi: 10.1007/978-3-642-15549-9_12
– ident: ref40
  doi: 10.1109/ICCV.2007.4408922
– start-page: 2901
  year: 2014
  ident: ref6
  article-title: Deblurring text images via L $_0$ -regularized intensity and gradient prior
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– ident: ref16
  doi: 10.1109/CVPR.2014.432
– ident: ref36
  doi: 10.1137/080724265
– ident: ref8
  doi: 10.1109/CVPR.2013.147
– ident: ref47
  doi: 10.1109/ICCV.2011.6126280
– ident: ref43
  doi: 10.1109/ICCV.2011.6126278
– ident: ref2
  doi: 10.1109/83.661187
– ident: ref45
  doi: 10.1007/978-3-319-46487-9_45
– ident: ref21
  doi: 10.1109/TIP.2011.2164413
– ident: ref10
  doi: 10.1145/1661412.1618491
– ident: ref33
  doi: 10.1109/ICCV.2001.937655
– ident: ref3
  doi: 10.1145/1141911.1141956
– volume: 30
  year: 2011
  ident: ref34
  article-title: Image smoothing via L $_{0}$ gradient minimization
  publication-title: ACM SIGGRAPH ASIA
– ident: ref27
  doi: 10.1109/ICCV.2013.296
– start-page: 1
  year: 2013
  ident: ref18
  article-title: Edge-based blur kernel estimation using patch priors
  publication-title: Proc IEEE Int Conf Comput Photography
– ident: ref22
  doi: 10.1007/s10851-010-0220-8
– start-page: 35
  year: 2016
  ident: ref31
  article-title: End-to-end learning for image burst deblurring
  publication-title: Proc Asian Conf Comput Vis
– ident: ref26
  doi: 10.1109/CVPR.2008.4587834
– ident: ref46
  doi: 10.1109/CVPR.2016.306
– start-page: 1
  year: 2011
  ident: ref24
  article-title: Sparse representation based blind image deblurring
  publication-title: Proc IEEE Int Conf Multimedia Expo
– ident: ref23
  doi: 10.1109/TIP.2007.918028
– ident: ref42
  doi: 10.1007/s11263-011-0502-7
– ident: ref35
  doi: 10.1109/TPAMI.2016.2608882
– ident: ref48
  doi: 10.1007/978-3-642-33715-4_5
– start-page: 576
  year: 2016
  ident: ref50
  article-title: Robust image and video dehazing with visual artifact suppression via gradient residual minimization
  publication-title: Proc Eur Conf Comput Vis
– start-page: 47
  year: 2014
  ident: ref13
  article-title: Deblurring face images with exemplars
  publication-title: Proc Eur Conf Comput Vis
SSID ssj0014503
Score 2.6676357
Snippet We present an effective blind image deblurring algorithm based on the dark channel prior. The motivation of this work is an interesting observation that the...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2315
SubjectTerms Algorithm design and analysis
Algorithms
Convolution
dark channel prior
Face
Image deblurring
Image edge detection
Image restoration
Kernel
linear approximation
non-uniform deblurring
Optimization
Pixels
Sparsity
Title Deblurring Images via Dark Channel Prior
URI https://ieeexplore.ieee.org/document/8048543
https://www.ncbi.nlm.nih.gov/pubmed/28952935
https://www.proquest.com/docview/2117160049
https://www.proquest.com/docview/1943653315
Volume 40
WOSCitedRecordID wos000443875500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2160-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014503
  issn: 0162-8828
  databaseCode: RIE
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4B4tAeeLY0LaBU4lCpDawdO46PqAWBRNEeoNpbZDsTtGKbRdldfn_HzkNFaiv1FimOY3le34w9MwAnjBtnjJCJqmSaCCfyxNiRV4YGU1RclCGY8-NG3d7mk4ker8GXIRcGEcPlMzz1j-Esv5y7lQ-VneXEblKk67CulGpztYYTAyFDF2RCMCTh5Eb0CTIjfXY3Pv9-7W9xqVNO6Jxm8SWAcy3J1MkX9ig0WPk71gw253L7_1a7A1sdtozPW2bYhTWs92C779sQd2K8B69_K0K4D59I5cx8ILB-iK9_knpZxM9TE38zzWPscw9qnMXjZjpv3sD95cXd16uk65-QuFSyZaJRGEOQwJaKY6UqQjumykpX5WgyxyphhElRlMisE2xkpeWOKeRaOMdLXqZvYaOe1_gOYoHIOGbMavIIdZX6qvSW5L0yIjPS2ghYv4uF64qL-x4XsyI4GSNdBCIUnghFR4QIPg_fPLWlNf45et9v8TCy290IDntiFZ30LQpyaskN9M5PBB-H1yQ3_jDE1DhfLQqmRZoR1mUygoOWyMPcPW-8__M_P8ArWllbFZcdwsayWeERbLrn5XTRHBNzTvLjwJy_AD1W28s
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NgQQ8MNj4CBsQJB6QIFvt2En8OAHTKrqqDwXtzbKdy1StpCht9_dzdj7EJEDiLVIcx_J9_e7suwN4x7hxxgiZ5JVME-FEkRg78srQYIo5F2UI5nyf5NNpcXmpZjvwcciFQcRw-QyP_WM4yy9XbutDZScFsZsU6R24K4XgrM3WGs4MhAx9kAnDkIyTI9GnyIzUyXx2ejH297jyY074nObxRYALJcnYyVsWKbRY-TvaDFbnbO__1vsYHnXoMj5t2eEJ7GC9D3t954a4E-R9ePhbGcIDeE9KZ-lDgfVVPP5BCmYd3yxM_Nk017HPPqhxGc-axap5Ct_Ovsw_nSddB4XEpZJtEoXCGAIFtsw5VnlFeMdUWemqAk3mWCWMMCmKEpl1go2stNyxHLkSzvGSl-kz2K1XNb6AWCAyjhmzinxCVaW-Lr0lia-MyIy0NgLW76J2XXlx3-ViqYObMVI6EEF7IuiOCBF8GL752RbX-OfoA7_Fw8hudyM46omlO_lba3JryRH07k8Eb4fXJDn-OMTUuNquNVMizQjtMhnB85bIw9w9b7z88z_fwP3z-cVET8bTr4fwgFbZ1shlR7C7abb4Cu65m81i3bwOLPoLqFLeKg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deblurring+Images+via+Dark+Channel+Prior&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Pan%2C+Jinshan&rft.au=Sun%2C+Deqing&rft.au=Pfister%2C+Hanspeter&rft.au=Ming-Hsuan+Yang&rft.date=2018-10-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0162-8828&rft.eissn=1939-3539&rft.volume=40&rft.issue=10&rft.spage=2315&rft_id=info:doi/10.1109%2FTPAMI.2017.2753804&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon