Tensor LRR and Sparse Coding-Based Subspace Clustering

Subspace clustering groups a set of samples from a union of several linear subspaces into clusters, so that the samples in the same cluster are drawn from the same linear subspace. In the majority of the existing work on subspace clustering, clusters are built based on feature information, while sam...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transaction on neural networks and learning systems Vol. 27; no. 10; pp. 2120 - 2133
Main Authors: Yifan Fu, Junbin Gao, Tien, David, Zhouchen Lin, Xia Hong
Format: Journal Article
Language:English
Published: United States IEEE 01.10.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2162-237X, 2162-2388, 2162-2388
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Subspace clustering groups a set of samples from a union of several linear subspaces into clusters, so that the samples in the same cluster are drawn from the same linear subspace. In the majority of the existing work on subspace clustering, clusters are built based on feature information, while sample correlations in their original spatial structure are simply ignored. Besides, original high-dimensional feature vector contains noisy/redundant information, and the time complexity grows exponentially with the number of dimensions. To address these issues, we propose a tensor low-rank representation (TLRR) and sparse coding-based (TLRRSC) subspace clustering method by simultaneously considering feature information and spatial structures. TLRR seeks the lowest rank representation over original spatial structures along all spatial directions. Sparse coding learns a dictionary along feature spaces, so that each sample can be represented by a few atoms of the learned dictionary. The affinity matrix used for spectral clustering is built from the joint similarities in both spatial and feature spaces. TLRRSC can well capture the global structure and inherent feature information of data and provide a robust subspace segmentation from corrupted data. Experimental results on both synthetic and real-world data sets show that TLRRSC outperforms several established stateof- the-art methods.
AbstractList Subspace clustering groups a set of samples from a union of several linear subspaces into clusters, so that the samples in the same cluster are drawn from the same linear subspace. In the majority of the existing work on subspace clustering, clusters are built based on feature information, while sample correlations in their original spatial structure are simply ignored. Besides, original high-dimensional feature vector contains noisy/redundant information, and the time complexity grows exponentially with the number of dimensions. To address these issues, we propose a tensor low-rank representation (TLRR) and sparse coding-based (TLRRSC) subspace clustering method by simultaneously considering feature information and spatial structures. TLRR seeks the lowest rank representation over original spatial structures along all spatial directions. Sparse coding learns a dictionary along feature spaces, so that each sample can be represented by a few atoms of the learned dictionary. The affinity matrix used for spectral clustering is built from the joint similarities in both spatial and feature spaces. TLRRSC can well capture the global structure and inherent feature information of data and provide a robust subspace segmentation from corrupted data. Experimental results on both synthetic and real-world data sets show that TLRRSC outperforms several established stateof- the-art methods.
Subspace clustering groups a set of samples from a union of several linear subspaces into clusters, so that the samples in the same cluster are drawn from the same linear subspace. In the majority of the existing work on subspace clustering, clusters are built based on feature information, while sample correlations in their original spatial structure are simply ignored. Besides, original high-dimensional feature vector contains noisy/redundant information, and the time complexity grows exponentially with the number of dimensions. To address these issues, we propose a tensor low-rank representation (TLRR) and sparse coding-based (TLRRSC) subspace clustering method by simultaneously considering feature information and spatial structures. TLRR seeks the lowest rank representation over original spatial structures along all spatial directions. Sparse coding learns a dictionary along feature spaces, so that each sample can be represented by a few atoms of the learned dictionary. The affinity matrix used for spectral clustering is built from the joint similarities in both spatial and feature spaces. TLRRSC can well capture the global structure and inherent feature information of data and provide a robust subspace segmentation from corrupted data. Experimental results on both synthetic and real-world data sets show that TLRRSC outperforms several established stateof- the-art methods.Subspace clustering groups a set of samples from a union of several linear subspaces into clusters, so that the samples in the same cluster are drawn from the same linear subspace. In the majority of the existing work on subspace clustering, clusters are built based on feature information, while sample correlations in their original spatial structure are simply ignored. Besides, original high-dimensional feature vector contains noisy/redundant information, and the time complexity grows exponentially with the number of dimensions. To address these issues, we propose a tensor low-rank representation (TLRR) and sparse coding-based (TLRRSC) subspace clustering method by simultaneously considering feature information and spatial structures. TLRR seeks the lowest rank representation over original spatial structures along all spatial directions. Sparse coding learns a dictionary along feature spaces, so that each sample can be represented by a few atoms of the learned dictionary. The affinity matrix used for spectral clustering is built from the joint similarities in both spatial and feature spaces. TLRRSC can well capture the global structure and inherent feature information of data and provide a robust subspace segmentation from corrupted data. Experimental results on both synthetic and real-world data sets show that TLRRSC outperforms several established stateof- the-art methods.
Author Xia Hong
Yifan Fu
Zhouchen Lin
Junbin Gao
Tien, David
Author_xml – sequence: 1
  surname: Yifan Fu
  fullname: Yifan Fu
  email: fuyf939@gmail.com
  organization: Sch. of Comput. & Math., Charles Sturt Univ., Bathurst, NSW, Australia
– sequence: 2
  surname: Junbin Gao
  fullname: Junbin Gao
  email: junbin.gao@sydney.edu.au
  organization: Discipline of Bus. Analytics, Bus. Sch., Univ. of Sydney, Sydney, NSW, Australia
– sequence: 3
  givenname: David
  surname: Tien
  fullname: Tien, David
  email: dtien@csu.edu.au
  organization: Sch. of Comput. & Math., Charles Sturt Univ., Bathurst, NSW, Australia
– sequence: 4
  surname: Zhouchen Lin
  fullname: Zhouchen Lin
  email: zlin@pku.edu.cn
  organization: Sch. of Electron. Eng. & Comput. Sci., Peking Univ., Beijing, China
– sequence: 5
  surname: Xia Hong
  fullname: Xia Hong
  email: x.hong@reading.ac.uk
  organization: Dept. of Comput. Sci., Univ. of Reading, Reading, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27164609$$D View this record in MEDLINE/PubMed
BookMark eNp9kM9LwzAUx4NM3Jz7BxSk4MVLZ340aXLU4S8oE7YJ3kqavkpH19akPfjfm7m5ww7mkvDy-b73-JyjQd3UgNAlwVNCsLpbzefJckoxEVPKOSOcn6ARJYKGlEk5OLzjjyGaOLfG_gjMRaTO0JDGREQCqxESK6hdY4NksQh0nQfLVlsHwazJy_ozfNAOfK3PXKuNr1a968D6nwt0WujKwWR_j9H70-Nq9hImb8-vs_skNIyTLlS5YgWjOBMgMRBplMogjnItQRURz3KGmYniIo6NFHGOcQQFUCMlAJWaSzZGt7u-rW2-enBduimdgarSNTS9S4mkvoWfQDx6c4Sum97WfjtPMayEIkx46npP9dkG8rS15Ubb7_TPiAfoDjC2cc5CcUAITrfm01_z6dZ8ujfvQ_IoZMpOd2VTd1aX1f_Rq120BIDDrNjvQiLCfgCsrY29
CODEN ITNNAL
CitedBy_id crossref_primary_10_1007_s13369_021_06129_x
crossref_primary_10_1016_j_neucom_2017_10_060
crossref_primary_10_1080_13658816_2022_2092116
crossref_primary_10_1109_TGRS_2019_2947200
crossref_primary_10_1109_TNNLS_2016_2633275
crossref_primary_10_3390_rs11121485
crossref_primary_10_1016_j_dsp_2019_102584
crossref_primary_10_1109_TCSVT_2023_3299318
crossref_primary_10_1109_TNNLS_2018_2851957
crossref_primary_10_1109_TIP_2022_3220949
crossref_primary_10_1080_00401706_2025_2453206
crossref_primary_10_1109_LSP_2017_2700852
crossref_primary_10_1109_ACCESS_2022_3232285
crossref_primary_10_1016_j_neucom_2021_02_002
crossref_primary_10_1109_TNNLS_2018_2851444
crossref_primary_10_1109_TPAMI_2019_2954874
crossref_primary_10_1109_TGRS_2023_3233945
crossref_primary_10_1109_TNNLS_2020_3026686
crossref_primary_10_1007_s10994_021_05987_8
crossref_primary_10_1109_TNNLS_2018_2860964
crossref_primary_10_1287_ijds_2022_0028
crossref_primary_10_1109_ACCESS_2019_2944426
crossref_primary_10_1109_TNNLS_2016_2641160
crossref_primary_10_1109_JSTSP_2018_2879185
crossref_primary_10_1109_TNNLS_2018_2876327
crossref_primary_10_1016_j_patcog_2020_107749
crossref_primary_10_1109_TNNLS_2019_2952427
crossref_primary_10_1109_TPAMI_2019_2929043
crossref_primary_10_1016_j_knosys_2022_108468
crossref_primary_10_1016_j_neucom_2017_05_102
crossref_primary_10_1016_j_sigpro_2019_03_015
crossref_primary_10_1109_TNNLS_2021_3059874
crossref_primary_10_1016_j_knosys_2022_109915
crossref_primary_10_1016_j_knosys_2024_112921
crossref_primary_10_1109_LSP_2017_2748604
crossref_primary_10_3390_rs11212593
crossref_primary_10_1137_24M1655093
crossref_primary_10_1109_TNNLS_2018_2828699
crossref_primary_10_1109_TGRS_2018_2835514
crossref_primary_10_1109_TNNLS_2019_2955209
crossref_primary_10_1016_j_ins_2021_12_098
crossref_primary_10_1109_TCSVT_2022_3207484
Cites_doi 10.1109/IJCNN.2014.6889472
10.1007/s11432-012-4551-5
10.1109/TIP.2006.881969
10.1016/j.imavis.2007.12.006
10.1038/381607a0
10.1109/JSTSP.2010.2042411
10.1145/358669.358692
10.1002/nav.3800020109
10.1109/CVPR.2003.1211332
10.1109/TIT.2004.834793
10.1109/TNN.2011.2147798
10.1162/089976699300016728
10.1109/TNNLS.2012.2235082
10.1109/ICCVW.2009.5457695
10.1109/TNNLS.2014.2306063
10.1137/07070111X
10.1109/ACSSC.2008.5074572
10.1007/s11263-009-0314-1
10.1109/TNNLS.2012.2226471
10.1137/100806278
10.1109/ITWKSPS.2010.5503193
10.1109/MSP.2010.939739
10.1109/TPAMI.2007.1085
10.1007/s10994-013-5367-2
10.1073/pnas.0437847100
10.1109/TNNLS.2013.2253123
10.1109/ICPR.2006.88
10.1109/CVPR.2003.1211411
10.1109/CVPR.2009.5206547
10.1109/TPAMI.2003.1177153
10.1145/1859204.1859229
10.1109/ICCV.2001.937679
10.1007/s10851-008-0120-3
10.1109/ICASSP.1999.760624
10.1109/34.868688
10.1109/TPAMI.2012.88
10.1137/060676489
10.1007/11744085_8
10.1109/TIT.2007.909108
10.1145/2184319.2184343
10.1109/TSP.2006.881199
10.1137/080738970
10.1145/1273496.1273592
10.1145/2499788.2499853
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2016.2553155
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Materials Research Database
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 2133
ExternalDocumentID 4223718301
27164609
10_1109_TNNLS_2016_2553155
7460141
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Basic Research Program of China (973 Program)
  grantid: 2015CB352502
– fundername: National Natural Science Foundation of China
  grantid: 61231002; 61272341
  funderid: 10.13039/501100001809
– fundername: Microsoft Research Asia through the Collaborative Research Program
– fundername: Australian Research Council through the Discovery Project
  grantid: DP130100364
  funderid: 10.13039/501100000923
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
RIG
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c351t-9d93f320b6e80e18c99be74da8e9f45bd303c47f77c867d004efe2c88ee28a583
IEDL.DBID RIE
ISICitedReferencesCount 54
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000384644000011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2162-237X
2162-2388
IngestDate Sun Sep 28 01:46:12 EDT 2025
Sun Sep 07 03:19:00 EDT 2025
Mon Jul 21 05:53:26 EDT 2025
Sat Nov 29 01:39:54 EST 2025
Tue Nov 18 21:39:52 EST 2025
Tue Aug 26 16:42:53 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-9d93f320b6e80e18c99be74da8e9f45bd303c47f77c867d004efe2c88ee28a583
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1493-7569
PMID 27164609
PQID 1830969136
PQPubID 85436
PageCount 14
ParticipantIDs ieee_primary_7460141
proquest_miscellaneous_1823033201
pubmed_primary_27164609
proquest_journals_1830969136
crossref_primary_10_1109_TNNLS_2016_2553155
crossref_citationtrail_10_1109_TNNLS_2016_2553155
PublicationCentury 2000
PublicationDate 2016-Oct.
2016-10-00
20161001
PublicationDateYYYYMMDD 2016-10-01
PublicationDate_xml – month: 10
  year: 2016
  text: 2016-Oct.
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2016
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References keshavan (ref21) 2010; 11
ref13
ref12
ref15
ref14
ref53
ref52
ref55
ref11
ref54
ding (ref10) 2006
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref47
ref42
ref41
ref44
ref43
ref49
shlens (ref40) 2005
ref8
ref7
ref4
ref3
ref6
ref5
wang (ref28) 2013
li (ref26) 2008; 26
ref35
ref34
ref37
ref36
ref31
ref33
aharon (ref1) 2006; 54
ref2
ref39
ref38
lin (ref27) 2011
jalali (ref9) 2011
ref23
montavon (ref25) 1998
ref20
ref22
ref29
liu (ref30) 2013
yang (ref48) 2009
landgrebe (ref24) 1998
jaggi (ref32) 2010
References_xml – ident: ref50
  doi: 10.1109/IJCNN.2014.6889472
– volume: 11
  start-page: 2057
  year: 2010
  ident: ref21
  article-title: Matrix completion from noisy entries
  publication-title: J Mach Learn Res
– ident: ref16
  doi: 10.1007/s11432-012-4551-5
– year: 1998
  ident: ref24
  article-title: Multispectral data analysis: A signal theory perspective
– start-page: 116
  year: 2013
  ident: ref30
  article-title: Linearized alternating direction method with parallel splitting and adaptive penalty for separable convex programs in machine learning
  publication-title: Proc ACM
– ident: ref13
  doi: 10.1109/TIP.2006.881969
– volume: 26
  start-page: 1137
  year: 2008
  ident: ref26
  article-title: Non-negative sparse coding shrinkage for image denoising using normal inverse Gaussian density model
  publication-title: Image Vis Comput
  doi: 10.1016/j.imavis.2007.12.006
– ident: ref35
  doi: 10.1038/381607a0
– ident: ref5
  doi: 10.1109/JSTSP.2010.2042411
– ident: ref17
  doi: 10.1145/358669.358692
– ident: ref23
  doi: 10.1002/nav.3800020109
– ident: ref19
  doi: 10.1109/CVPR.2003.1211332
– ident: ref42
  doi: 10.1109/TIT.2004.834793
– ident: ref54
  doi: 10.1109/TNN.2011.2147798
– ident: ref41
  doi: 10.1162/089976699300016728
– ident: ref53
  doi: 10.1109/TNNLS.2012.2235082
– start-page: 281
  year: 2006
  ident: ref10
  article-title: $R_{1}$ -PCA: Rotational invariant $L_{1}$ -norm principal component analysis for robust subspace factorization
  publication-title: Proc 23rd ICML
– ident: ref49
  doi: 10.1109/ICCVW.2009.5457695
– ident: ref52
  doi: 10.1109/TNNLS.2014.2306063
– ident: ref22
  doi: 10.1137/07070111X
– ident: ref33
  doi: 10.1109/ACSSC.2008.5074572
– start-page: 64
  year: 2013
  ident: ref28
  article-title: Provable subspace clustering: When LRR meets SSC
  publication-title: Proc NIPS
– ident: ref38
  doi: 10.1007/s11263-009-0314-1
– year: 2005
  ident: ref40
  article-title: A tutorial on principal component analysis
– start-page: 471
  year: 2010
  ident: ref32
  article-title: A simple algorithm for nuclear norm regularized problems
  publication-title: Proceedings of the 27th ICML
– ident: ref55
  doi: 10.1109/TNNLS.2012.2226471
– ident: ref18
  doi: 10.1137/100806278
– ident: ref11
  doi: 10.1109/ITWKSPS.2010.5503193
– ident: ref44
  doi: 10.1109/MSP.2010.939739
– ident: ref31
  doi: 10.1109/TPAMI.2007.1085
– ident: ref4
  doi: 10.1007/s10994-013-5367-2
– ident: ref12
  doi: 10.1073/pnas.0437847100
– ident: ref51
  doi: 10.1109/TNNLS.2013.2253123
– ident: ref6
  doi: 10.1109/ICPR.2006.88
– ident: ref45
  doi: 10.1109/CVPR.2003.1211411
– ident: ref14
  doi: 10.1109/CVPR.2009.5206547
– ident: ref3
  doi: 10.1109/TPAMI.2003.1177153
– ident: ref34
  doi: 10.1145/1859204.1859229
– ident: ref20
  doi: 10.1109/ICCV.2001.937679
– ident: ref36
  doi: 10.1007/s10851-008-0120-3
– start-page: 1001
  year: 2011
  ident: ref9
  article-title: Clustering partially observed graphs via convex optimization
  publication-title: Proc 28th ICML
– ident: ref15
  doi: 10.1109/ICASSP.1999.760624
– ident: ref39
  doi: 10.1109/34.868688
– start-page: 612
  year: 2011
  ident: ref27
  article-title: Linearized alternating direction method with adaptive penalty for low-rank representation
  publication-title: Proc NIPS
– ident: ref29
  doi: 10.1109/TPAMI.2012.88
– year: 1998
  ident: ref25
  publication-title: Neural Networks Tricks of the Trade
– ident: ref2
  doi: 10.1137/060676489
– ident: ref47
  doi: 10.1007/11744085_8
– ident: ref43
  doi: 10.1109/TIT.2007.909108
– ident: ref8
  doi: 10.1145/2184319.2184343
– volume: 54
  start-page: 4311
  year: 2006
  ident: ref1
  article-title: K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/TSP.2006.881199
– ident: ref7
  doi: 10.1137/080738970
– ident: ref37
  doi: 10.1145/1273496.1273592
– ident: ref46
  doi: 10.1145/2499788.2499853
– start-page: 1794
  year: 2009
  ident: ref48
  article-title: Linear spatial pyramid matching using sparse coding for image classification
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit (CVPR)
SSID ssj0000605649
Score 2.4486105
Snippet Subspace clustering groups a set of samples from a union of several linear subspaces into clusters, so that the samples in the same cluster are drawn from the...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2120
SubjectTerms Automobile industry
Clustering algorithms
Correlation
Data models
Dictionaries
Dictionary learning
Robustness
sparse coding (SC)
Sparse matrices
subspace clustering
Tensile stress
tensor low-rank representation (TLRR)
Title Tensor LRR and Sparse Coding-Based Subspace Clustering
URI https://ieeexplore.ieee.org/document/7460141
https://www.ncbi.nlm.nih.gov/pubmed/27164609
https://www.proquest.com/docview/1830969136
https://www.proquest.com/docview/1823033201
Volume 27
WOSCitedRecordID wos000384644000011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2162-2388
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605649
  issn: 2162-237X
  databaseCode: RIE
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5UPHjx_VgfSwVvWm2TNo-jLooHWURX2FtpkykI0sq66-93kj7woIK3kqZpmEdmvmQyA3AmMEosF0UYcU4AhRyCUBcmDQuyjUYUKmGx9cUm5HisplP9uAQX_V0YRPTBZ3jpHv1Zvq3Nwm2VXclEuLjEZViWUjR3tfr9lIj8cuG9XRYLFjIup90dmUhfTcbjh2cXyCUuyYfmZERdFmCHFYQLRfxmknyNld_dTW927jb-N-FNWG_dy-C6kYctWMJqGza60g1Bq8k7ICYEX-tZ8PD0FOSVDZ7fCeBiMKqdKQtvyLRRG60phKip9W3h0inQm114ubudjO7DtoRCaHgaz0NtNS85iwqBKsJYGa0LlInNFeoySQtLFswkspTSKCEtaQyWyIxSiEzlqeJ7sFLVFR5AoAWmtDLakhlMIstyQ9CwsDmiEaWWfABxR8XMtPnFXZmLt8zjjEhnngmZY0LWMmEA5_037012jT977zgS9z1b6g7guGNW1irgR0YrFYEzHXMxgNP-NamOOw_JK6wXrg_hL07UoSH2Gyb3Y3eycfjzP49gzc2sieo7hpX5bIEnsGo-568fsyHJ51QNvXx-AR9R3Cw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VggQXSimPpYUGiRvN1rEdP45QURWxRKhdpL1FiT2RkKqk2u7y-xk7D3FokbhFfsWa8Xjms8czAB8UMumFqlMmBAEUMghSW7s8rUk3OlUbyTMfk03oojCrlf2xAyfTWxhEjM5nOA-f8S7fd24bjspOtVTBL_EBPMyl5Kx_rTWdqDCyzFW0d3mmeMqFXo2vZJg9XRbF4iq4cqk5WdGC1GiIAxzQggrOiH8ppZhl5X6DMyqe873_m_IzeDoYmMmnfkXsww62z2FvTN6QDLJ8AGpJALZbJ4vLy6RqfXJ1QxAXk7MuKLP0Myk3KqNdhTA1lV5vQ0AFqnkBP8-_LM8u0iGJQupEnm1S661oBGe1QsMwM87aGrX0lUHbyLz2pMOc1I3WzijtSWawQe6MQeSmyo14Cbtt1-JrSKzCnPZG33CHknleOQKHta8QnWqsFjPIRiqWbogwHhJdXJcRaTBbRiaUgQnlwIQZfJz63PTxNf7Z-iCQeGo5UHcGRyOzykEEb0vaqwie2UyoGbyfqkl4wo1I1WK3DW0IgQmiDg3xqmfyNPa4Nt7c_c9jeHyx_L4oF1-Lb4fwJMyy9_E7gt3Neotv4ZH7vfl1u34XV-kfjKTeiw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tensor+LRR+and+Sparse+Coding-Based+Subspace+Clustering&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Fu%2C+Yifan&rft.au=Gao%2C+Junbin&rft.au=Tien%2C+David&rft.au=Lin%2C+Zhouchen&rft.date=2016-10-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=27&rft.issue=10&rft.spage=2120&rft_id=info:doi/10.1109%2FTNNLS.2016.2553155&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4223718301
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon