Tensor LRR and Sparse Coding-Based Subspace Clustering
Subspace clustering groups a set of samples from a union of several linear subspaces into clusters, so that the samples in the same cluster are drawn from the same linear subspace. In the majority of the existing work on subspace clustering, clusters are built based on feature information, while sam...
Gespeichert in:
| Veröffentlicht in: | IEEE transaction on neural networks and learning systems Jg. 27; H. 10; S. 2120 - 2133 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
IEEE
01.10.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 2162-237X, 2162-2388, 2162-2388 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Subspace clustering groups a set of samples from a union of several linear subspaces into clusters, so that the samples in the same cluster are drawn from the same linear subspace. In the majority of the existing work on subspace clustering, clusters are built based on feature information, while sample correlations in their original spatial structure are simply ignored. Besides, original high-dimensional feature vector contains noisy/redundant information, and the time complexity grows exponentially with the number of dimensions. To address these issues, we propose a tensor low-rank representation (TLRR) and sparse coding-based (TLRRSC) subspace clustering method by simultaneously considering feature information and spatial structures. TLRR seeks the lowest rank representation over original spatial structures along all spatial directions. Sparse coding learns a dictionary along feature spaces, so that each sample can be represented by a few atoms of the learned dictionary. The affinity matrix used for spectral clustering is built from the joint similarities in both spatial and feature spaces. TLRRSC can well capture the global structure and inherent feature information of data and provide a robust subspace segmentation from corrupted data. Experimental results on both synthetic and real-world data sets show that TLRRSC outperforms several established stateof- the-art methods. |
|---|---|
| AbstractList | Subspace clustering groups a set of samples from a union of several linear subspaces into clusters, so that the samples in the same cluster are drawn from the same linear subspace. In the majority of the existing work on subspace clustering, clusters are built based on feature information, while sample correlations in their original spatial structure are simply ignored. Besides, original high-dimensional feature vector contains noisy/redundant information, and the time complexity grows exponentially with the number of dimensions. To address these issues, we propose a tensor low-rank representation (TLRR) and sparse coding-based (TLRRSC) subspace clustering method by simultaneously considering feature information and spatial structures. TLRR seeks the lowest rank representation over original spatial structures along all spatial directions. Sparse coding learns a dictionary along feature spaces, so that each sample can be represented by a few atoms of the learned dictionary. The affinity matrix used for spectral clustering is built from the joint similarities in both spatial and feature spaces. TLRRSC can well capture the global structure and inherent feature information of data and provide a robust subspace segmentation from corrupted data. Experimental results on both synthetic and real-world data sets show that TLRRSC outperforms several established stateof- the-art methods. Subspace clustering groups a set of samples from a union of several linear subspaces into clusters, so that the samples in the same cluster are drawn from the same linear subspace. In the majority of the existing work on subspace clustering, clusters are built based on feature information, while sample correlations in their original spatial structure are simply ignored. Besides, original high-dimensional feature vector contains noisy/redundant information, and the time complexity grows exponentially with the number of dimensions. To address these issues, we propose a tensor low-rank representation (TLRR) and sparse coding-based (TLRRSC) subspace clustering method by simultaneously considering feature information and spatial structures. TLRR seeks the lowest rank representation over original spatial structures along all spatial directions. Sparse coding learns a dictionary along feature spaces, so that each sample can be represented by a few atoms of the learned dictionary. The affinity matrix used for spectral clustering is built from the joint similarities in both spatial and feature spaces. TLRRSC can well capture the global structure and inherent feature information of data and provide a robust subspace segmentation from corrupted data. Experimental results on both synthetic and real-world data sets show that TLRRSC outperforms several established stateof- the-art methods.Subspace clustering groups a set of samples from a union of several linear subspaces into clusters, so that the samples in the same cluster are drawn from the same linear subspace. In the majority of the existing work on subspace clustering, clusters are built based on feature information, while sample correlations in their original spatial structure are simply ignored. Besides, original high-dimensional feature vector contains noisy/redundant information, and the time complexity grows exponentially with the number of dimensions. To address these issues, we propose a tensor low-rank representation (TLRR) and sparse coding-based (TLRRSC) subspace clustering method by simultaneously considering feature information and spatial structures. TLRR seeks the lowest rank representation over original spatial structures along all spatial directions. Sparse coding learns a dictionary along feature spaces, so that each sample can be represented by a few atoms of the learned dictionary. The affinity matrix used for spectral clustering is built from the joint similarities in both spatial and feature spaces. TLRRSC can well capture the global structure and inherent feature information of data and provide a robust subspace segmentation from corrupted data. Experimental results on both synthetic and real-world data sets show that TLRRSC outperforms several established stateof- the-art methods. |
| Author | Xia Hong Yifan Fu Zhouchen Lin Junbin Gao Tien, David |
| Author_xml | – sequence: 1 surname: Yifan Fu fullname: Yifan Fu email: fuyf939@gmail.com organization: Sch. of Comput. & Math., Charles Sturt Univ., Bathurst, NSW, Australia – sequence: 2 surname: Junbin Gao fullname: Junbin Gao email: junbin.gao@sydney.edu.au organization: Discipline of Bus. Analytics, Bus. Sch., Univ. of Sydney, Sydney, NSW, Australia – sequence: 3 givenname: David surname: Tien fullname: Tien, David email: dtien@csu.edu.au organization: Sch. of Comput. & Math., Charles Sturt Univ., Bathurst, NSW, Australia – sequence: 4 surname: Zhouchen Lin fullname: Zhouchen Lin email: zlin@pku.edu.cn organization: Sch. of Electron. Eng. & Comput. Sci., Peking Univ., Beijing, China – sequence: 5 surname: Xia Hong fullname: Xia Hong email: x.hong@reading.ac.uk organization: Dept. of Comput. Sci., Univ. of Reading, Reading, UK |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27164609$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kM9LwzAUx4NM3Jz7BxSk4MVLZ340aXLU4S8oE7YJ3kqavkpH19akPfjfm7m5ww7mkvDy-b73-JyjQd3UgNAlwVNCsLpbzefJckoxEVPKOSOcn6ARJYKGlEk5OLzjjyGaOLfG_gjMRaTO0JDGREQCqxESK6hdY4NksQh0nQfLVlsHwazJy_ozfNAOfK3PXKuNr1a968D6nwt0WujKwWR_j9H70-Nq9hImb8-vs_skNIyTLlS5YgWjOBMgMRBplMogjnItQRURz3KGmYniIo6NFHGOcQQFUCMlAJWaSzZGt7u-rW2-enBduimdgarSNTS9S4mkvoWfQDx6c4Sum97WfjtPMayEIkx46npP9dkG8rS15Ubb7_TPiAfoDjC2cc5CcUAITrfm01_z6dZ8ujfvQ_IoZMpOd2VTd1aX1f_Rq120BIDDrNjvQiLCfgCsrY29 |
| CODEN | ITNNAL |
| CitedBy_id | crossref_primary_10_1007_s13369_021_06129_x crossref_primary_10_1016_j_neucom_2017_10_060 crossref_primary_10_1080_13658816_2022_2092116 crossref_primary_10_1109_TGRS_2019_2947200 crossref_primary_10_1109_TNNLS_2016_2633275 crossref_primary_10_3390_rs11121485 crossref_primary_10_1016_j_dsp_2019_102584 crossref_primary_10_1109_TCSVT_2023_3299318 crossref_primary_10_1109_TNNLS_2018_2851957 crossref_primary_10_1109_TIP_2022_3220949 crossref_primary_10_1080_00401706_2025_2453206 crossref_primary_10_1109_LSP_2017_2700852 crossref_primary_10_1109_ACCESS_2022_3232285 crossref_primary_10_1016_j_neucom_2021_02_002 crossref_primary_10_1109_TNNLS_2018_2851444 crossref_primary_10_1109_TPAMI_2019_2954874 crossref_primary_10_1109_TGRS_2023_3233945 crossref_primary_10_1109_TNNLS_2020_3026686 crossref_primary_10_1007_s10994_021_05987_8 crossref_primary_10_1109_TNNLS_2018_2860964 crossref_primary_10_1287_ijds_2022_0028 crossref_primary_10_1109_ACCESS_2019_2944426 crossref_primary_10_1109_TNNLS_2016_2641160 crossref_primary_10_1109_JSTSP_2018_2879185 crossref_primary_10_1109_TNNLS_2018_2876327 crossref_primary_10_1016_j_patcog_2020_107749 crossref_primary_10_1109_TNNLS_2019_2952427 crossref_primary_10_1109_TPAMI_2019_2929043 crossref_primary_10_1016_j_knosys_2022_108468 crossref_primary_10_1016_j_neucom_2017_05_102 crossref_primary_10_1016_j_sigpro_2019_03_015 crossref_primary_10_1109_TNNLS_2021_3059874 crossref_primary_10_1016_j_knosys_2022_109915 crossref_primary_10_1016_j_knosys_2024_112921 crossref_primary_10_1109_LSP_2017_2748604 crossref_primary_10_3390_rs11212593 crossref_primary_10_1137_24M1655093 crossref_primary_10_1109_TNNLS_2018_2828699 crossref_primary_10_1109_TGRS_2018_2835514 crossref_primary_10_1109_TNNLS_2019_2955209 crossref_primary_10_1016_j_ins_2021_12_098 crossref_primary_10_1109_TCSVT_2022_3207484 |
| Cites_doi | 10.1109/IJCNN.2014.6889472 10.1007/s11432-012-4551-5 10.1109/TIP.2006.881969 10.1016/j.imavis.2007.12.006 10.1038/381607a0 10.1109/JSTSP.2010.2042411 10.1145/358669.358692 10.1002/nav.3800020109 10.1109/CVPR.2003.1211332 10.1109/TIT.2004.834793 10.1109/TNN.2011.2147798 10.1162/089976699300016728 10.1109/TNNLS.2012.2235082 10.1109/ICCVW.2009.5457695 10.1109/TNNLS.2014.2306063 10.1137/07070111X 10.1109/ACSSC.2008.5074572 10.1007/s11263-009-0314-1 10.1109/TNNLS.2012.2226471 10.1137/100806278 10.1109/ITWKSPS.2010.5503193 10.1109/MSP.2010.939739 10.1109/TPAMI.2007.1085 10.1007/s10994-013-5367-2 10.1073/pnas.0437847100 10.1109/TNNLS.2013.2253123 10.1109/ICPR.2006.88 10.1109/CVPR.2003.1211411 10.1109/CVPR.2009.5206547 10.1109/TPAMI.2003.1177153 10.1145/1859204.1859229 10.1109/ICCV.2001.937679 10.1007/s10851-008-0120-3 10.1109/ICASSP.1999.760624 10.1109/34.868688 10.1109/TPAMI.2012.88 10.1137/060676489 10.1007/11744085_8 10.1109/TIT.2007.909108 10.1145/2184319.2184343 10.1109/TSP.2006.881199 10.1137/080738970 10.1145/1273496.1273592 10.1145/2499788.2499853 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| DOI | 10.1109/TNNLS.2016.2553155 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Materials Research Database PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2162-2388 |
| EndPage | 2133 |
| ExternalDocumentID | 4223718301 27164609 10_1109_TNNLS_2016_2553155 7460141 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: National Basic Research Program of China (973 Program) grantid: 2015CB352502 – fundername: National Natural Science Foundation of China grantid: 61231002; 61272341 funderid: 10.13039/501100001809 – fundername: Microsoft Research Asia through the Collaborative Research Program – fundername: Australian Research Council through the Discovery Project grantid: DP130100364 funderid: 10.13039/501100000923 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION NPM RIG 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| ID | FETCH-LOGICAL-c351t-9d93f320b6e80e18c99be74da8e9f45bd303c47f77c867d004efe2c88ee28a583 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 54 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000384644000011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2162-237X 2162-2388 |
| IngestDate | Sun Sep 28 01:46:12 EDT 2025 Sun Sep 07 03:19:00 EDT 2025 Mon Jul 21 05:53:26 EDT 2025 Sat Nov 29 01:39:54 EST 2025 Tue Nov 18 21:39:52 EST 2025 Tue Aug 26 16:42:53 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c351t-9d93f320b6e80e18c99be74da8e9f45bd303c47f77c867d004efe2c88ee28a583 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-1493-7569 |
| PMID | 27164609 |
| PQID | 1830969136 |
| PQPubID | 85436 |
| PageCount | 14 |
| ParticipantIDs | ieee_primary_7460141 proquest_miscellaneous_1823033201 pubmed_primary_27164609 proquest_journals_1830969136 crossref_primary_10_1109_TNNLS_2016_2553155 crossref_citationtrail_10_1109_TNNLS_2016_2553155 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-Oct. 2016-10-00 20161001 |
| PublicationDateYYYYMMDD | 2016-10-01 |
| PublicationDate_xml | – month: 10 year: 2016 text: 2016-Oct. |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Piscataway |
| PublicationTitle | IEEE transaction on neural networks and learning systems |
| PublicationTitleAbbrev | TNNLS |
| PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
| PublicationYear | 2016 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | keshavan (ref21) 2010; 11 ref13 ref12 ref15 ref14 ref53 ref52 ref55 ref11 ref54 ding (ref10) 2006 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref47 ref42 ref41 ref44 ref43 ref49 shlens (ref40) 2005 ref8 ref7 ref4 ref3 ref6 ref5 wang (ref28) 2013 li (ref26) 2008; 26 ref35 ref34 ref37 ref36 ref31 ref33 aharon (ref1) 2006; 54 ref2 ref39 ref38 lin (ref27) 2011 jalali (ref9) 2011 ref23 montavon (ref25) 1998 ref20 ref22 ref29 liu (ref30) 2013 yang (ref48) 2009 landgrebe (ref24) 1998 jaggi (ref32) 2010 |
| References_xml | – ident: ref50 doi: 10.1109/IJCNN.2014.6889472 – volume: 11 start-page: 2057 year: 2010 ident: ref21 article-title: Matrix completion from noisy entries publication-title: J Mach Learn Res – ident: ref16 doi: 10.1007/s11432-012-4551-5 – year: 1998 ident: ref24 article-title: Multispectral data analysis: A signal theory perspective – start-page: 116 year: 2013 ident: ref30 article-title: Linearized alternating direction method with parallel splitting and adaptive penalty for separable convex programs in machine learning publication-title: Proc ACM – ident: ref13 doi: 10.1109/TIP.2006.881969 – volume: 26 start-page: 1137 year: 2008 ident: ref26 article-title: Non-negative sparse coding shrinkage for image denoising using normal inverse Gaussian density model publication-title: Image Vis Comput doi: 10.1016/j.imavis.2007.12.006 – ident: ref35 doi: 10.1038/381607a0 – ident: ref5 doi: 10.1109/JSTSP.2010.2042411 – ident: ref17 doi: 10.1145/358669.358692 – ident: ref23 doi: 10.1002/nav.3800020109 – ident: ref19 doi: 10.1109/CVPR.2003.1211332 – ident: ref42 doi: 10.1109/TIT.2004.834793 – ident: ref54 doi: 10.1109/TNN.2011.2147798 – ident: ref41 doi: 10.1162/089976699300016728 – ident: ref53 doi: 10.1109/TNNLS.2012.2235082 – start-page: 281 year: 2006 ident: ref10 article-title: $R_{1}$ -PCA: Rotational invariant $L_{1}$ -norm principal component analysis for robust subspace factorization publication-title: Proc 23rd ICML – ident: ref49 doi: 10.1109/ICCVW.2009.5457695 – ident: ref52 doi: 10.1109/TNNLS.2014.2306063 – ident: ref22 doi: 10.1137/07070111X – ident: ref33 doi: 10.1109/ACSSC.2008.5074572 – start-page: 64 year: 2013 ident: ref28 article-title: Provable subspace clustering: When LRR meets SSC publication-title: Proc NIPS – ident: ref38 doi: 10.1007/s11263-009-0314-1 – year: 2005 ident: ref40 article-title: A tutorial on principal component analysis – start-page: 471 year: 2010 ident: ref32 article-title: A simple algorithm for nuclear norm regularized problems publication-title: Proceedings of the 27th ICML – ident: ref55 doi: 10.1109/TNNLS.2012.2226471 – ident: ref18 doi: 10.1137/100806278 – ident: ref11 doi: 10.1109/ITWKSPS.2010.5503193 – ident: ref44 doi: 10.1109/MSP.2010.939739 – ident: ref31 doi: 10.1109/TPAMI.2007.1085 – ident: ref4 doi: 10.1007/s10994-013-5367-2 – ident: ref12 doi: 10.1073/pnas.0437847100 – ident: ref51 doi: 10.1109/TNNLS.2013.2253123 – ident: ref6 doi: 10.1109/ICPR.2006.88 – ident: ref45 doi: 10.1109/CVPR.2003.1211411 – ident: ref14 doi: 10.1109/CVPR.2009.5206547 – ident: ref3 doi: 10.1109/TPAMI.2003.1177153 – ident: ref34 doi: 10.1145/1859204.1859229 – ident: ref20 doi: 10.1109/ICCV.2001.937679 – ident: ref36 doi: 10.1007/s10851-008-0120-3 – start-page: 1001 year: 2011 ident: ref9 article-title: Clustering partially observed graphs via convex optimization publication-title: Proc 28th ICML – ident: ref15 doi: 10.1109/ICASSP.1999.760624 – ident: ref39 doi: 10.1109/34.868688 – start-page: 612 year: 2011 ident: ref27 article-title: Linearized alternating direction method with adaptive penalty for low-rank representation publication-title: Proc NIPS – ident: ref29 doi: 10.1109/TPAMI.2012.88 – year: 1998 ident: ref25 publication-title: Neural Networks Tricks of the Trade – ident: ref2 doi: 10.1137/060676489 – ident: ref47 doi: 10.1007/11744085_8 – ident: ref43 doi: 10.1109/TIT.2007.909108 – ident: ref8 doi: 10.1145/2184319.2184343 – volume: 54 start-page: 4311 year: 2006 ident: ref1 article-title: K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation publication-title: IEEE Trans Signal Process doi: 10.1109/TSP.2006.881199 – ident: ref7 doi: 10.1137/080738970 – ident: ref37 doi: 10.1145/1273496.1273592 – ident: ref46 doi: 10.1145/2499788.2499853 – start-page: 1794 year: 2009 ident: ref48 article-title: Linear spatial pyramid matching using sparse coding for image classification publication-title: Proc IEEE Conf Comput Vis Pattern Recognit (CVPR) |
| SSID | ssj0000605649 |
| Score | 2.4486105 |
| Snippet | Subspace clustering groups a set of samples from a union of several linear subspaces into clusters, so that the samples in the same cluster are drawn from the... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2120 |
| SubjectTerms | Automobile industry Clustering algorithms Correlation Data models Dictionaries Dictionary learning Robustness sparse coding (SC) Sparse matrices subspace clustering Tensile stress tensor low-rank representation (TLRR) |
| Title | Tensor LRR and Sparse Coding-Based Subspace Clustering |
| URI | https://ieeexplore.ieee.org/document/7460141 https://www.ncbi.nlm.nih.gov/pubmed/27164609 https://www.proquest.com/docview/1830969136 https://www.proquest.com/docview/1823033201 |
| Volume | 27 |
| WOSCitedRecordID | wos000384644000011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2162-2388 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000605649 issn: 2162-237X databaseCode: RIE dateStart: 20120101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB6SkEMvzatNNo_Fhd5aJZbk1ePYhiw5LEtJtmVvxpbGUAh22Ozm92ckP8ihCfRmZFkW89DMJ41mAL4qUwhheMWM055l1ntmNbesdF5O0tILFdMu_pnp-dwsl_bXFnwf7sIgYgw-w8vwGM_yfeM2YavsSmcqxCVuw7bWqr2rNeynpOSXq-jtCq4EE1Iv-zsyqb1azOez-xDIpS7Jh5ZkREMW4IAVVAhFfGWSYo2Vt93NaHame_834X342LmXyY9WHg5gC-tD2OtLNySdJh-BWhB8bVbJ7O4uKWqf3D8SwMXkugmmjP0k00ZttKYQoqbWh01Ip0BvPsHv6c3i-pZ1JRSYkxO-ZtZbWUmRlgpNitw4a0vUmS8M2iqblJ4smMt0pbUzSnvSGKxQOGMQhSkmRn6Gnbqp8QQSXnkCX2WpOZIX4DNTcWPJYXJOZ6ilGgHvqZi7Lr94KHPxkEeckdo8MiEPTMg7Jozg2_DNY5td493eR4HEQ8-OuiM475mVdwr4lNNKReDM8jCvL8NrUp1wHlLU2GxCH8JfkqhDQxy3TB7G7mXj9N__PIMPYWZtVN857KxXG7yAXfe8_vu0GpN8Ls04yucLXrDbqw |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VggQXCpTCQoEgcYO08SN-HKGiKiJEqF3Q3qLEnkhIVVJtd_v7O3Ye4gBI3CK_Ys14PPPZ4xmAd8rUnBvWpsZpn0rrfWo1s2njvMizxnMVwy7-LHRZmtXKft-BD_NbGESMzmd4FD7jXb7v3TYclR1rqYJf4h24m0vJs-G11nyikpFlrqK9y5niKRd6Nb2SyezxsiyLi-DKpY7IihakRkMc4IAWVHBG_E0pxSwrfzc4o-I53fu_KT-Ch6OBmXwcVsRj2MHuCexNyRuSUZb3QS0JwPbrpDg_T-rOJxdXBHExOemDMks_kXKjMtpVCFNT6eU2BFSgmqfw4_Tz8uQsHZMopE7kbJNab0UreNYoNBky46xtUEtfG7StzBtPOsxJ3WrtjNKeZAZb5M4YRG7q3IgD2O36Dp9DwlpP8KtpNEOyA7w0LTOWTCbntEQt1ALYRMXKjRHGQ6KLyyoijcxWkQlVYEI1MmEB7-c-V0N8jX-23g8knluO1F3A4cSsahTB64r2KoJnloV5vZ2rSXjCjUjdYb8NbQiBCaIODfFsYPI89rQ2Xvz5n2_g_tnyW1EVX8qvL-FBmOXg43cIu5v1Fl_BPXez-XW9fh1X6S3J294K |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tensor+LRR+and+Sparse+Coding-Based+Subspace+Clustering&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Fu%2C+Yifan&rft.au=Gao%2C+Junbin&rft.au=Tien%2C+David&rft.au=Lin%2C+Zhouchen&rft.date=2016-10-01&rft.eissn=2162-2388&rft.volume=27&rft.issue=10&rft.spage=2120&rft_id=info:doi/10.1109%2FTNNLS.2016.2553155&rft_id=info%3Apmid%2F27164609&rft.externalDocID=27164609 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |