Prescribed Performance Control of Uncertain Euler-Lagrange Systems Subject to Full-State Constraints

This paper studies the zero-error tracking control problem of Euler-Lagrange systems subject to full-state constraints and nonparametric uncertainties. By blending an error transformation with barrier Lyapunov function, a neural adaptive tracking control scheme is developed, resulting in a solution...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transaction on neural networks and learning systems Ročník 29; číslo 8; s. 3478 - 3489
Hlavní autoři: Zhao, Kai, Song, Yongduan, Ma, Tiedong, He, Liu
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.08.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2162-237X, 2162-2388, 2162-2388
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper studies the zero-error tracking control problem of Euler-Lagrange systems subject to full-state constraints and nonparametric uncertainties. By blending an error transformation with barrier Lyapunov function, a neural adaptive tracking control scheme is developed, resulting in a solution with several salient features: 1) the control action is continuous and <inline-formula> <tex-math notation="LaTeX">\mathscr C^{1} </tex-math></inline-formula> smooth; 2) the full-state tracking error converges to a prescribed compact set around origin within a given finite time at a controllable rate of convergence that can be uniformly prespecified; 3) with Nussbaum gain in the loop, the tracking error further shrinks to zero as <inline-formula> <tex-math notation="LaTeX">t\to \infty </tex-math></inline-formula>; and 4) the neural network (NN) unit can be safely included in the loop during the entire system operational envelope without the danger of violating the compact set precondition imposed on the NN training inputs. Furthermore, by using the Lyapunov analysis, it is proven that all the signals of the closed-loop systems are semiglobally uniformly ultimately bounded. The effectiveness and benefits of the proposed control method are validated via computer simulation.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2162-237X
2162-2388
2162-2388
DOI:10.1109/TNNLS.2017.2727223