Adaptive Dynamic Programming-Based Cooperative Motion/Force Control for Modular Reconfigurable Manipulators: A Joint Task Assignment Approach

This article develops a cooperative motion/force control (CMFC) scheme based on adaptive dynamic programming (ADP) for modular reconfigurable manipulators (MRMs) with the joint task assignment approach. By separating terms depending on local variables only, the dynamic model of the entire MRM system...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transaction on neural networks and learning systems Vol. 34; no. 12; pp. 10944 - 10954
Main Authors: Zhao, Bo, Zhang, Yongwei, Liu, Derong
Format: Journal Article
Language:English
Published: United States IEEE 01.12.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2162-237X, 2162-2388, 2162-2388
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This article develops a cooperative motion/force control (CMFC) scheme based on adaptive dynamic programming (ADP) for modular reconfigurable manipulators (MRMs) with the joint task assignment approach. By separating terms depending on local variables only, the dynamic model of the entire MRM system can be regarded as a set of joint modules interconnected by coupling torque. In addition, the Jacobian matrix, which reflects the interaction force of the MRM end-effector, can be mapped into each joint. Using this approach, both the motion and force tasks on the end-effector of the entire MRM system can be assigned to each joint module cooperatively. Then, by substituting the actual states of coupled joint modules with their desired ones, the norm-boundedness assumption on the interconnection of joint module can be relaxed. By using the measured input-output data of each joint module, a neural network (NN)-based robust decentralized observer, which guarantees the observation error to be asymptotically stable is established. An improved local value function is constructed for each joint module to reflect the interconnection. Then, the local Hamilton-Jacobi-Bellman equation is solved by constructing a local critic NN with a nested learning structure. Hereafter, the ADP-based CMFC is obtained by the assistance of force feedback compensation. Based on the Lyapunov stability analysis, the closed-loop MRM system is guaranteed to be uniformly ultimately bounded under the present ADP-based CMFC scheme. The simulation on a two-degree of freedom MRM system demonstrates the effectiveness of the present control approach.
AbstractList This article develops a cooperative motion/force control (CMFC) scheme based on adaptive dynamic programming (ADP) for modular reconfigurable manipulators (MRMs) with the joint task assignment approach. By separating terms depending on local variables only, the dynamic model of the entire MRM system can be regarded as a set of joint modules interconnected by coupling torque. In addition, the Jacobian matrix, which reflects the interaction force of the MRM end-effector, can be mapped into each joint. Using this approach, both the motion and force tasks on the end-effector of the entire MRM system can be assigned to each joint module cooperatively. Then, by substituting the actual states of coupled joint modules with their desired ones, the norm-boundedness assumption on the interconnection of joint module can be relaxed. By using the measured input-output data of each joint module, a neural network (NN)-based robust decentralized observer, which guarantees the observation error to be asymptotically stable is established. An improved local value function is constructed for each joint module to reflect the interconnection. Then, the local Hamilton-Jacobi-Bellman equation is solved by constructing a local critic NN with a nested learning structure. Hereafter, the ADP-based CMFC is obtained by the assistance of force feedback compensation. Based on the Lyapunov stability analysis, the closed-loop MRM system is guaranteed to be uniformly ultimately bounded under the present ADP-based CMFC scheme. The simulation on a two-degree of freedom MRM system demonstrates the effectiveness of the present control approach.
This article develops a cooperative motion/force control (CMFC) scheme based on adaptive dynamic programming (ADP) for modular reconfigurable manipulators (MRMs) with the joint task assignment approach. By separating terms depending on local variables only, the dynamic model of the entire MRM system can be regarded as a set of joint modules interconnected by coupling torque. In addition, the Jacobian matrix, which reflects the interaction force of the MRM end-effector, can be mapped into each joint. Using this approach, both the motion and force tasks on the end-effector of the entire MRM system can be assigned to each joint module cooperatively. Then, by substituting the actual states of coupled joint modules with their desired ones, the norm-boundedness assumption on the interconnection of joint module can be relaxed. By using the measured input-output data of each joint module, a neural network (NN)-based robust decentralized observer, which guarantees the observation error to be asymptotically stable is established. An improved local value function is constructed for each joint module to reflect the interconnection. Then, the local Hamilton-Jacobi-Bellman equation is solved by constructing a local critic NN with a nested learning structure. Hereafter, the ADP-based CMFC is obtained by the assistance of force feedback compensation. Based on the Lyapunov stability analysis, the closed-loop MRM system is guaranteed to be uniformly ultimately bounded under the present ADP-based CMFC scheme. The simulation on a two-degree of freedom MRM system demonstrates the effectiveness of the present control approach.This article develops a cooperative motion/force control (CMFC) scheme based on adaptive dynamic programming (ADP) for modular reconfigurable manipulators (MRMs) with the joint task assignment approach. By separating terms depending on local variables only, the dynamic model of the entire MRM system can be regarded as a set of joint modules interconnected by coupling torque. In addition, the Jacobian matrix, which reflects the interaction force of the MRM end-effector, can be mapped into each joint. Using this approach, both the motion and force tasks on the end-effector of the entire MRM system can be assigned to each joint module cooperatively. Then, by substituting the actual states of coupled joint modules with their desired ones, the norm-boundedness assumption on the interconnection of joint module can be relaxed. By using the measured input-output data of each joint module, a neural network (NN)-based robust decentralized observer, which guarantees the observation error to be asymptotically stable is established. An improved local value function is constructed for each joint module to reflect the interconnection. Then, the local Hamilton-Jacobi-Bellman equation is solved by constructing a local critic NN with a nested learning structure. Hereafter, the ADP-based CMFC is obtained by the assistance of force feedback compensation. Based on the Lyapunov stability analysis, the closed-loop MRM system is guaranteed to be uniformly ultimately bounded under the present ADP-based CMFC scheme. The simulation on a two-degree of freedom MRM system demonstrates the effectiveness of the present control approach.
Author Zhang, Yongwei
Zhao, Bo
Liu, Derong
Author_xml – sequence: 1
  givenname: Bo
  orcidid: 0000-0002-7684-7342
  surname: Zhao
  fullname: Zhao, Bo
  email: zhaobo@bnu.edu.cn
  organization: School of Systems Science, Beijing Normal University, Beijing, China
– sequence: 2
  givenname: Yongwei
  orcidid: 0000-0003-3381-6340
  surname: Zhang
  fullname: Zhang, Yongwei
  email: yongwei_zhang@mail2.gdut.edu.cn
  organization: School of Automation, Guangdong University of Technology, Guangzhou, China
– sequence: 3
  givenname: Derong
  orcidid: 0000-0003-3715-4778
  surname: Liu
  fullname: Liu, Derong
  email: derong@gdut.edu.cn
  organization: School of Automation, Guangdong University of Technology, Guangzhou, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35544490$$D View this record in MEDLINE/PubMed
BookMark eNp9kctu1DAUhi1URC_0BUBCkdiwmal9fInDLh1aLhoKgkFiF3lsZ3BJ7GAnSH0I3hlPZ5hFF3hzbP3ff451_lN05IO3CD0jeE4Iri5WNzfLr3PAAHNKSiJBPkInQATMgEp5dLiX34_ReUq3OB-BuWDVE3RMOWeMVfgE_amNGkb32xZv7rzqnS4-x7CJqu-d38wuVbKmWIQw2KjuqY9hdMFfXIeobRb8GENXtCFmwUydisUXq4Nv3WaKat1lXnk3ZGEMMb0u6uJDcH4sVir9LOqU3Mb3Nr_rYYhB6R9P0eNWdcme7-sZ-nZ9tVq8my0_vX2_qJczTTkZZ5WUDLThlVpDBZhwQ61WLRiBrQVGGeOlNgK0LoUWpcZMEUOqbF63oKihZ-jVrm8e-2uyaWx6l7TtOuVtmFIDQgBnQCTO6MsH6G2Yos-_a0BWXEoiSp6pF3tqWvfWNEN0vYp3zb9FZwB2gI4hpWjbA0Jwsw20uQ-02Qba7APNJvnApN2otgGMUbnu_9bnO6uz1h5mVWUJJZX0L3orruA
CODEN ITNNAL
CitedBy_id crossref_primary_10_1016_j_ejcon_2024_101021
crossref_primary_10_1016_j_isatra_2025_08_041
crossref_primary_10_1016_j_rser_2025_116188
crossref_primary_10_1109_TASE_2024_3453926
crossref_primary_10_1007_s00500_023_07817_6
crossref_primary_10_1109_TNNLS_2024_3394251
crossref_primary_10_1109_TSMC_2023_3326466
crossref_primary_10_1016_j_neucom_2023_126502
crossref_primary_10_1109_TCYB_2024_3378390
crossref_primary_10_1109_TCYB_2024_3468875
crossref_primary_10_1002_rnc_7622
crossref_primary_10_1016_j_engappai_2025_110207
crossref_primary_10_1002_rnc_6550
crossref_primary_10_1109_JIOT_2025_3562692
crossref_primary_10_1109_JIOT_2024_3406152
crossref_primary_10_1109_TSMC_2025_3573738
crossref_primary_10_1002_rnc_70152
crossref_primary_10_1109_TCYB_2024_3472020
crossref_primary_10_1109_TSMC_2023_3247466
crossref_primary_10_1016_j_mechatronics_2025_103293
crossref_primary_10_1016_j_neucom_2024_128873
crossref_primary_10_1002_rnc_7191
crossref_primary_10_1016_j_ins_2024_121068
crossref_primary_10_1016_j_neucom_2025_130125
crossref_primary_10_1109_TNNLS_2024_3395767
crossref_primary_10_1016_j_neucom_2024_128034
crossref_primary_10_1016_j_neunet_2025_107430
Cites_doi 10.1109/TMECH.2003.816802
10.1109/TNNLS.2017.2669941
10.1017/S0263574708004712
10.1016/j.ins.2016.12.016
10.1146/annurev-control-053018-023834
10.1109/TSMCB.2008.926614
10.1109/TNNLS.2013.2280013
10.1109/TMECH.2019.2893227
10.1109/TNN.2011.2172628
10.1109/TASE.2014.2300532
10.1109/TMECH.2010.2050895
10.1109/TSMC.2020.3042876
10.1109/TNNLS.2021.3121403
10.1016/j.ifacol.2019.11.342
10.1016/j.neunet.2020.09.020
10.1109/TSMC.2021.3105663
10.1016/j.jpdc.2016.11.016
10.1109/TNNLS.2021.3094901
10.1007/978-3-319-50815-3
10.1016/j.automatica.2014.05.011
10.1109/TCST.2017.2707336
10.1007/s11071-014-1347-8
10.1109/TASE.2014.2303139
10.1109/TRO.2013.2265631
10.1109/TSMC.2021.3071968
10.1109/TCYB.2019.2962011
10.1109/TNN.2008.2000204
10.1016/j.automatica.2010.02.018
10.1109/TCYB.2015.2417170
10.1002/rnc.1444
10.1109/TIE.2019.2914571
10.1109/TMECH.2012.2191301
10.1016/j.mechatronics.2013.05.008
10.1016/S0921-8890(97)00081-X
10.1109/JRA.1987.1087120
10.1016/j.automatica.2014.10.103
10.1109/JAS.2016.7510262
10.1109/TMECH.2017.2755859
10.1109/TSMC.2017.2690665
10.1109/TNNLS.2013.2281663
10.1007/s12555-016-0711-5
10.1109/TSMCB.2008.920269
10.1109/JAS.2017.7510739
10.1109/TNNLS.2019.2954983
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2022.3171828
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Materials Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 10954
ExternalDocumentID 35544490
10_1109_TNNLS_2022_3171828
9772738
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Open Research Project of the Key Laboratory of Industrial Internet of Things and Networked Control, Ministry of Education
  grantid: 2021FF10
– fundername: Guangdong Introducing Innovative and Enterpreneurial Teams of “The Pearl River Talent Recruitment Program”
  grantid: 2019ZT08X340
– fundername: Open Research Project of the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences
  grantid: 20210108
  funderid: 10.13039/501100002367
– fundername: Beijing Normal University Tang Scholar
  funderid: 10.13039/501100002726
– fundername: Open Research Project of the State Key Laboratory of Industrial Control Technology, Zhejiang University
  grantid: ICT2021B48
  funderid: 10.13039/501100008327
– fundername: National Natural Science Foundation of China
  grantid: 61973330; 62073085
  funderid: 10.13039/501100001809
– fundername: Beijing Natural Science Foundation
  grantid: 4212038
  funderid: 10.13039/501100004826
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c351t-98842cd59ab292015d3ecaf2d60ee2434457cd62cc76c67c04a1d19c35bf2a3d3
IEDL.DBID RIE
ISICitedReferencesCount 46
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000795533200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2162-237X
2162-2388
IngestDate Mon Sep 29 05:40:25 EDT 2025
Mon Jun 30 05:42:31 EDT 2025
Thu Jan 02 22:53:59 EST 2025
Sat Nov 29 01:40:20 EST 2025
Tue Nov 18 22:33:35 EST 2025
Wed Aug 27 02:25:00 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c351t-98842cd59ab292015d3ecaf2d60ee2434457cd62cc76c67c04a1d19c35bf2a3d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3715-4778
0000-0003-3381-6340
0000-0002-7684-7342
PMID 35544490
PQID 2895881675
PQPubID 85436
PageCount 11
ParticipantIDs crossref_primary_10_1109_TNNLS_2022_3171828
ieee_primary_9772738
crossref_citationtrail_10_1109_TNNLS_2022_3171828
pubmed_primary_35544490
proquest_miscellaneous_2662542180
proquest_journals_2895881675
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
Bellman (ref12) 1957
ref24
ref46
ref23
ref45
ref26
ref25
ref20
ref42
ref41
ref22
ref44
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
Werbos (ref13) 1992
ref6
ref5
ref40
References_xml – ident: ref3
  doi: 10.1109/TMECH.2003.816802
– volume-title: Dynamic Programming
  year: 1957
  ident: ref12
– ident: ref23
  doi: 10.1109/TNNLS.2017.2669941
– ident: ref10
  doi: 10.1017/S0263574708004712
– ident: ref32
  doi: 10.1016/j.ins.2016.12.016
– ident: ref2
  doi: 10.1146/annurev-control-053018-023834
– ident: ref21
  doi: 10.1109/TSMCB.2008.926614
– ident: ref44
  doi: 10.1109/TNNLS.2013.2280013
– ident: ref6
  doi: 10.1109/TMECH.2019.2893227
– ident: ref28
  doi: 10.1109/TNN.2011.2172628
– ident: ref35
  doi: 10.1109/TASE.2014.2300532
– ident: ref40
  doi: 10.1109/TMECH.2010.2050895
– ident: ref15
  doi: 10.1109/TSMC.2020.3042876
– ident: ref33
  doi: 10.1109/TNNLS.2021.3121403
– ident: ref41
  doi: 10.1016/j.ifacol.2019.11.342
– ident: ref30
  doi: 10.1016/j.neunet.2020.09.020
– ident: ref36
  doi: 10.1109/TSMC.2021.3105663
– ident: ref8
  doi: 10.1016/j.jpdc.2016.11.016
– ident: ref31
  doi: 10.1109/TNNLS.2021.3094901
– ident: ref14
  doi: 10.1007/978-3-319-50815-3
– ident: ref29
  doi: 10.1016/j.automatica.2014.05.011
– ident: ref4
  doi: 10.1109/TCST.2017.2707336
– ident: ref11
  doi: 10.1007/s11071-014-1347-8
– ident: ref25
  doi: 10.1109/TASE.2014.2303139
– ident: ref5
  doi: 10.1109/TRO.2013.2265631
– ident: ref18
  doi: 10.1109/TSMC.2021.3071968
– ident: ref24
  doi: 10.1109/TCYB.2019.2962011
– ident: ref34
  doi: 10.1109/TNN.2008.2000204
– ident: ref19
  doi: 10.1016/j.automatica.2010.02.018
– ident: ref27
  doi: 10.1109/TCYB.2015.2417170
– ident: ref9
  doi: 10.1002/rnc.1444
– ident: ref38
  doi: 10.1109/TIE.2019.2914571
– ident: ref39
  doi: 10.1109/TMECH.2012.2191301
– ident: ref7
  doi: 10.1016/j.mechatronics.2013.05.008
– ident: ref1
  doi: 10.1016/S0921-8890(97)00081-X
– ident: ref42
  doi: 10.1109/JRA.1987.1087120
– ident: ref45
  doi: 10.1016/j.automatica.2014.10.103
– ident: ref17
  doi: 10.1109/JAS.2016.7510262
– ident: ref43
  doi: 10.1109/TMECH.2017.2755859
– ident: ref20
  doi: 10.1109/TSMC.2017.2690665
– ident: ref22
  doi: 10.1109/TNNLS.2013.2281663
– ident: ref37
  doi: 10.1007/s12555-016-0711-5
– ident: ref46
  doi: 10.1109/TSMCB.2008.920269
– volume-title: Handbook of Intelligent Control: Neural, Fuzzy, and Adaptive Approaches
  year: 1992
  ident: ref13
  article-title: Approximate dynamic programming for real time control and neural modeling
– ident: ref16
  doi: 10.1109/JAS.2017.7510739
– ident: ref26
  doi: 10.1109/TNNLS.2019.2954983
SSID ssj0000605649
Score 2.5916336
Snippet This article develops a cooperative motion/force control (CMFC) scheme based on adaptive dynamic programming (ADP) for modular reconfigurable manipulators...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 10944
SubjectTerms Adaptive control
Adaptive dynamic programming (ADP)
Closed loops
Cooperative control
Decentralized control
dynamic constraints
Dynamic models
Dynamic programming
Dynamics
End effectors
Force
Jacobi matrix method
Jacobian matrix
Joining
Manipulator dynamics
Manipulators
modular reconfigurable manipulators (MRMs)
Modules
motion/force control
Neural networks
neural networks (NNs)
Reconfiguration
Stability analysis
Task analysis
Tracking
Title Adaptive Dynamic Programming-Based Cooperative Motion/Force Control for Modular Reconfigurable Manipulators: A Joint Task Assignment Approach
URI https://ieeexplore.ieee.org/document/9772738
https://www.ncbi.nlm.nih.gov/pubmed/35544490
https://www.proquest.com/docview/2895881675
https://www.proquest.com/docview/2662542180
Volume 34
WOSCitedRecordID wos000795533200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2162-2388
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605649
  issn: 2162-237X
  databaseCode: RIE
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELZ2Vxy4sMDy6LKsjMQNTGPHsR1upVAhxFYrUaTeInfsrCIgqdJ2_wX_mbHzEAdA4hbJdmJlPntm7Jn5CHkJyhotAFjmRMqkAs5s4hwzykJpOQid20g2oZdLs17n10fk9ZgL472PwWf-TXiMd_mugUM4KpuirRIySY7Jsda6y9Uaz1MStMtVtHYFV4KJVK-HHJkkn66Wy89f0BsUAp1U3I5F4OkLqlbKsBv_ppIix8rfzc2odhan_zfh--Reb17SWYeHB-TI1w_J6UDdQPuVfEZ-zpzdhp2Ovu8o6el1F6j1A1UZe4eqzdF502x9VxicXkWyn-miacHTeRfeTtHexQYXAllpcGPrsro5tCEXi17ZuorMYE27e0tn9FNT1Xu6srtvFAFR3cQYBDrrC5o_Il8XH1bzj6xnZmCQZnzPcmOkAJfldhPYrnjmUg-2FE4l3guZSplpcAoxoBUoDYm03PEcB29KYVOXPiYndVP7p4RuwHCrMgjFwCRkJf4y641LNFhdgkkmhA_CKaAvWx7YM74X0X1J8iLKtgiyLXrZTsirccy2K9rxz95nQXJjz15oE3IxYKDo1_WuQPc0M4ajlzUhL8ZmXJHhmsXWvjlgH4U-pUTTCef-pMPO-O4Bcud__uYzcjfQ2XfhMhfkZN8e_HNyB2731a69RNivzWWE_S9E3v5A
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELfGQIIXBoyPsgFG4g2yxo7jOHvrCtWANppEkfoWuWdnioCkSlv-C_5nzs6HeGBIvEWynVi5n3139t39CHkDUquEAwSx4VEgJLBAh8YESmooNAOepNqTTSRZplar9OqAvBtyYay1PvjMnrlHf5dvati7o7Ix2iouk-QWuR0LwVmbrTWcqIRomUtv73ImecCjZNVnyYTpeJll8y_oD3KObipuyNwx9TllK4Tbj_9QSp5l5WaD0yue2dH_TfkBud8ZmHTSIuIhObDVI3LUkzfQbi0fk18Tozdur6PvW1J6etWGav1AZRZcoHIzdFrXG9uWBqcLT_czntUNWDptA9wpWrzYYFwoK3WObFWU1_vGZWPRha5Kzw1WN9tzOqGf6rLa0aXefqMIifLaRyHQSVfS_DH5OvuwnF4GHTdDAFHMdkGqlOBg4lSvHd8Vi01kQRfcyNBaLiIh4gSMRBQkEmQCodDMsBQHrwuuIxM9IYdVXdlnhK5BMS1jcOXABMQF_jJtlQkT0EkBKhwR1gsnh65wuePP-J57ByZMcy_b3Mk272Q7Im-HMZu2bMc_ex87yQ09O6GNyGmPgbxb2dscHdRYKYZ-1oi8HppxTbqLFl3Zeo99JHqVCFA396ctdoZ395B7_vdvviJ3L5eLeT7_mH0-IfccuX0bPHNKDnfN3r4gd-Dnrtw2Lz34fwOgpQCu
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Dynamic+Programming-Based+Cooperative+Motion%2FForce+Control+for+Modular+Reconfigurable+Manipulators%3A+A+Joint+Task+Assignment+Approach&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Zhao%2C+Bo&rft.au=Zhang%2C+Yongwei&rft.au=Liu%2C+Derong&rft.date=2023-12-01&rft.eissn=2162-2388&rft.volume=PP&rft_id=info:doi/10.1109%2FTNNLS.2022.3171828&rft_id=info%3Apmid%2F35544490&rft.externalDocID=35544490
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon