Adaptive Dynamic Programming-Based Cooperative Motion/Force Control for Modular Reconfigurable Manipulators: A Joint Task Assignment Approach
This article develops a cooperative motion/force control (CMFC) scheme based on adaptive dynamic programming (ADP) for modular reconfigurable manipulators (MRMs) with the joint task assignment approach. By separating terms depending on local variables only, the dynamic model of the entire MRM system...
Saved in:
| Published in: | IEEE transaction on neural networks and learning systems Vol. 34; no. 12; pp. 10944 - 10954 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
IEEE
01.12.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 2162-237X, 2162-2388, 2162-2388 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This article develops a cooperative motion/force control (CMFC) scheme based on adaptive dynamic programming (ADP) for modular reconfigurable manipulators (MRMs) with the joint task assignment approach. By separating terms depending on local variables only, the dynamic model of the entire MRM system can be regarded as a set of joint modules interconnected by coupling torque. In addition, the Jacobian matrix, which reflects the interaction force of the MRM end-effector, can be mapped into each joint. Using this approach, both the motion and force tasks on the end-effector of the entire MRM system can be assigned to each joint module cooperatively. Then, by substituting the actual states of coupled joint modules with their desired ones, the norm-boundedness assumption on the interconnection of joint module can be relaxed. By using the measured input-output data of each joint module, a neural network (NN)-based robust decentralized observer, which guarantees the observation error to be asymptotically stable is established. An improved local value function is constructed for each joint module to reflect the interconnection. Then, the local Hamilton-Jacobi-Bellman equation is solved by constructing a local critic NN with a nested learning structure. Hereafter, the ADP-based CMFC is obtained by the assistance of force feedback compensation. Based on the Lyapunov stability analysis, the closed-loop MRM system is guaranteed to be uniformly ultimately bounded under the present ADP-based CMFC scheme. The simulation on a two-degree of freedom MRM system demonstrates the effectiveness of the present control approach. |
|---|---|
| AbstractList | This article develops a cooperative motion/force control (CMFC) scheme based on adaptive dynamic programming (ADP) for modular reconfigurable manipulators (MRMs) with the joint task assignment approach. By separating terms depending on local variables only, the dynamic model of the entire MRM system can be regarded as a set of joint modules interconnected by coupling torque. In addition, the Jacobian matrix, which reflects the interaction force of the MRM end-effector, can be mapped into each joint. Using this approach, both the motion and force tasks on the end-effector of the entire MRM system can be assigned to each joint module cooperatively. Then, by substituting the actual states of coupled joint modules with their desired ones, the norm-boundedness assumption on the interconnection of joint module can be relaxed. By using the measured input-output data of each joint module, a neural network (NN)-based robust decentralized observer, which guarantees the observation error to be asymptotically stable is established. An improved local value function is constructed for each joint module to reflect the interconnection. Then, the local Hamilton-Jacobi-Bellman equation is solved by constructing a local critic NN with a nested learning structure. Hereafter, the ADP-based CMFC is obtained by the assistance of force feedback compensation. Based on the Lyapunov stability analysis, the closed-loop MRM system is guaranteed to be uniformly ultimately bounded under the present ADP-based CMFC scheme. The simulation on a two-degree of freedom MRM system demonstrates the effectiveness of the present control approach. This article develops a cooperative motion/force control (CMFC) scheme based on adaptive dynamic programming (ADP) for modular reconfigurable manipulators (MRMs) with the joint task assignment approach. By separating terms depending on local variables only, the dynamic model of the entire MRM system can be regarded as a set of joint modules interconnected by coupling torque. In addition, the Jacobian matrix, which reflects the interaction force of the MRM end-effector, can be mapped into each joint. Using this approach, both the motion and force tasks on the end-effector of the entire MRM system can be assigned to each joint module cooperatively. Then, by substituting the actual states of coupled joint modules with their desired ones, the norm-boundedness assumption on the interconnection of joint module can be relaxed. By using the measured input-output data of each joint module, a neural network (NN)-based robust decentralized observer, which guarantees the observation error to be asymptotically stable is established. An improved local value function is constructed for each joint module to reflect the interconnection. Then, the local Hamilton-Jacobi-Bellman equation is solved by constructing a local critic NN with a nested learning structure. Hereafter, the ADP-based CMFC is obtained by the assistance of force feedback compensation. Based on the Lyapunov stability analysis, the closed-loop MRM system is guaranteed to be uniformly ultimately bounded under the present ADP-based CMFC scheme. The simulation on a two-degree of freedom MRM system demonstrates the effectiveness of the present control approach.This article develops a cooperative motion/force control (CMFC) scheme based on adaptive dynamic programming (ADP) for modular reconfigurable manipulators (MRMs) with the joint task assignment approach. By separating terms depending on local variables only, the dynamic model of the entire MRM system can be regarded as a set of joint modules interconnected by coupling torque. In addition, the Jacobian matrix, which reflects the interaction force of the MRM end-effector, can be mapped into each joint. Using this approach, both the motion and force tasks on the end-effector of the entire MRM system can be assigned to each joint module cooperatively. Then, by substituting the actual states of coupled joint modules with their desired ones, the norm-boundedness assumption on the interconnection of joint module can be relaxed. By using the measured input-output data of each joint module, a neural network (NN)-based robust decentralized observer, which guarantees the observation error to be asymptotically stable is established. An improved local value function is constructed for each joint module to reflect the interconnection. Then, the local Hamilton-Jacobi-Bellman equation is solved by constructing a local critic NN with a nested learning structure. Hereafter, the ADP-based CMFC is obtained by the assistance of force feedback compensation. Based on the Lyapunov stability analysis, the closed-loop MRM system is guaranteed to be uniformly ultimately bounded under the present ADP-based CMFC scheme. The simulation on a two-degree of freedom MRM system demonstrates the effectiveness of the present control approach. |
| Author | Zhang, Yongwei Zhao, Bo Liu, Derong |
| Author_xml | – sequence: 1 givenname: Bo orcidid: 0000-0002-7684-7342 surname: Zhao fullname: Zhao, Bo email: zhaobo@bnu.edu.cn organization: School of Systems Science, Beijing Normal University, Beijing, China – sequence: 2 givenname: Yongwei orcidid: 0000-0003-3381-6340 surname: Zhang fullname: Zhang, Yongwei email: yongwei_zhang@mail2.gdut.edu.cn organization: School of Automation, Guangdong University of Technology, Guangzhou, China – sequence: 3 givenname: Derong orcidid: 0000-0003-3715-4778 surname: Liu fullname: Liu, Derong email: derong@gdut.edu.cn organization: School of Automation, Guangdong University of Technology, Guangzhou, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35544490$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kctu1DAUhi1URC_0BUBCkdiwmal9fInDLh1aLhoKgkFiF3lsZ3BJ7GAnSH0I3hlPZ5hFF3hzbP3ff451_lN05IO3CD0jeE4Iri5WNzfLr3PAAHNKSiJBPkInQATMgEp5dLiX34_ReUq3OB-BuWDVE3RMOWeMVfgE_amNGkb32xZv7rzqnS4-x7CJqu-d38wuVbKmWIQw2KjuqY9hdMFfXIeobRb8GENXtCFmwUydisUXq4Nv3WaKat1lXnk3ZGEMMb0u6uJDcH4sVir9LOqU3Mb3Nr_rYYhB6R9P0eNWdcme7-sZ-nZ9tVq8my0_vX2_qJczTTkZZ5WUDLThlVpDBZhwQ61WLRiBrQVGGeOlNgK0LoUWpcZMEUOqbF63oKihZ-jVrm8e-2uyaWx6l7TtOuVtmFIDQgBnQCTO6MsH6G2Yos-_a0BWXEoiSp6pF3tqWvfWNEN0vYp3zb9FZwB2gI4hpWjbA0Jwsw20uQ-02Qba7APNJvnApN2otgGMUbnu_9bnO6uz1h5mVWUJJZX0L3orruA |
| CODEN | ITNNAL |
| CitedBy_id | crossref_primary_10_1016_j_ejcon_2024_101021 crossref_primary_10_1016_j_isatra_2025_08_041 crossref_primary_10_1016_j_rser_2025_116188 crossref_primary_10_1109_TASE_2024_3453926 crossref_primary_10_1007_s00500_023_07817_6 crossref_primary_10_1109_TNNLS_2024_3394251 crossref_primary_10_1109_TSMC_2023_3326466 crossref_primary_10_1016_j_neucom_2023_126502 crossref_primary_10_1109_TCYB_2024_3378390 crossref_primary_10_1109_TCYB_2024_3468875 crossref_primary_10_1002_rnc_7622 crossref_primary_10_1016_j_engappai_2025_110207 crossref_primary_10_1002_rnc_6550 crossref_primary_10_1109_JIOT_2025_3562692 crossref_primary_10_1109_JIOT_2024_3406152 crossref_primary_10_1109_TSMC_2025_3573738 crossref_primary_10_1002_rnc_70152 crossref_primary_10_1109_TCYB_2024_3472020 crossref_primary_10_1109_TSMC_2023_3247466 crossref_primary_10_1016_j_mechatronics_2025_103293 crossref_primary_10_1016_j_neucom_2024_128873 crossref_primary_10_1002_rnc_7191 crossref_primary_10_1016_j_ins_2024_121068 crossref_primary_10_1016_j_neucom_2025_130125 crossref_primary_10_1109_TNNLS_2024_3395767 crossref_primary_10_1016_j_neucom_2024_128034 crossref_primary_10_1016_j_neunet_2025_107430 |
| Cites_doi | 10.1109/TMECH.2003.816802 10.1109/TNNLS.2017.2669941 10.1017/S0263574708004712 10.1016/j.ins.2016.12.016 10.1146/annurev-control-053018-023834 10.1109/TSMCB.2008.926614 10.1109/TNNLS.2013.2280013 10.1109/TMECH.2019.2893227 10.1109/TNN.2011.2172628 10.1109/TASE.2014.2300532 10.1109/TMECH.2010.2050895 10.1109/TSMC.2020.3042876 10.1109/TNNLS.2021.3121403 10.1016/j.ifacol.2019.11.342 10.1016/j.neunet.2020.09.020 10.1109/TSMC.2021.3105663 10.1016/j.jpdc.2016.11.016 10.1109/TNNLS.2021.3094901 10.1007/978-3-319-50815-3 10.1016/j.automatica.2014.05.011 10.1109/TCST.2017.2707336 10.1007/s11071-014-1347-8 10.1109/TASE.2014.2303139 10.1109/TRO.2013.2265631 10.1109/TSMC.2021.3071968 10.1109/TCYB.2019.2962011 10.1109/TNN.2008.2000204 10.1016/j.automatica.2010.02.018 10.1109/TCYB.2015.2417170 10.1002/rnc.1444 10.1109/TIE.2019.2914571 10.1109/TMECH.2012.2191301 10.1016/j.mechatronics.2013.05.008 10.1016/S0921-8890(97)00081-X 10.1109/JRA.1987.1087120 10.1016/j.automatica.2014.10.103 10.1109/JAS.2016.7510262 10.1109/TMECH.2017.2755859 10.1109/TSMC.2017.2690665 10.1109/TNNLS.2013.2281663 10.1007/s12555-016-0711-5 10.1109/TSMCB.2008.920269 10.1109/JAS.2017.7510739 10.1109/TNNLS.2019.2954983 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| DOI | 10.1109/TNNLS.2022.3171828 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic Materials Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2162-2388 |
| EndPage | 10954 |
| ExternalDocumentID | 35544490 10_1109_TNNLS_2022_3171828 9772738 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: Open Research Project of the Key Laboratory of Industrial Internet of Things and Networked Control, Ministry of Education grantid: 2021FF10 – fundername: Guangdong Introducing Innovative and Enterpreneurial Teams of “The Pearl River Talent Recruitment Program” grantid: 2019ZT08X340 – fundername: Open Research Project of the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences grantid: 20210108 funderid: 10.13039/501100002367 – fundername: Beijing Normal University Tang Scholar funderid: 10.13039/501100002726 – fundername: Open Research Project of the State Key Laboratory of Industrial Control Technology, Zhejiang University grantid: ICT2021B48 funderid: 10.13039/501100008327 – fundername: National Natural Science Foundation of China grantid: 61973330; 62073085 funderid: 10.13039/501100001809 – fundername: Beijing Natural Science Foundation grantid: 4212038 funderid: 10.13039/501100004826 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| ID | FETCH-LOGICAL-c351t-98842cd59ab292015d3ecaf2d60ee2434457cd62cc76c67c04a1d19c35bf2a3d3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 46 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000795533200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2162-237X 2162-2388 |
| IngestDate | Mon Sep 29 05:40:25 EDT 2025 Mon Jun 30 05:42:31 EDT 2025 Thu Jan 02 22:53:59 EST 2025 Sat Nov 29 01:40:20 EST 2025 Tue Nov 18 22:33:35 EST 2025 Wed Aug 27 02:25:00 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c351t-98842cd59ab292015d3ecaf2d60ee2434457cd62cc76c67c04a1d19c35bf2a3d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-3715-4778 0000-0003-3381-6340 0000-0002-7684-7342 |
| PMID | 35544490 |
| PQID | 2895881675 |
| PQPubID | 85436 |
| PageCount | 11 |
| ParticipantIDs | crossref_primary_10_1109_TNNLS_2022_3171828 ieee_primary_9772738 crossref_citationtrail_10_1109_TNNLS_2022_3171828 pubmed_primary_35544490 proquest_miscellaneous_2662542180 proquest_journals_2895881675 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-12-01 |
| PublicationDateYYYYMMDD | 2023-12-01 |
| PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Piscataway |
| PublicationTitle | IEEE transaction on neural networks and learning systems |
| PublicationTitleAbbrev | TNNLS |
| PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 Bellman (ref12) 1957 ref24 ref46 ref23 ref45 ref26 ref25 ref20 ref42 ref41 ref22 ref44 ref21 ref43 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 Werbos (ref13) 1992 ref6 ref5 ref40 |
| References_xml | – ident: ref3 doi: 10.1109/TMECH.2003.816802 – volume-title: Dynamic Programming year: 1957 ident: ref12 – ident: ref23 doi: 10.1109/TNNLS.2017.2669941 – ident: ref10 doi: 10.1017/S0263574708004712 – ident: ref32 doi: 10.1016/j.ins.2016.12.016 – ident: ref2 doi: 10.1146/annurev-control-053018-023834 – ident: ref21 doi: 10.1109/TSMCB.2008.926614 – ident: ref44 doi: 10.1109/TNNLS.2013.2280013 – ident: ref6 doi: 10.1109/TMECH.2019.2893227 – ident: ref28 doi: 10.1109/TNN.2011.2172628 – ident: ref35 doi: 10.1109/TASE.2014.2300532 – ident: ref40 doi: 10.1109/TMECH.2010.2050895 – ident: ref15 doi: 10.1109/TSMC.2020.3042876 – ident: ref33 doi: 10.1109/TNNLS.2021.3121403 – ident: ref41 doi: 10.1016/j.ifacol.2019.11.342 – ident: ref30 doi: 10.1016/j.neunet.2020.09.020 – ident: ref36 doi: 10.1109/TSMC.2021.3105663 – ident: ref8 doi: 10.1016/j.jpdc.2016.11.016 – ident: ref31 doi: 10.1109/TNNLS.2021.3094901 – ident: ref14 doi: 10.1007/978-3-319-50815-3 – ident: ref29 doi: 10.1016/j.automatica.2014.05.011 – ident: ref4 doi: 10.1109/TCST.2017.2707336 – ident: ref11 doi: 10.1007/s11071-014-1347-8 – ident: ref25 doi: 10.1109/TASE.2014.2303139 – ident: ref5 doi: 10.1109/TRO.2013.2265631 – ident: ref18 doi: 10.1109/TSMC.2021.3071968 – ident: ref24 doi: 10.1109/TCYB.2019.2962011 – ident: ref34 doi: 10.1109/TNN.2008.2000204 – ident: ref19 doi: 10.1016/j.automatica.2010.02.018 – ident: ref27 doi: 10.1109/TCYB.2015.2417170 – ident: ref9 doi: 10.1002/rnc.1444 – ident: ref38 doi: 10.1109/TIE.2019.2914571 – ident: ref39 doi: 10.1109/TMECH.2012.2191301 – ident: ref7 doi: 10.1016/j.mechatronics.2013.05.008 – ident: ref1 doi: 10.1016/S0921-8890(97)00081-X – ident: ref42 doi: 10.1109/JRA.1987.1087120 – ident: ref45 doi: 10.1016/j.automatica.2014.10.103 – ident: ref17 doi: 10.1109/JAS.2016.7510262 – ident: ref43 doi: 10.1109/TMECH.2017.2755859 – ident: ref20 doi: 10.1109/TSMC.2017.2690665 – ident: ref22 doi: 10.1109/TNNLS.2013.2281663 – ident: ref37 doi: 10.1007/s12555-016-0711-5 – ident: ref46 doi: 10.1109/TSMCB.2008.920269 – volume-title: Handbook of Intelligent Control: Neural, Fuzzy, and Adaptive Approaches year: 1992 ident: ref13 article-title: Approximate dynamic programming for real time control and neural modeling – ident: ref16 doi: 10.1109/JAS.2017.7510739 – ident: ref26 doi: 10.1109/TNNLS.2019.2954983 |
| SSID | ssj0000605649 |
| Score | 2.5916336 |
| Snippet | This article develops a cooperative motion/force control (CMFC) scheme based on adaptive dynamic programming (ADP) for modular reconfigurable manipulators... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 10944 |
| SubjectTerms | Adaptive control Adaptive dynamic programming (ADP) Closed loops Cooperative control Decentralized control dynamic constraints Dynamic models Dynamic programming Dynamics End effectors Force Jacobi matrix method Jacobian matrix Joining Manipulator dynamics Manipulators modular reconfigurable manipulators (MRMs) Modules motion/force control Neural networks neural networks (NNs) Reconfiguration Stability analysis Task analysis Tracking |
| Title | Adaptive Dynamic Programming-Based Cooperative Motion/Force Control for Modular Reconfigurable Manipulators: A Joint Task Assignment Approach |
| URI | https://ieeexplore.ieee.org/document/9772738 https://www.ncbi.nlm.nih.gov/pubmed/35544490 https://www.proquest.com/docview/2895881675 https://www.proquest.com/docview/2662542180 |
| Volume | 34 |
| WOSCitedRecordID | wos000795533200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2162-2388 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000605649 issn: 2162-237X databaseCode: RIE dateStart: 20120101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELZ2Vxy4sMDy6LKsjMQNTGPHsR1upVAhxFYrUaTeInfsrCIgqdJ2_wX_mbHzEAdA4hbJdmJlPntm7Jn5CHkJyhotAFjmRMqkAs5s4hwzykJpOQid20g2oZdLs17n10fk9ZgL472PwWf-TXiMd_mugUM4KpuirRIySY7Jsda6y9Uaz1MStMtVtHYFV4KJVK-HHJkkn66Wy89f0BsUAp1U3I5F4OkLqlbKsBv_ppIix8rfzc2odhan_zfh--Reb17SWYeHB-TI1w_J6UDdQPuVfEZ-zpzdhp2Ovu8o6el1F6j1A1UZe4eqzdF502x9VxicXkWyn-miacHTeRfeTtHexQYXAllpcGPrsro5tCEXi17ZuorMYE27e0tn9FNT1Xu6srtvFAFR3cQYBDrrC5o_Il8XH1bzj6xnZmCQZnzPcmOkAJfldhPYrnjmUg-2FE4l3guZSplpcAoxoBUoDYm03PEcB29KYVOXPiYndVP7p4RuwHCrMgjFwCRkJf4y641LNFhdgkkmhA_CKaAvWx7YM74X0X1J8iLKtgiyLXrZTsirccy2K9rxz95nQXJjz15oE3IxYKDo1_WuQPc0M4ajlzUhL8ZmXJHhmsXWvjlgH4U-pUTTCef-pMPO-O4Bcud__uYzcjfQ2XfhMhfkZN8e_HNyB2731a69RNivzWWE_S9E3v5A |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELfGQIIXBoyPsgFG4g2yxo7jOHvrCtWANppEkfoWuWdnioCkSlv-C_5nzs6HeGBIvEWynVi5n3139t39CHkDUquEAwSx4VEgJLBAh8YESmooNAOepNqTTSRZplar9OqAvBtyYay1PvjMnrlHf5dvati7o7Ix2iouk-QWuR0LwVmbrTWcqIRomUtv73ImecCjZNVnyYTpeJll8y_oD3KObipuyNwx9TllK4Tbj_9QSp5l5WaD0yue2dH_TfkBud8ZmHTSIuIhObDVI3LUkzfQbi0fk18Tozdur6PvW1J6etWGav1AZRZcoHIzdFrXG9uWBqcLT_czntUNWDptA9wpWrzYYFwoK3WObFWU1_vGZWPRha5Kzw1WN9tzOqGf6rLa0aXefqMIifLaRyHQSVfS_DH5OvuwnF4GHTdDAFHMdkGqlOBg4lSvHd8Vi01kQRfcyNBaLiIh4gSMRBQkEmQCodDMsBQHrwuuIxM9IYdVXdlnhK5BMS1jcOXABMQF_jJtlQkT0EkBKhwR1gsnh65wuePP-J57ByZMcy_b3Mk272Q7Im-HMZu2bMc_ex87yQ09O6GNyGmPgbxb2dscHdRYKYZ-1oi8HppxTbqLFl3Zeo99JHqVCFA396ctdoZ395B7_vdvviJ3L5eLeT7_mH0-IfccuX0bPHNKDnfN3r4gd-Dnrtw2Lz34fwOgpQCu |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Dynamic+Programming-Based+Cooperative+Motion%2FForce+Control+for+Modular+Reconfigurable+Manipulators%3A+A+Joint+Task+Assignment+Approach&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Zhao%2C+Bo&rft.au=Zhang%2C+Yongwei&rft.au=Liu%2C+Derong&rft.date=2023-12-01&rft.eissn=2162-2388&rft.volume=PP&rft_id=info:doi/10.1109%2FTNNLS.2022.3171828&rft_id=info%3Apmid%2F35544490&rft.externalDocID=35544490 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |